
Polynomials and the 
Fast Fourier Transform (FFT) 

Algorithm Design and Analysis 
(Week 7) 
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Battle Plan 

• Polynomials 

– Algorithms to add, multiply and evaluate polynomials 

– Coefficient and point-value representation 

• Fourier Transform 

– Discrete Fourier Transform (DFT) and inverse DFT to 
translate between polynomial representations 

– “A Short Digression on Complex Roots of Unity” 

– Fast Fourier Transform (FFT) is a divide-and-conquer 
algorithm based on properties of complex roots of unity 
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Polynomials 

• A polynomial in the variable 𝑥 is a representation of 
a function 
𝐴 𝑥 = 𝑎𝑛−1𝑥

𝑛−1 +⋯+ 𝑎2𝑥
2 + 𝑎1𝑥 + 𝑎0 

as a formal sum 𝐴 𝑥 =  𝑎𝑗𝑥
𝑗𝑛−1

𝑗=0 . 

• We call the values 𝑎0, 𝑎1,… , 𝑎𝑛−1 the coefficients of 
the polynomial 

• 𝐴 𝑥  is said to have degree 𝑘 if its highest nonzero 
coefficient is 𝑎𝑘. 

• Any integer strictly greater than the degree of a 
polynomial is a degree-bound of that polynomial 
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Examples 

• 𝐴 𝑥 = 𝑥3 − 2𝑥 − 1 

– 𝐴(𝑥) has degree 3 

– 𝐴(𝑥) has degree-bounds 4, 5, 6, … or all values > degree 

– 𝐴(𝑥) has coefficients (−1,−2, 0, 1) 

• 𝐵 𝑥 = 𝑥3 + 𝑥2 + 1 

– 𝐵(𝑥) has degree 3 

– 𝐵(𝑥) has degree bounds 4, 5, 6, … or all values > degree 

– 𝐵(𝑥) has coefficients (1, 0, 1, 1) 
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Coefficient Representation 

• A coefficient representation of a polynomial 

𝐴 𝑥 =  𝑎𝑗𝑥
𝑗𝑛−1

𝑗=0  of degree-bound 𝑛 is a vector of 

coefficients 𝑎 = 𝑎0, 𝑎1, … , 𝑎𝑛−1 . 

• More examples 

– 𝐴 𝑥 = 6𝑥3 + 7𝑥2 − 10𝑥 + 9  (9, −10, 7, 6) 

– 𝐵 𝑥 = −2𝑥3 + 4𝑥 − 5  (−5, 4, 0, −2) 

• The operation of evaluating the polynomial 𝐴(𝑥) at 
point 𝑥0 consists of computing the value of 𝐴 𝑥0 . 

• Evaluation takes time Θ(𝑛) using Horner’s rule 

𝐴(𝑥0) = 𝑎0 + 𝑥0(𝑎1 + 𝑥0(𝑎2 +⋯+ 𝑥0 𝑎𝑛−2 + 𝑥0 𝑎𝑛−1 ⋯))   
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Adding Polynomials 

• Adding two polynomials represented by the 
coefficient vectors 𝑎 = (𝑎0, 𝑎1, … , 𝑎𝑛−1) and 
𝑏 = (𝑏0, 𝑏1, … , 𝑏𝑛−1) takes time Θ(𝑛). 

• Sum is the coefficient vector 𝑐 = (𝑐0, 𝑐1, … , 𝑐𝑛−1), 
where 𝑐𝑗 = 𝑎𝑗 + 𝑏𝑗  for 𝑗 = 0,1,… , 𝑛 − 1. 

• Example 

 𝐴 𝑥 =   6𝑥3 +  7𝑥2 − 10𝑥 + 9 (9,−10, 7, 6) 

 𝐵 𝑥 = − 2𝑥3   +  4𝑥 − 5 (−5, 4, 0, −2) 

 𝐶(𝑥) =  4𝑥3 + 7𝑥2 −  6𝑥 + 4 (4,−6,7,4) 
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Multiplying Polynomials 

• For polynomial multiplication, if 𝐴(𝑥) and 𝐵(𝑥) are 
polynomials of degree-bound n, we say their product 
𝐶(𝑥) is a polynomial of degree-bound 2𝑛 − 1. 

• Example 

        6𝑥3 + 7𝑥2 − 10𝑥 + 9 

       − 2𝑥3   + 4𝑥 − 5 

       − 30𝑥3 − 35𝑥2 + 50𝑥 − 45 

      24𝑥4 + 28𝑥3 − 40𝑥2 + 36𝑥 

 − 12𝑥6 − 14𝑥5 + 20𝑥4 − 18𝑥3 

 − 12𝑥6 − 14𝑥5 + 44𝑥4 − 20𝑥3 − 75𝑥2 + 86𝑥 − 45 
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Multiplying Polynomials 

• Multiplication of two degree-bound n polynomials 
𝐴(𝑥) and 𝐵(𝑥) takes time Θ 𝑛2 , since each 
coefficient in vector 𝑎 must be multiplied by each 
coefficient in vector 𝑏. 

• Another way to express the product C(x) is 

 𝑐𝑗  𝑥
𝑗2𝑛−1

𝑗=0 , where 𝑐𝑗 =  𝑎𝑘𝑏𝑗−𝑘
𝑗
𝑘=0 . 

• The resulting coefficient vector 𝑐 =  (𝑐0, 𝑐1, … 𝑐2𝑛−1) 
is also called the convolution of the input vectors 𝑎 
and 𝑏, denoted as 𝑐 = 𝑎⨂𝑏. 
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Point-Value Representation 

• A point-value representation of a polynomial 𝐴(𝑥) 
of degree-bound 𝑛 is a set of 𝑛 point-value pairs 

𝑥0, 𝑦0 , 𝑥1, 𝑦1 , … , 𝑥𝑛−1, 𝑦𝑛−1  

such that all of the 𝑥𝑘 are distinct and 𝑦𝑘 = 𝐴(𝑥𝑘) 
for 𝑘 = 0, 1,… , 𝑛 − 1. 

• Example 𝐴 𝑥 = 𝑥3 − 2𝑥 + 1 

– 𝑥𝑘  0, 1, 2, 3 

– 𝐴(𝑥𝑘) 1, 0, 5, 22 

• Using Horner’s method, 𝒏-point evaluation takes 
time Θ(𝑛2). 
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* 0, 1 , 1, 0 , 2, 5 , 3, 22 + 

Point-Value Representation 

• The inverse of evaluation is called interpolation 
– determines coefficient form of polynomial from point-

value representation 

– For any set * 𝑥0, 𝑦0 , 𝑥1, 𝑦1 , … , 𝑥𝑛−1, 𝑦𝑛−1 + of 𝑛 point-
value pairs such that all the 𝑥𝑘  values are distinct, there is 
a unique polynomial 𝐴(𝑥) of degree-bound 𝑛 such that 
𝑦𝑘 = 𝐴(𝑥𝑘) for 𝑘 = 0, 1, … , 𝑛 − 1. 

• Lagrange’s formula 

𝐴 𝑥 =  𝑦𝑘
 (𝑥 − 𝑥𝑗)𝑗≠𝑘

 (𝑥𝑘 − 𝑥𝑗)𝑗≠k

𝑛−1

𝑘=0

 

• Using Lagrange’s formula, interpolation takes time 
Θ(𝑛2). 
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Example 

• Using Lagrange’s formula, we interpolate the point-
value representation 0, 1 , 1, 0 , 2, 5 , 3, 22 . 

– 1
𝑥−1 (𝑥−2)(𝑥−3)

(0−1)(0−2)(0−3)
=
𝑥3−6𝑥2+11𝑥−6

−6
=
−𝑥3+6𝑥2−11𝑥+6

6
 

– 0
(𝑥−0)(𝑥−2)(𝑥−3)

(1−0)(1−2)(1−3)
= 0 

– 5
(𝑥−0)(𝑥−1)(𝑥−3)

(2−0)(2−1)(2−3)
= 5
𝑥3−4𝑥2+3𝑥

−2
=
−15𝑥3+60𝑥2−45𝑥

6
 

– 22
(𝑥−0)(𝑥−1)(𝑥−2)

(3−0)(3−1)(3−2)
= 22

𝑥3−3𝑥2+2𝑥

6
=
22𝑥3−66𝑥2+44𝑥

6
 

–
1

6
6𝑥3 + 0𝑥2 − 12𝑥 + 6  

– 𝑥3 − 2𝑥 + 1 
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Adding Polynomials 

• In point-value form, addition 𝐶 𝑥 = 𝐴 𝑥 + 𝐵(𝑥) is 
given by 𝐶 𝑥𝑘 = 𝐴 𝑥𝑘 + 𝐵(𝑥𝑘) for any point 𝑥𝑘. 

– 𝐴: 𝑥0, 𝑦0 , 𝑥1, 𝑦1 , … , 𝑥𝑛−1, 𝑦𝑛−1  

– 𝐵: 𝑥0, 𝑦0
′ , 𝑥1, 𝑦1

′ , … , 𝑥𝑛−1, 𝑦𝑛−1
′  

– 𝐶: * 𝑥0, 𝑦0 + 𝑦0
′ , 𝑥1, 𝑦1 + 𝑦1

′ , … , 𝑥𝑛−1, 𝑦𝑛−1 + 𝑦𝑛−1
′ + 

• 𝐴 and 𝐵 are evaluated for the same 𝑛 points. 

• The time to add two polynomials of degree-bound 𝑛 
in point-value form is Θ(𝑛). 
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Example 

• We add 𝐶 𝑥 = 𝐴 𝑥 + 𝐵(𝑥) in point-value form 

– 𝐴 𝑥 = 𝑥3 − 2𝑥 + 1   

– 𝐵 𝑥 = 𝑥3 + 𝑥2 + 1   

– 𝑥𝑘 = (0, 1, 2, 3) 

– 𝐴: 0, 1 , 1, 0 , 2, 5 , 3, 22  

– 𝐵: * 0, 1 , 1, 3 , 2, 13 , 3, 37 + 

– 𝐶: * 0, 2 , 1, 3 , 2, 18 , 3, 59 + 
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Multiplying Polynomials 

• In point-value form, multiplication 𝐶 𝑥 = 𝐴 𝑥 𝐵(𝑥) 
is given by 𝐶 𝑥𝑘 = 𝐴 𝑥𝑘 𝐵(𝑥𝑘) for any point 𝑥𝑘. 

• Problem: if 𝐴 and 𝐵 are of degree-bound 𝑛, then 𝐶 is 
of degree-bound 2𝑛. 

• Need to start with “extended” point-value forms for 
𝐴 and 𝐵 consisting of 2𝑛 point-value pairs each. 

– 𝐴: 𝑥0, 𝑦0 , 𝑥1, 𝑦1 , … , 𝑥2𝑛−1, 𝑦2𝑛−1  

– 𝐵: 𝑥0, 𝑦0
′ , 𝑥1, 𝑦1

′ , … , 𝑥2𝑛−1, 𝑦2𝑛−1
′  

– 𝐶: * 𝑥0, 𝑦0𝑦0
′ , 𝑥1, 𝑦1𝑦1

′ , … , 𝑥2𝑛−1, 𝑦2𝑛−1𝑦2𝑛−1
′ + 

• The time to multiply two polynomials of degree-
bound 𝑛 in point-value form is Θ(𝑛). 
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Example 

• We multiply 𝐶 𝑥 = 𝐴 𝑥 𝐵(𝑥) in point-value form 

– 𝐴 𝑥 = 𝑥3 − 2𝑥 + 1   

– 𝐵 𝑥 = 𝑥3 + 𝑥2 + 1   

– 𝑥𝑘 = (−3,−2,−1, 0, 1, 2, 3) We need 7 coefficients! 

– 𝐴: −3,−17 , −2,−3 , −1,1 , 0, 1 , 1, 0 , 2, 5 , 3, 22  

– 𝐵: * −3,−20 , −2,−3 , −1, 2 , 0, 1 , 1, 3 , 2, 13 , 3, 37 + 

– 𝐶: * −3,340 , −2,9 , −1,2 , 0, 1 , 1, 0 , 2, 65 , 3, 814 + 
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The Road So Far 

• Can we do better? 
– Using Fast Fourier Transform (FFT) and its inverse, we can do 

evaluation and interpolation in time Θ(𝑛 log 𝑛). 

• The product of two polynomials of degree-bound 𝑛 can 
be computed in time Θ(𝑛 log 𝑛), with both the input and 
output in coefficient form. 
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𝑎0, 𝑎1, … , 𝑎𝑛−1 
𝑏0, 𝑏1, … , 𝑎𝑛−1 

𝑐0, 𝑐1, … , 𝑐𝑛−1 

𝐴 𝑥0 , 𝐵 𝑥0  
𝐴 𝑥1 , 𝐵 𝑥1  
⋮ 

𝐴 𝑥2𝑛−1 , 𝐵(𝑥2𝑛−1) 

𝐶 𝑥0  
𝐶 𝑥1  
⋮ 

𝐶(𝑥2𝑛−1) 

Ordinary multiplication 
Time Θ(𝑛2) 

Pointwise multiplication 
Time Θ(𝑛) 

Evaluation 
Time Θ(𝑛2) 

Interpolation 
Time Θ(𝑛2) 

Coefficient 
representations 

Point-value 
representations 



Fourier Transform 

• Fourier Transforms originate from signal processing 

– Transform signal from time domain to frequency domain 

 

 

 

 

– Input signal is a function mapping time to amplitude 

– Output is a weighted sum of phase-shifted sinusoids of 
varying frequencies 
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Fast Multiplication of Polynomials 

• Using complex roots of unity 
– Evaluation by taking the Discrete Fourier Transform (DFT) 

of a coefficient vector 

– Interpolation by taking the “inverse DFT” of point-value 
pairs, yielding a coefficient vector 

– Fast Fourier Transform (FFT) can perform DFT and inverse 
DFT in time Θ(𝑛 log 𝑛) 

• Algorithm 
1. Add 𝑛 higher-order zero coefficients to 𝐴(𝑥) and 𝐵(𝑥) 

2. Evaluate 𝐴(𝑥) and 𝐵(𝑥) using FFT for 2𝑛 points 

3. Pointwise multiplication of point-value forms 

4. Interpolate 𝐶(𝑥) using FFT to compute inverse DFT 
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Complex Roots of Unity 

• A complex 𝒏th root of unity (1) is a complex number 
𝜔 such that 𝜔𝑛 = 1. 

• There are exactly 𝑛 complex 𝑛th root of unity 

𝑒
2𝜋𝑖𝑘

𝑛  for 𝑘 = 0, 1,… , 𝑛 − 1 

where 𝑒𝑖𝑢 = cos 𝑢 + 𝑖 sin (𝑢). Here 𝑢 represents 
an angle in radians. 

• Using 𝑒
2𝜋𝑖𝑘

𝑛 = cos 2𝜋𝑘 𝑛 + 𝑖 sin(2𝜋𝑘 𝑛 ), we can 
check that it is a root 

𝑒
2𝜋𝑖𝑘
𝑛 
𝑛
= 𝑒2𝜋𝑖𝑘 = cos(2𝜋𝑘)

1

+𝑖 sin (2𝜋𝑘)
0

= 1 
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Examples 

• The complex 4th roots of unity are 
1,−1, 𝑖, −𝑖 

where −1 = 𝑖. 

• The complex 8th roots of unity are all of the above, 
plus four more 

1

2
+
𝑖

2
, 
1

2
−
𝑖

2
, −
1

2
+
𝑖

2
, and −

1

2
−
𝑖

2
 

• For example 

1

2
+
𝑖

2

2

=
1

2
+
2𝑖

2
+
𝑖2

2
= 𝑖 
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Principal 𝑛th Root of Unity 

• The value 

𝜔𝑛 = 𝑒
2𝜋𝑖
𝑛  

is called the principal 𝒏th root of unity. 

• All of the other complex 𝑛th roots of unity are powers 
of 𝜔𝑛. 

• The 𝑛 complex 𝑛th roots of unity, 𝜔𝑛
0, 𝜔𝑛
1, … , 𝜔𝑛

𝑛−1, 
form a group under multiplication that has the same 
structure as (ℤ𝑛, +) modulo 𝑛. 

• 𝜔𝑛
𝑛 = 𝜔𝑛

0 = 1 implies 

– 𝜔𝑛
𝑗
𝜔𝑛
𝑘 = 𝜔𝑛

𝑗+𝑘
= 𝜔𝑛

𝑗+𝑘  mod 𝑛
 

– 𝜔𝑛
−1 = 𝜔𝑛

𝑛−1 
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Visualizing 8 Complex 8th Roots of Unity 
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1 −1 

𝑖 

−𝑖 

real 

imaginary 

𝜔8
0 = 𝜔8

8 = 1 

𝜔8
1 =
1

2
+
𝑖

2
 𝜔8

3 = −
1

2
+
𝑖

2
 

𝜔8
4 = −1 

𝜔8
2 = 𝑖 

𝜔8
6 = −𝑖 

𝜔8
5 = −

1

2
−
𝑖

2
 𝜔8

7 =
1

2
−
𝑖

2
 



Cancellation Lemma 

• For any integers 𝑛 ≥ 0, 𝑘 ≥ 0, and 𝑏 > 0, 

𝜔𝑑𝑛
𝑑𝑘 = 𝜔𝑛

𝑘. 

• Proof 

𝜔𝑑𝑛
𝑑𝑘 = 𝑒

2𝜋𝑖
𝑑𝑛 
𝑑𝑘

= 𝑒
2𝜋𝑖
𝑛 
𝑘
= 𝜔𝑛
𝑘 

• For any even integer 𝑛 > 0, 𝜔𝑛
𝑛
2 = 𝜔2 = −1. 

• Example 𝜔24
6 = 𝜔4 

– 𝜔24
6 = 𝑒

2𝜋𝑖
24 
6
= 𝑒2𝜋𝑖

6

24 = 𝑒
2𝜋𝑖
4 = 𝜔4 
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Halving Lemma 

• If 𝑛 > 0 is even, then the squares of the 𝑛 complex 
𝑛th roots of unity are the 𝑛 2  complex 𝑛 2 

th roots of 
unity. 

• Proof 

– By the cancellation lemma, we have 𝜔𝑛
𝑘 2 = 𝜔𝑛

2 
𝑘  for any 

nonnegative integer 𝑘. 

• If we square all of the complex 𝑛th roots of unity, 
then each 𝑛 2 

th root of unity is obtained exactly twice 

– 𝜔𝑛
𝑘+𝑛
2 
2

= 𝜔𝑛
2𝑘+𝑛 = 𝜔𝑛

2𝑘𝜔𝑛
𝑛 = 𝜔𝑛

2𝑘 = 𝜔𝑛
𝑘 2 

– Thus, 𝜔𝑛
𝑘 and 𝜔𝑛

𝑘+𝑛
2  have the same square 
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Summation Lemma 

• For any integer 𝑛 ≥ 1 and nonzero integer 𝑘 not 

divisible by 𝑛,  𝜔𝑛
𝑘 𝑗 = 0𝑛−1

𝑗=0 . 

• Proof 

– Geometric series  𝑥𝑗𝑛−1
𝑗=0 =

𝑥𝑛−1

𝑥−1
 

–  𝜔𝑛
𝑘 𝑗 =

𝜔𝑛
𝑘 𝑛−1

𝜔𝑛
𝑘−1
=
𝜔𝑛
𝑛 𝑘−1

𝜔𝑛
𝑘−1
=
1 𝑘−1

𝜔𝑛
𝑘−1
= 0𝑛−1

𝑗=0  

– Requiring that 𝑘 not be divisible by 𝑛 ensures that the 
denominator is not 0, since 𝜔𝑛

𝑘 = 1 only when k is divisible 
by 𝑛 
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Discrete Fourier Transform (DFT) 

• Evaluate a polynomial 𝐴(𝑥) of degree-bound 𝑛 at the 
𝑛 complex 𝑛th roots of unity, 𝜔𝑛

0, 𝜔𝑛
1, 𝜔𝑛
2, … , 𝜔𝑛

𝑛−1. 

– assume that 𝑛 is a power of 2 

– assume 𝐴 is given in coefficient form 𝑎 = (𝑎0, 𝑎1, … , 𝑎𝑛−1) 

• We define the results 𝑦𝑘, for 𝑘 = 0, 1,… , 𝑛 − 1, by 

𝑦𝑘 = 𝐴 𝜔𝑛
𝑘 =  𝑎𝑗𝜔𝑛

𝑘𝑗𝑛−1
𝑗=0 . 

• The vector 𝑦 = (𝑦0, 𝑦1, … , 𝑦𝑛−1) is the Discrete 
Fourier Transform (DFT) of the coefficient vector 
𝑎 = 𝑎0, 𝑎1, … , 𝑎𝑛−1 , denoted as 𝑦 = DFT𝑛(𝑎). 
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Fast Fourier Transform (FFT) 

• Fast Fourier Transform (FFT) takes advantage of the 
special properties of the complex roots of unity to 
compute DFT𝑛(a) in time Θ(𝑛 log 𝑛). 

• Divide-and-conquer strategy 

– define two new polynomials of degree-bound 𝑛 2 , using 
even-index and odd-index coefficients of 𝐴(𝑥) separately 

– 𝐴 0 𝑥 = 𝑎0 + 𝑎2𝑥 + 𝑎4𝑥
2 +⋯+ 𝑎𝑛−2𝑥

𝑛
2 −1 

– 𝐴 1 𝑥 = 𝑎1 + 𝑎3𝑥 + 𝑎5𝑥
2 +⋯+ 𝑎𝑛−1𝑥

𝑛
2 −1 

– 𝐴 𝑥 = 𝐴 0 𝑥2 + 𝑥𝐴 1 (𝑥2) 
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Fast Fourier Transform (FFT) 

• The problem of evaluating 𝐴(𝑥) at 𝜔𝑛
0, 𝜔𝑛
1, … , 𝜔𝑛

𝑛−1 
reduces to 

1. evaluating the degree-bound 𝑛 2  polynomials 𝐴 0 (𝑥) 
and 𝐴 1 (𝑥) at the points 𝜔𝑛

0 2, 𝜔𝑛
1 2, … , 𝜔𝑛

𝑛−1 2 

2. combining the results by 𝐴 𝑥 = 𝐴 0 𝑥2 + 𝑥𝐴 1 (𝑥2) 

• Why bother? 
– The list 𝜔𝑛

0 2, 𝜔𝑛
1 2, … , 𝜔𝑛

𝑛−1 2 does not contain 𝑛 
distinct values, but 𝑛 2  complex 𝑛 2 th roots of unity 

– Polynomials 𝐴 0  and 𝐴 1  are recursively evaluated at the 
𝑛
2  complex 𝑛 2 th roots of unity 

– Subproblems have exactly the same form as the original 
problem, but are half the size 
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Example 

• 𝐴 𝑥 = 𝑎0 + 𝑎1𝑥 + 𝑎2𝑥
2 + 𝑎3𝑥

3 of degree-bound 4 

– 𝐴 𝜔4
0 = 𝐴 1 = 𝑎0 + 𝑎1 + 𝑎2 + 𝑎3 

– 𝐴 𝜔4
1 = 𝐴 𝑖 = 𝑎𝑜 + 𝑎1𝑖 − 𝑎2 − 𝑎3𝑖 

– 𝐴 𝜔4
2 = 𝐴 −1 = 𝑎0 − 𝑎1 + 𝑎2 − 𝑎3 

– 𝐴 𝜔4
3 = 𝐴 −𝑖 = 𝑎0 − 𝑎1𝑖 + 𝑎2 + 𝑎3𝑖 

• Using  𝐴 𝑥 = 𝐴 0 𝑥2 + 𝑥𝐴 1 𝑥2  

– 𝐴 𝑥 = 𝑎0 + 𝑎2𝑥
2 + 𝑥 𝑎1 + 𝑎3𝑥

2  

– 𝐴 𝜔4
0 = 𝐴 1 = 𝑎0 + 𝑎2 + 1(𝑎1 + 𝑎3) 

– 𝐴 𝜔4
1 = 𝐴 𝑖 = 𝑎0 − 𝑎2 + 𝑖(𝑎1 − 𝑎3) 

– 𝐴 𝜔4
2 = 𝐴 −1 = 𝑎0 + 𝑎2 − 1 𝑎1 + 𝑎3  

– 𝐴 𝜔4
3 = 𝐴 −𝑖 = 𝑎0 − 𝑎2 − 𝑖(𝑎1 − 𝑎3) 
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Recursive FFT Algorithm 

RECURSIVE-FFT 𝑎  
 1 𝑛 ← 𝑙𝑒𝑛𝑔𝑡ℎ,𝑎- 𝑛 is a power of 2 
 2 if 𝑛 = 1 
 3  then return 𝑎 basis of recursion 

 4 𝜔𝑛 ← 𝑒
2𝜋𝑖
𝑛  𝜔𝑛 is principal 𝑛th root of unity 

 5 𝜔 ← 1 
 6 𝑎 0 ← (𝑎0, 𝑎2, … , 𝑎𝑛−2) 
 7 𝑎 1 ← (𝑎1, 𝑎3, … , 𝑎𝑛−1) 

 8 𝑦 0 ← RECURSIVE-FFT 𝑎 0  𝑦𝑘
0
= 𝐴 0 𝜔𝑛

2 
𝑘 = 𝐴 0 (𝜔𝑛

2𝑘) 

 9 𝑦 1 ← RECURSIVE-FFT 𝑎 1  𝑦𝑘
1
= 𝐴 1 𝜔𝑛

2 
𝑘 = 𝐴 1 (𝜔𝑛

2𝑘) 
 10 for 𝑘 ← 0 to 𝑛 2 − 1 

 11  do  𝑦𝑘 ← 𝑦𝑘
0
+ 𝜔𝑦𝑘

1
 

 12   𝑦𝑘+(𝑛 2 ) ← 𝑦𝑘
0
− 𝜔𝑦𝑘

1
 since −𝜔𝑛

𝑘 = 𝜔𝑛
𝑘+ 𝑛 2  

 13   𝜔 ← 𝜔𝜔𝑛 compute 𝜔𝑛
𝑘 iteratively 

 14 return 𝑦 
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Why Does It Work? 

• For 𝑦0, 𝑦1, … 𝑦𝑛 2 −1  (line 11) 

𝑦𝑘  = 𝑦𝑘
0
+𝜔𝑛
𝑘𝑦𝑘
1

 

 = 𝐴 0 𝜔𝑛
2𝑘  + 𝜔𝑛

𝑘𝐴 1 𝜔𝑛
2𝑘  

 = 𝐴 𝜔𝑛
𝑘  

• For 𝑦𝑛
2 
, 𝑦𝑛

2 +1
, … , 𝑦𝑛−1  (line 12) 

𝑦𝑘+𝑛 2  = 𝑦𝑘
0 −𝜔𝑛

𝑘𝑦𝑘
1  

 = 𝑦𝑘
0 +𝜔𝑛

𝑘+ 𝑛 2 𝑦𝑘
1  since −𝜔𝑛

𝑘 = 𝜔𝑛
𝑘+ 𝑛 2  

 = 𝐴 0 𝜔𝑛
2𝑘 +𝜔𝑛

𝑘+ 𝑛 2 𝐴 1 𝜔𝑛
2𝑘  

 = 𝐴 0 𝜔𝑛
2𝑘+𝑛 +𝜔𝑛

𝑘+ 𝑛 2 𝐴 1 𝜔𝑛
2𝑘+𝑛  

  since 𝜔𝑛
2𝑘+𝑛 = 𝜔𝑛

2𝑘 

 = 𝐴 𝜔𝑛
𝑘+ 𝑛 2  
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Input Vector Tree of RECURSIVEFFT(𝑎) 

32 

(𝑎0, 𝑎1, 𝑎2, 𝑎3, 𝑎4, 𝑎5, 𝑎6, 𝑎7) 

(𝑎0, 𝑎2, 𝑎4, 𝑎6) (𝑎1, 𝑎3, 𝑎5, 𝑎7) 

(𝑎0, 𝑎4) (𝑎2, 𝑎6) (𝑎1, 𝑎5) (𝑎3, 𝑎7) 

(𝑎0) (𝑎4) (𝑎2) (𝑎6) (𝑎1) (𝑎5) (𝑎3) (𝑎7) 



Interpolation 

• Interpolation by computing the inverse DFT, denoted 
by a = DFT𝑛

−1(𝑦). 

• By modifying the FFT algorithm, we can compute 
DFT𝑛
−1 in time Θ(𝑛 log 𝑛). 

– switch the roles of 𝑎 and 𝑦 

– replace 𝜔𝑛 by  𝜔𝑛
−1 

– divide each element of the result by 𝑛 
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