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Abstract

A  new  high  performance  computation  technique
involving multiple processors on a single silicon die is
quickly gaining popularity.  This new design approach
provides  very  high  performance,  excellent  power
efficiency  and  a  high  level  of  programmability  as
compared to other existing solutions.   This approach
also  serves  to  move  the  design  effort  away  from
hardware design and toward software.  This results in
a  faster  time to  market  as  well  as  a  lower  up-front
design  cost.   This  paper  discusses  the  Configurable
Multiprocessor  design  environment  from  Cmpware,
Inc..  This toolkit is used to design ASIC, FPGA and
SoC multiprocessor solutions.

1.  Introduction

As  the  number  of  available  transistors  on  a  die  has
continued  to  increase  toward  the  one  billion  mark,
traditional  processor architectures  have  arrived  at  a
critical  juncture.   Microprocessors  and  FPGAs  have
become  power-limited  and  are  having  difficulties
increasing both their device sizes and their clock speeds.
The circuits currently used to implement these devices
consume nearly as much power as can be conveniently
dissipated.  Microprocessors have quickly turned toward
multicore  designs  –  devices  containing  two  or  more
microprocessor  cores.   This  change  has  been  so
dramatic that it appears that from this point forward, no
new  high  performance  microprocessors  will  be
announced or built  using a single processor  core [10]
[11][12].

A similar trend has occurred in the FPGA world.  Large
modern FPGA devices such as the Xilinx Virtex II Pro
already  contain  several  standard  microprocessor  cores
[1].  There are also reports from ASIC processor core
vendors  that  their  customers  are  on  average  using
several  cores  per  device.   It  is  expected  that  as
performance and power constraints continue to dominate
design, this trend will continue and accelerate.

This paper discusses a new software development tool
from  Cmpware,  Inc.  aimed  at  programming  such
multiprocessor architectures.    This toolkit provides a
fast  simulation  and  development  environment  for  a
network-connected  arrays  of  processors.   This
environment  gathers  and  presents  a  rich  variety  of
system run time performance and execution data which
is  essential  to  successful  development  in  a
multiprocessor environment.

2.  Configurable Multiprocessing

There are three major multiprocessing approaches used
today.   The  first  is  the  multicore  approach  used  by
traditional  microprocessor  vendors  such as  Intel,  IBM
and Sun.   Here, multiple processor cores share memory
and  often  cache.   Several  research  efforts  in  the  late
1990 pioneered this “Chip Multiprocessing”  approach
[2][3][6]   This  tightly coupled  arrangement  does  not
address  the  memory  bandwidth issues  in  increasing
processor performance, but it does provide a task level
of  parallelism  which  saves  a  potentially  expensive
context switch.  This is useful in the presence of high
rate interrupts, such as a busy network interface.  But it
is not clear that there are many such tasks available in
conventional systems to exploit this type of parallelism.

Figure 1:  The Cmpware Framework.

The second approach is  used by FPGA manufacturers
such  as  Xilinx.   Here  multiple  processor  cores  are
distributed  around  the  FPGA  die  to  be  used  as  the



designer  sees  fit.   Additionally,  FPGA  designers  are
increasingly turning to “soft” processor cores such as the
Altera  NIOS  or  Xilinx  MicroBlaze  [14].   Many  are
increasingly turning to multiple soft processor cores to
implement  systems.   Software  support  for  these
hardwired  processors,  as  well  as  multiprocessing  in
general, has been largely unavailable.

The  last  approach  is  the  large-scale  use  of  processor
cores in a custom ASIC device [7][8][9][13].  Vendors
of  processor  cores  are  reporting  high  levels  of
multiprocessor  development  from  their  customers.
Again, these systems have tended to be ad-hoc, and little
support is provided to develop such architectures.

Figure 2:  The Cmpware development environment.

In  general,  none  of  these  approaches  have  provided
much  support  for  the  multiprocessor  design  process.
Also, because they tend to be ad-hoc implementations,
no particular programming environment addressing the
needs  of  multicore  devices  has  been  made  available
from these vendors.   This  is   in  spite  of the obvious
dedication  of  both  vendors  and  customers  to  this
approach.

Configurable Multiprocessing (CMP) attempts to put a
flexible and useful framework in place that will in turn
permit useful tools and supporting intellectual property
to  be  put  in  place  to  support  these  designs.   This
framework consists of collections of standard processor
cores  communicating  across  well-defined
communication links.

The  Cmpware  approach  is  to  treat  the  processor  /
compiler  as  a  “black  box”  capable  of  implementing
algorithms from a high level language.  This approach
makes  the  maximum  use  of  existing  intellectual
property.  Existing processor cores and tools are used as
well  as existing libraries  and other  software  for  these
processors.   This  is  in  contrast  to  other  recent
approaches  which  either  define  new  programming

languages or programming language extensions, and / or
new  processor  architectures.   Designing  and
implementing  new  processors  and  tools  can  be  an
expensive and time-consuming endeavor.  The approach
taken  by  Cmpware  provides  a  path  to  efficiently  use
existing tools and architectures while also providing the
flexibility  for  integrating  new  intellectual  property
where  necessary.   All  of  this places  the  emphasis  on
designing  a  solution  to  the  problem  at  hand,  not  to
designing a support infrastructure to be used to solve the
problem at hand.
In  the  Cmpware approach,  the  preferred  method  of
communication is a direct, point to point link accessed
as a memory mapped IO port.  The reasons for this are
twofold.   Point  to  point  links  provide  the  maximum
bandwidth and faster synchronization compared to other
approaches.  Traditional shared  buses and system-level
networking such as TCP/IP tend to be large and slow
and essentially re-create existing system bottlenecks.

Figure 3:  The multiprocessor FIR code.

Using a memory-mapped IO port as the interface to the
communication  channel  has  two  very  significant
benefits.  First, it keeps the processor core intact.  There
is  no  need  to  modify  either  the  processor  hardware
design  or  its  simulation  model  to  use  this  type  of
communication  link.   Second,  and  perhaps  more
importantly, it does not require any modifications to the
compiler.  The memory mapped IO ports appear as an
address or “pointer” to be written to or read from.  This
also provides a very simple and natural interface to the
programmer. 

Figure 1 gives the general  structure of the underlying
Cmpware model.  Standard components are used for the
Processor  and  the  Multiprocessor  interfaces.   These
provide not only generally useful default behavior, but

void  _start(void) {
   int  node;
   int  ntaps;
   /* Get the parameters */
   node = *west;
   ntaps = *west;
   /* Send to the nextnode */
   *east = (node-1);
   *east = ntaps;

   for (;;) {
      *east = FIR(ntaps, *west);
      *east = shift(ntaps, *west);
      }  /* end for() */
   }  /* end _start() */



also  all  of  the  machinery  necessary  to  perform
multiprocessor simulation.  Note that the Processors are
uniform objects with their own customization as well as
memory and memory mapped IO.  These are interfaces
to  the  user-defined  interconnection  network,  which
supplies the multiprocessor interface.  It is this interface
which  communicates  the  the  Eclipse  Integrated
Development  Environment  (IDE)  as  well  as  a  simple
command line interface.

While these are the suggested approaches for building
configurable  multiprocessors,  the  Cmpware  toolkit  is
very flexible in its  system  modeling offerings.   Users
may  specify  custom  processor  architectures,  modify
existing architectures and supply custom interconnection
models where required.

3. An FIR Filter Example

The  Finite  Impulse  Response  (FIR)  filter  is  a  very
common  processing  element  which  is  often
implemented  in  both  hardware  and  software.   It  will
make a good candidate for demonstrating some of the
features of the configurable multiprocessing approach.

Figure 4:  The FIR code.

In this example, the processing node selected is a NIOS
II processor from Altera.  The communication network
is a 2D grid, with each processor communicating with
its four neighbors, although all of these links may not
be used in this particular example.   The links used by
the processors are Shared Registers, which behave like
one word synchronous FIFOs.  These permit data to be
communicated between nodes in a single cycle,  while
providing  the  tight  synchronization  required  for  high
levels of processor utilization.

Figure 2 shows the Cmpware development environment.
A 1 x 6 array of NIOS II processors has been allocated
and the FIR code loaded into the nodes.  Note that this
development  environment  is  based  on  the  popular
Eclipse IDE [14] and in this case plugs directly into the
Altera NIOS II software development environment.    In
this display, the graphical view of the processor array as
well as the IO port status is shown.  The other displays

include a node source code trace of execution, a memory
viewer, a disassembler as well as detailed internal node
information such as register values and performance and
profiling statistics.  These displays are too numerous to
detail  in  this  paper,  but  all  are  simple  to  access  and
interpret  and  are  valuable  in  debugging  and  tuning
multiprocessor systems.

Figure 3 shows the multiprocessor version of the FIR
code.  This particular piece of code is parameterized and
is run on one or more nodes used to implement the FIR
filter.  In this case, the number of nodes and the number
of  taps  for  the  filter  is  passed  in  as  parameters  to
configure the filter.  In the example displayed in Figure
2, there are six nodes.  The first node is a simple data
source  which  sends  the  input  data  to  the  FIR  filter.
Similarly, the last node is the data sink, which just stores
the results for later inspection.  So in this particular run,
the FIR uses four nodes, each with two taps, for a total
of eight taps.  The east and west pointer variables in the
code represent the IO ports.

Figure 4 shows the code which actually implements the
FIR filter.  What is perhaps most interesting about this
code  is  that  it  is  a  standard “C” function which was
taken directly from the literature.  There is no particular
reference to the parallelism being exploited.  All of this
is  handled  at  the  parameterization  level  as  shown in
Figure 3.  Another feature of this approach is that the
number of taps and the number of processors used is set
by two parameters, which can be set dynamically at run
time.   This  permits  such  processing  to  dynamically
allocate resources at a very fine grain to manage such
system  parameters  such  as  power  consumption  and
performance.

Figure 5:  The FIR result.

The  graph  in  Figure  5  shows the  input  data  and  the
output data, just to verify that a FIR filtering operation
was indeed  performed.   Perhaps  more  interesting,  the
graph in Figure 6 shows the speedup as nodes are added.
Because  the  communications  and  synchronization
between nodes is so fast, the speedups as the algorithm
is parallelized are fairly dramatic.  Note that with no 

int FIR(int  ntaps, int sum) {
   int  i;
   
   for (i=0; i<ntaps; i++)
      sum += h[i] * z[i];

   return (sum);
   }  /* end FIR() */
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change in the code, the final 8 processor  bar shows a
very high degree of parallelization of the algorithm.  In
this case there is just one filter stage per processor, and
there is still an nearly linearly increase in performance.

Unlike  other  system-level  parallel  processors,  the
ability  to  communicate  on-chip  permits  these
efficiencies.   Because  there  is  little  overhead  in
communicating,  parallelizing  of  the  algorithm  can
continue at higher levels of efficiency than is possible
with  other  parallel  machines.   In  fact,  the  fast
communication  and  synchronization  make  the
computation,  when  it  is  fully  parallelized,  resemble
hardware-style register transfer language (RTL) design.
Unlike hardware design, however, the resources may be
redeployed at run time and used in more flexible ways.

Figure 6:  The FIR speedup.

4.  Conclusion

Today,  it  is  possible  to  build  and  program  devices
containing  thousands  of  processors.    Even
reconfigurable logic devices such as FPGAs can easily
support  hundreds  of  soft  processor  cores  in  a  single
device.   This  provides  the  potential  for  thousands  of
MIPS of computing power, programmed in traditional
high level languages.  To make this approach even more
attractive, it operates at a power efficiency that is orders
of magnitude higher than the approach used by existing
desktop uniprocessors.

Cmpware,  Inc.  has  defined  a  simple  framework  for
describing  a  multiprocessor  architecture  and  has
provided  a  fast  and  flexible  programming  and
simulation environment for such an architecture.   This
environment supports pluggable processor nodes and a
configurable interconnection network.  It also provides
fast and accurate multiprocessor simulation with a wide
variety  of  run-time  data  displays.   The  configurable
multiprocessing approach promises to provide fast and
flexible  high-performance,  low-power  architectures

while continuing to take advantage of increasing circuit
densities.
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