Polynomials and the
Fast Fourier Transform (FFT)

Algorithm Design and Analysis
(Week 7)

Battle Plan

* Polynomials
— Algorithms to add, multiply and evaluate polynomials
— Coefficient and point-value representation

* Fourier Transform

— Discrete Fourier Transform (DFT) and inverse DFT to
translate between polynomial representations

— “A Short Digression on Complex Roots of Unity”

— Fast Fourier Transform (FFT) is a divide-and-conquer
algorithm based on properties of complex roots of unity

Polynomials

A polynomial in the variable x is a representation of
a function
A(x) = apx™ 1+ + a,x? + a;x + aq

as a formal sum A(x) = Z}f‘;& ajxj.
* We call the values ag, a; ..., a,_; the coefficients of

the polynomial
* A(x) is said to have degree k if its highest nonzero
coefficient is ay.

* Any integer strictly greater than the degree of a
polynomial is a degree-bound of that polynomial

Examples

s A) =x3-2x-1
— A(x) has degree 3
— A(x) has degree-bounds 4, 5, 6, ... or all values > degree
— A(x) has coefficients (—1,—2,0,1)

e B(x) = x3+x%2+1
— B(x) has degree 3
— B(x) has degree bounds 4, 5, 6, ... or all values > degree
— B(x) has coefficients (1,0, 1,1)

Coefficient Representation

A coefficient representation of a polynomial

Alx) = Z?;Ol ajxj of degree-bound n is a vector of
coefficients a = (ay, aq, ..., ap_1).

More examples

— A(x) = 6x3+7x2 —10x + 9 (9,—10,7,6)
—B(x) =-2x3+4x-5 (—5,4,0,—2)
The operation of evaluating the polynomial A(x) at
point x, consists of computing the value of A(x,).
Evaluation takes time ®(n) using Horner’s rule

A(xo) = ag + xo(a; + xo(az + -+ + x9(an—2 + x9(an-1)) --))

Adding Polynomials

Adding two polynomials represented by the
coefficient vectors a = (ay, a4, ..., ap_1) and

b = (by, by, ..., b,_1) takes time O(n).

Sum is the coefficient vector ¢ = (¢, ¢q, -, Cn_1),
where ¢; = a; + bj forj=0,1,..,n—1.

Example
Alx) = 6x3 +7x%2 — 10x + 9 (9,—10,7,6)
B(x) = — 2x3 + 4x -5 (-5,4,0,-2)

C(x)= 4x3+7x>— 6x+ 4 (4,—6,7,4)

Multiplying Polynomials

* For polynomial multiplication, if A(x) and B(x) are
polynomials of degree-bound n, we say their product
C(x) is a polynomial of degree-bound 2n — 1.

* Example
6x3 + 7x2 —10x + 9
— 2x3 + 4x — 5
—30x3 —35x% 4+ 50x — 45
24x* +28x3 —40x? + 36x
—12x% —14x> + 20x* —18x3
—12x% —14x5 +44x* —20x3 —75x? + 86x — 45

Multiplying Polynomials

* Multiplication of two degree-bound n polynomials
A(x) and B(x) takes time ©(n?), since each
coefficient in vector a must be multiplied by each
coefficient in vector b.

* Another way to express the product C(x) is
2n—1 i i
Yizo ¢ x’, wherec; = Yo agb;_y .
* The resulting coefficient vector c = (cg, ¢4, --- Can—1)

is also called the convolution of the input vectors a
and b, denoted as ¢ = a®b.

Point-Value Representation

* A point-value representation of a polynomial A(x)

of degree-bound n is a set of n point-value pairs
{(x0,¥0), Cc1, y1)) s (o1, Yn—1)}

such that all of the x;, are distinct and y, = A(xy)
fork=0,1,..,n—1.

s Example A(x) =x3—-2x+1
o b } {(0,1),(1,0),(2,5), (3,22)}
— A(xy) 1,0,5,22 PR T A S A

* Using Horner’s method, n-point evaluation takes
time ©(n?).

Point-Value Representation

* The inverse of evaluation is called interpolation

— determines coefficient form of polynomial from point-
value representation

— Forany set {(xo, ¥o), (X1, ¥1), ..., (n-1,Yn—1)} of n point-
value pairs such that all the x;, values are distinct, there is
a unique polynomial A(x) of degree-bound n such that
Vi = A(xg) fork=0,1,...,n—1.

* Lagrange’s formula
n-1

Y aG-x)
A(x) - kzoyk Hj;tk(xk _ X])

* Using Lagrange’s formula, interpolation takes time
0(n?).

Example

* Using Lagrange’s formula, we interpolate the point-
value representation {(0,1),(1,0),(2,5),(3,22)}.
o GeDE-2)(x-3) _ x3-6xP+11x-6 _ —x+6x*-11x+6
(0-1)(0-2)(0-3) -6 o 6
_ a&x=0)x-2)(x-3) _
(1-0)(1-2)(1-3)

5 (x—=0)(x-1)(x-3) _ o x3—4x?+3x _ —15x3+60x%—45x
T Y (2-0)(2-1)(2-3) -2 - 6
(x—0)(x—1)(x—2) _ x3-3x2+2x _ 22x3-66x%+44x
(3-0)(3-1)(3-2) 6 - 6
- %(6x3 + 0x%2 —12x + 6)
—x3-2x+1

11

Adding Polynomials

* In point-value form, addition C(x) = A(x) + B(x) is
given by C(x;) = A(xy) + B(xy) for any point xy.
— A:{(x0,¥0), (X1, ¥1), s (X1, Yn—1)}
— B:{(x0, ¥0), (X1, ¥1), o, (=1, Yn—1)}
— C:{(x0,¥0 + ¥0), (x1, Y1 + Y1), oo, (Xn—1, Yn—1 + ¥n-1)}
* A and B are evaluated for the same n points.
* The time to add two polynomials of degree-bound n
in point-value form is O(n).

12

Example

* We add C(x) = A(x) + B(x) in point-value form
—Ax) =x3-2x+1
—B(x)=x3+x%+1
—x, =(0,1,2,3)
— 4 {(0,1),(1,0),(2, 5),(3,22)}
- B: {(0,1),(1,3),(2,13),(3,37)}
-C: {(0,2),(1,3),(2,18),(3,59)}

Multiplying Polynomials

* In point-value form, multiplication C(x) = A(x)B(x)
is given by C(x;) = A(x;)B(x) for any point xj.
* Problem: if A and B are of degree-bound n, then C is
of degree-bound 2n.
* Need to start with “extended” point-value forms for
A and B consisting of 2n point-value pairs each.
— A:{(x0,¥0), (x1, Y1), -» (X2n—1, Yan-1)}
— B:{(x0,0), (X1, ¥1), -, (X2n-1, Y2n—1)}
— C:{(x0,Y0Y0)s (X1, ¥1¥1)» +» (X2n—1, Y2n-1Y2n-1)}
* The time to multiply two polynomials of degree-
bound n in point-value form is ©(n).

14

Example

* We multiply C(x) = A(x)B(x) in point-value form
—Ax) =x3-2x+1
—B(x)=x3+x%?+1
- x,=(-3,-2,-1,0,1,2,3) We need 7 coefficients!
—A: {(-3,-17),(-2,-3),(-1,1),(0,1),(1,0), (2, 5),(3,22)}
— B: {(-3,-20),(-2,-3),(~1,2),(0,1),(1,3),(2,13),(3,37)}
— C: {(-3,340),(-2,9),(-1,2),(0,1),(1,0),(2,65), (3,814)}

The Road So Far

Ao, Aq, ery App—q Ordinary multiplication Coefficient
by, by, .., Ap_1 Time O(n?) Co, €1y ey Cn—1 representations
Evaluation Interpolation
Time ©(n?) Time ®(n?)
A(xo), B(xo) C(xo)
A(x,), B(xy) Pointwise multiplication C(xq) Point-value
: Time O(n) : representations
A(xzn-1), B(x2n-1) C(xan-1)

e Can we do better?

— Using Fast Fourier Transform (FFT) and its inverse, we can do
evaluation and interpolation in time ©(nlogn).

* The product of two polynomials of degree-bound n can
be computed in time ®(n logn), with both the input and
output in coefficient form.

16

Fourier Transform

* Fourier Transforms originate from signal processing
— Transform signal from time domain to frequency domain

Amplitude
Weight

Time Frequency
— Input signal is a function mapping time to amplitude
— QOutput is a weighted sum of phase-shifted sinusoids of

varying frequencies

17

Fast Multiplication of Polynomials

* Using complex roots of unity
— Evaluation by taking the Discrete Fourier Transform (DFT)
of a coefficient vector
— Interpolation by taking the “inverse DFT” of point-value
pairs, yielding a coefficient vector
— Fast Fourier Transform (FFT) can perform DFT and inverse
DFT in time ®(nlogn)
* Algorithm
1. Add n higher-order zero coefficients to A(x) and B(x)
2. Evaluate A(x) and B(x) using FFT for 2n points
3. Pointwise multiplication of point-value forms
4. Interpolate C(x) using FFT to compute inverse DFT

18

Complex Roots of Unity

* A complex nth root of unity (1) is a complex number
w such that w™ = 1.

* There are exactly n complex nt" root of unity
e /nfork =0,1,..,n—1

where e'* = cos(u) + i sm(u). Here u represents
an angle in radians.

 Using "™ = cos(?™k /) + isin(*™*/y), we can
check that it is a root
27Tik/ n 21k ..
(e n) =e = cos(2mk) +i sin(2rnk) =1
1 0

Examples

* The complex 4t roots of unity are
1,-1,i,—i
where Vv—1 =i.
* The complex 8t roots of unity are all of the above,
plus four more
1 i 1 i 1 1
FtEEE EtEMN
* For example
(1 N i>2 1+2i+i2 _
J— JES— e — —_— — =1
V2 2 2 2 2

Principal nth Root of Unity

The value
Zm'/
w, =e /n
is called the principal nt" root of unity.

All of the other complex nt" roots of unity are powers
of w,,.

The n complex nt" roots of unity, w2, wl, ..., w? 1,
form a group under multiplication that has the same
structure as (Z,, +) modulo n.

ol = wd = 1implies

j j+k j+k) modn
— Wik = Itk = LUTH
_ (1)171 — (U-;Ll_l

21

Visualizing 8 Complex 8t Roots of Unity

imaginary =i
2=
I N ’ ,_ 1
was = —— —_ Wg = — —_
LN RN ¥ AR
wg =-1 L wg =w§=1
-1 1! real
wgz_i_L wgzi_i
V2 V2) 2 V2
-l
w§ = —i

22

Cancellation Lemma

For anyintegersn >0,k > 0,and b > 0,

dk _ , k

Proof
: dk : k
271 271
a)gfl = (e /dn) = (e /n) = wf,f
"o _

For any even integern > 0, w,, w, = —1.

Example w$, = w,

: 6 . 6 .
27l 2Ti— 2mi
—(1)24:(6 /24—) =e 24 = @ /4:CU4_

Halving Lemma

If n > 0 is even, then the squares of the n complex
nth roots of unity are the ™/, complex ™/, roots of
unity.
Proof
i 2
— By the cancellation lemma, we have (w’,ﬁ) = wr'f/z for any
nonnegative integer k.

If we square all of the complex nth roots of unity,
then each ™/, root of unity is obtained exactly twice

2
k+n/ 2
2 — .\ 2k4+n _ , 2k, n _ , 2k __ k
- (wn) = Wy, =Wy Wy = Wy = (wn)

k k+n/2
— Thus, wy and w,, ’* have the same square

Summation Lemma

* For any integer n = 1 and nonzero integer k not
divisible by n, Z?;Ol(a),’f)] =0.

* Proof

TL
-1
— Geometric series] xf
x—1

1 (wn) -1 (wPF-1 (k-1
(w) - w,’i—l - wfl—l =0
— Requiring that k not be divisible by n ensures that the
denominator is not 0, since a),’,f = 1 only when k is divisible
by n

Discrete Fourier Transform (DFT)

* Evaluate a polynomial A(x) of degree-bound n at the
n complex nt" roots of unity, w9, wi, w2, ..., w1
— assume that n is a power of 2

— assume A is given in coefficient form a = (aq, a4, ..., an—-1)

* We define the results y;, fork =0,1,...,n —1, by
kj
Yk —A(wn) =] Oa] !
* The vectory = (Vo, Y1, -» Yn—1) is the Discrete
Fourier Transform (DFT) of the coefficient vector
a = (ay, a4, ..., ay_1), denoted as y = DFT,,(a).

Fast Fourier Transform (FFT)

* Fast Fourier Transform (FFT) takes advantage of the
special properties of the complex roots of unity to
compute DFT,(a) in time ©(nlogn).

* Divide-and-conquer strategy

— define two new polynomials of degree-bound ™/,, using
even-index and odd-index coefficients of A(x) separately

— A (x) = ag + azx + agx? + -+ ap_ox' /271
— AN () = ay + agx + agx? + -+ ap_qx'/271
— A(x) = Al9(x?) + xA1 (x?)

Fast Fourier Transform (FFT)

* The problem of evaluating A(x) at w?, wy, ..., w?™!

reduces to

1. evaluating the degree-bound ™/, polynomials Alo] (%)

and A (x) at the points (w2)?, (wl)?, ..., (wl~1)?

2. combining the results by A(x) = A% (x2) + x4l (x?)
* Why bother?

— Thelist (w9)?, (w})?, ..., (w0 1)? does not contain n

distinct values, but ™/, complex */,™ roots of unity

— Polynomials Al and Al are recursively evaluated at the
n/, complex ™/, roots of unity

— Subproblems have exactly the same form as the original
problem, but are half the size

Example

o A(x) = ag + ayx + a,x? + azx> of degree-bound 4
- A =A1)=ay+a; +a,+as
— Alw}) = AG) = a, + a;i —a, — asi
- Alw) =A(-1)=ay—a; +a, —as
- A(w3) = A(=i) = ag — a,i + a, + asi

* Using A(x) = A% (x?) + xAl(x?)
— A(x) = ag + a,x? + x(a; + azx?)
- Alw)) =A1) =ay +a, + 1(a, + as)
— A(wg) = A() = ag — a, + i(a; — as)
—Alwf) =A(-1) =a, +a, —1(a, +as)
— A(w3) = A(=1) = ag — a; —i(a; — az)

29

Recursive FFT Algorithm

RECURSIVE-FFT(a)
1 n « length[a] n is a power of 2
2 ifn=1
3 then return a basis of recursion
4 w, < e“"/n wy, is principal nt" root of unity
5 we1
6 al% « (ag,ay, ..., an_7)
7 all « (ay, a3, ..., ap_1)
8
9

yl0 « Recursive-FFT(al®) yl = APl) = Al (wEk)
y[U « Recursive-FFT(alt) y,Eﬂ = A[ﬂ(w,’i/z) = Al (w2k)
10 fork < 0to™/,—1
11 do yy < y,EO] + wy,El]
12 Ve < Ve — wy! since —wk = wp " /?
13 w < Wy, compute a)ﬁ iteratively

14 returny

30

Why Does It Work?

* Foryo, ¥1, Y/, —1 (line 11)
e =y +olkyt
= Alo] (wF) + w’,‘{A[l](w,Zlk)
= A(wr)
© Foryn,,yn/ 41, ., Yn-1 (line 12)

— ol _ k. [1]
Y+, = Yk Wn Yy
n n
= y,EO] + Wit /z)y,El] since —wk = (/2
=A[o](w%k) +w11:+("/2)A[1](w721k)

— A[O](wrzlk+n) + w7,:+(n/2)14[1](a)121k+n)

since w2ktn = 2k
k+("
= A C)

Input Vector Tree of RECURSIVEFFT(a)

’ (a()' ai, az, az, a4, as, Ag, a7) ‘

’ (a9, az, as, as) ‘ ’ (a1, a3, as, az) ‘

| (a0,a4) | | (@z.06) | | (aya5) | | (as.a) |

@) | @] [@)]]@)] [@)] @] [@)] @]

Interpolation

* Interpolation by computing the inverse DFT, denoted
by a = DFT,; 1 ().

* By modifying the FFT algorithm, we can compute
DFT;; ! in time ©(nlogn).
— switch the roles of a and y
— replace w, by w;?!
— divide each element of the result by n

