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1 Introduction  
 
Online markets for transportation services, in the form of Internet sites that dynamically 
match shipments (shippers’ demand) and transportation capacity (carriers’ offer) through auc-
tion mechanisms are changing the traditional structure of transportation markets. Beyond 
changes in market structure, Internet auctions have emerged as an effective catalyst to 
sell/buy through electronic marketplaces. Transaction time, cost, and effort could be dramati-
cally reduced, creating new markets and connecting buyers and sellers in ways that were not 
previously possible (Lucking-Reiley and Spulber, 2001). 
 
McAffee and McMillan (1987) define auctions as market institutions with an explicit set of 
rules determining resource allocation and prices on the basis of bids from the market partici-
pants. Two types of resources could be traded in transportation marketplaces: (a) loads, or 
demands of shippers, being "sold" to the lowest bidder-- this would be the case of extra 
supply looking for scarce demands; and (b) capacity, i.e. the capacity to move goods, by a 
given mode from location A to location B, being “sold” to the highest bidder. The buyer of 
such capacity could be a shipper wishing to move a load, a carrier needing the extra capacity 
to move contracted loads, or a third party hoping to make a profit by reselling this capacity.  
 
The focus of this chapter is the study of transportation marketplaces (TM) that enable the sale 
of cargo capacity based mainly on price (case a), yet can still satisfy the customer’s level of 
service demands. Specifically, this chapter considers the reverse auction format (also known 
as procurement auctions), where shippers post loads, triggering carrier bids. The market is 
comprised of shippers that independently call for shipment procurement auctions and the car-
riers that participate in them (we assume that the probability of two auctions being called at 
the same time is zero). Auctions are performed one at a time as shipments arrive to the auc-
tion market. The market generates a sequence of auctions (procurement, bidding, and auction 
resolution) that take place in real time, thereby precluding the option of bidding on two auc-
tions simultaneously. The behavioral aspects of auction market behavior are more readily ar-
ticulated without the added complexity of the combinatorial aspect. However, other market 
settings are possible. Markets where carriers bid on configurable bundles of loads give rise to 
combinatorial auctions. Nandiraju and Regan (2005) present a comprehensive survey of 
freight transportation electronic marketplaces.  
 
In auction markets, prices are not negotiated; they are generated as the outcome of carrier bids 
and a predefined set of rules. These rules precisely define a strategic environment, therefore 
allowing the study and analysis of carriers’ behavior (expressed through bids). As such, auc-
tions provide a useful laboratory to gain insight into carriers’ behavior in a freight market. 
Auction-based electronic marketplaces give rise to new dimensions in the behavior of the 
principal freight transportation decision agents, especially with regard to learning in a com-
petitive bidding environment.  While the area of freight demand, and the underlying beha-
vioral dimensions, have received limited attention in the travel behavior research community 
(Mahmassani, 2001), behavioral considerations play a critical role in determining the perfor-
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mance of auction-based electronic freight markets, and the policy implications of different 
marketplace rules and regulatory requirements. Furthermore, the behavioral dimensions at 
play in electronic freight markets are examples of more general behavior mechanisms in com-
petitive decision situations that extend beyond the realm of freight transportation (e.g. airline 
schedule and pricing decisions). 
 
This chapter has nine sections. Next section introduces mathematical notation and describes 
the marketplace framework and operation. Section 3 articulates a framework to study carrier 
behavior. Section 4 identifies the characteristics of transportation auctions as well as asso-
ciated sources of complexity and bounded rational behavior. Two sources of bounded rational 
behavior, knowledge acquisition and problem solving capabilities, are analyzed in Sections 5 
and 6. Section 7 discusses learning in a TM setting. Reinforcement learning and fictitious play 
are analyzed and adapted to the particularities of a transportation marketplace. Section 8 
presents different computational experiments aimed at studying the properties of different 
auction settings and learning methodologies. Section 9 ends with a chapter summary and con-
clusions.  

2 Description of Transportation Marketplaces  
 
The TM enables the sale of cargo capacity based mainly on price, while still satisfying cus-
tomer level of service demands. The specific focus of the study is the reverse auction format, 
where shippers post loads and carriers compete over them (bidding).  The auctions operate in 
real time and transaction volumes and prices reflect the relative status of demand and supply. 
A framework to study transportation marketplaces is presented by Figliozzi et al. (2003a). 
The market is comprised of shippers that independently call for shipment procurement auc-
tions, and carriers, that participate in them (we assume that the probability of two auctions 
being called at the same instant is zero). Auctions are performed one at a time as shipments 
arrive to the auction market. Shippers generate a stream of shipments, with corresponding 
attributes, according to predetermined probability distribution functions. Shipment attributes 
include origin and destination, time windows, and reservation price. Reservation price is the 
maximum amount that the shipper is willing to pay for the transportation service. It is as-
sumed that an auction announcement, bidding, and resolution take place in real time, thereby 
precluding the option of bidding on two auctions simultaneously.  
 
Consider a TM in which n  carriers are competing; a carrier is denoted by i∈ℑ  
where {1, 2,..., }nℑ= is the set of all carriers. Let the shipment/auction arrival/announcement 
epochs be 1 2{ , ,..., }Nt t t  such that 1i it t +< . Let 1 2{ , ,..., }Ns s s be the set of arriving shipments. Let 

jt represent the time when shipment js  arrives and is auctioned. There is a one to one corres-
pondence between each jt  and js  (i.e. for each jt  there is just one js ). Arrival times and 
shipments are not known in advance. The arrival instants 1 2{ , ,..., }Nt t t follow some general 
arrival process. Furthermore, arrival times and shipments are assumed to come from a proba-
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bility space ( , , )Ω F P , with outcomes 1 2{ , ,..., }Nω ω ω . Any arriving shipment js  represents a 
realization at time jt  from the aforementioned probability space, therefore { , }j j jt sω = . 
 
In an auction for shipment js , each carrier i∈ℑ simultaneously bids a monetary 

amount i
jb R∈  (every carrier must participate in each auction, i.e. submit a bid). A set of bids 

1{ ,..., }n
j j jb b b
ℑ

= generates publicly observed information jy . Under maximum information 

disclosure, all bids are revealed after the auction, i.e. j jy b
ℑ

= .  Under minimum information 
disclosure, no bids are revealed after the auction, i.e. {}jy = . Each carrier is informed only 
about his bidding outcome: successful or unsuccessful. The fleet status of carrier i  when 
shipment js  arrives is denoted as i

jz , which comprises two different sets: i
jS   (set of shipments 

acquired up to time jt  by carrier i∈ℑ) and i
jV  (set of vehicles in the fleet of carrier i , vehicle 

status updated to time jt ). The estimated cost of serving shipment js  by carrier i∈ℑ of type 
i
jz   is denoted c ( , )i i

j js z . Let i
jI  be the indicator variable for carrier i  for shipment js , such 

that 1i
jI =  if carrier  i  secured the auction for shipment js  and 0i

jI =  otherwise. The set of 

indicator variables is denoted 1{ ,..., }n
j j jI I Iℑ =  and 1i

j
i

I
∈ℑ

≤∑ .  Let i
jπ  be the profit obtained by 

carrier i  for shipment js , then ( [ , ])i
j

i i i i
j j j jb c s Iπ θ= − . 

 
Bidders have private costs when each bidder knows the cost of the object at the time of bid-
ding. This cost is the disutility that the bidder himself obtains from the consumption, use, pos-
session or service of the auctioned item. Let {1, 2,..., }nℑ =  be the set of bidders and  iθ  de-
note the private information that buyer (seller) i  possesses about the value (cost) of the item 
being auctioned. Private values are assumed in this chapter, therefore, { ,a ,c }i i i i

j jzθ =  is the 
private information of any carrier i∈ℑ  at time jt . Carrier i∈ℑ  is uncertain about 

{ ,a ,c }i i i i
j jzθ − − − −=  at time jt , the proprietary private information regarding competitors’ fleet 

status, assignment, and cost functions respectively. The superscript –i is used to indicate the 
set of competitors of carrier i. 
 

3 Determinants of Carrier Behavior 
 
In a TM, carrier behavior is defined as a sequence of bids taken by a carrier. This section 
looks into the elements or factors that determine carrier behavior. These factors are: carrier 
technology, bounded rationality, information availability, and strategic setting.  Though all 
the factors are somewhat related, the first two are prominently intrinsic to the carriers’ own 
characteristics, while the last two are predominantly linked to environmental or somewhat 
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extrinsic factors. In this section, the discussion is limited to highlight the link between them 
and carrier behavior.  

3.1 Carrier Technology 
Carrier technology or the sophistication of the dynamic vehicle routing problem (DVRP) so-
lution has an important role in bidding. In the bidding decision making process the carrier 
technology determines the number of feasible schedules to be evaluated. Therefore, unsophis-
ticated DVRP technologies seriously limit the quality and quantity of alternatives that could 
be evaluated (Figliozzi et al., 2004).  

3.2 Auction Rules - Information Revelation 
Different auction payment rules lead to different bidding functions. Information revelation 
rules can also play a significant role (Figliozzi et al., 2003b). The information that is revealed 
(before bidding begins or after each auction) can influence how, how much, and how fast car-
riers can learn or acquire knowledge about the strategic setting and competitors’ behaviors. 
The information that could be available after auctions are resolved includes: bids placed, 
number of carriers participating, links (names) between carriers and bids, and payoffs. The 
information that could be available before bidding begins includes: some carriers’ individual 
characteristics (e.g. fleet size or previous performance/profits from public financial reports), 
information about who knows what, information asymmetries, or common knowledge about 
previous items. Private information (as defined in Section 2) is not included since it involves 
proprietary information that usually is to the best interest of the carrier to keep private.  
 
Two extreme information scenarios can be defined: maximum and minimum. A maximum 
information environment is defined as an environment where all the information, mentioned 
in the previous paragraph, is revealed. On the other hand, an environment where no informa-
tion is revealed is called a minimum information environment. These two extreme scenarios 
can approximate two realistic situations: maximum information would correspond to a real 
time internet auction where all auction information is equally accessed by participants; mini-
mum information would correspond to a shipper telephoning carriers for a quote. The shipper 
calls back just the selected carrier (if any is selected). 

3.3 Strategic Setting 
In this chapter, it assumed that a carrier operates in an environment determined by the other 
carriers’ behaviors; a carrier uses a model of the behavior of the other carriers as an input to 
his decision problem. Under this interpretation a carrier’s bidding function suits a carrier’s 
best interest, assuming that competitors bidding functions pursues competitors’ best interests. 
This is defined as a competitive strategic environment.  
 
A diametrically different environment is a collusive or collaborative environment. One danger 
of auctions is the possibility that buyers/sellers who repeatedly participate in the same auc-
tions could engage in collusive behavior. This topic is of primordial importance in the field of 
Industrial Organization – general references to this area include the work of Tirole (1989) and 
Martin (1993). As a general rule, the more information is revealed, the easier collusion be-
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comes. Even in minimum information settings collusion is possible. Blume and Heidhues 
(2006) study collusion in repeated first-price auctions under the condition of minimal infor-
mation release by the auctioneer. In each auction a bidder only learns whether or not he won 
the object. Bidders do not observe other bidder’s bid, who participates or who wins in cases in 
which they are not the winner. Even under these restrictive assumptions, for large enough 
discount factors, collusion can nevertheless be supported in the infinitely repeated game. 
Nevertheless, it may entail complicated inferences and full monitoring among them. Marshal 
and Marx (2002) analyze bidder collusion in first and second price auctions and Symmetric 
Independent Private Value assumptions (SIPV) assumptions. The SIPV assumptions are 
strong but simplify the bidding problem significantly. In general, SIVP models can be studied 
analytically (Krishna, 2002). As detailed in Section 4, the TM characteristics render the bid-
ding problem intractable. 
 
The two environments, competitive and collusive, are nonetheless connected since underlying 
every negotiation or agreement there is a game-like component (Raiffa et al., 2002). From 
each carrier’s individual perspective, the incentives (and legal or market risks) of collaborat-
ing with competitors has to prevail over the profits that can be obtained when each party acts 
separately (competitive environment). The auction rules, e.g. first price, second price, open, 
closed, etc., do affect carriers strategies. For a general introduction to auction types and bid-
ding strategies, the reader is referred to the comprehensive book by Krishna (2002). 

3.4 Bounded Rationality  
Bounded rationality limitations affect a) the knowledge that a carrier is able to acquire, and b) 
the bidding problem that the carrier can solve. Given the carrier’s rational limitations, fleet 
technology, information available, and a competitive strategic setting the carrier ends up solv-
ing a bidding problem that it is constrained by his/her rational or computational constraints. 
Bounded rationality in a TM is studied in Section 4.  

3.5 Framework for Carrier Behavior  
Figure 1 presents a schematic overview of the process that brings about carriers’ behavior in a 
TM. A shipper’s decision to post a shipment in the auction market initiates an auction.  Carri-
ers respond to auctions postings. Carriers attempt to maximize profits by adjusting their beha-
viors in response to interactions with other carriers and their environment. Bounded rationali-
ty limitations are pervasive and affect how a carrier models, evaluates, and optimizes his ac-
tion as indicated by the arrows in Figure 1. Carriers also must abide by the constraints and the 
physical feasibility specified by their assignment strategies and pool of awarded shipments.  
 
In this framework, carriers’ learning and knowledge about other competitors’ behavior types 
evolve jointly over time and their strategies at a given moment are contingent on interactions 
that have occurred or will occur in a path-dependent time line. Past decisions are binding and 
limit the future actions of carriers, therefore behavioral rules are state-conditioned and the 
carriers co-adapt their behavior as the marketplace evolves over time. Carriers’ internal events 
are the assignment, pickup, and delivery of loads, mostly operational decisions. Carriers re-
peatedly engage in bidding interactions modeled as non-cooperative games. However these 
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repeated bidding interactions may also be the only means of communication for a carrier to 
“identify” or “manipulate” other competitors. 
 

 
Figure 1: Carrier behavior in a sequential auction transportation marketplace (TM) 

 

4 Bounded Rational Behavior in the Transportation Marketplace 
 
From the carrier point of view, the cost and value of transportation services are hard to quanti-
fy. The value of a traded item (shipment) may be strongly dependent upon the acquisition of 
other items (e.g. nearby shipments). In addition, the value of a shipment is related to the cur-
rent spatial and temporal deployment of the fleet. The geographic dispersion of both demand 
and supply, uncertain demand arrival rates, and realizations over time and space, contribute to 
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a dynamic and stochastic environment. These factors further increase the uncertainty of a 
shipment’s cost and value.   
 
Auctions, as a device to match supply and demand, provide a powerful mechanism to allocate 
resources, especially when the latter have uncertain or non-standard value. Auction analysis 
can be quite challenging, especially in a stochastic setting such as transportation. In this kind 
of setting, carriers face a complicated decision problem, which stems partly from the strategic 
inter-dependency among competitors’ decisions, costs, and profits. Auctions have been wide-
ly studied by economists, leading to recent advances in the theoretical understanding of dif-
ferent auction types and designs. These models have been mainly focused on one-time auc-
tions with symmetric risk-neutral agents that bid competitively for a single or multiple units. 
Optimal bidding strategies have been found in many auction environments, however the case 
of sequential auctions, with bidders with multiunit demand/supply curves, remains intractable 
(Krishna, 2002). Another source of complexity arises from the need to solve fleet manage-
ment problems (vehicle routing problems with time windows, penalties, etc) to obtain the cost 
information for a shipment. These are NP hard problems, which cannot generally be solved 
optimally for realistic fleet sizes in a dynamic and stochastic environment. 
 
Competition in a TM is an ongoing and sequential process, and thus naturally represented as 
an extensive-form game. The standard definition of rationality (for economists at least) re-
quires that agents automatically solve problems that are in fact beyond the capabilities of any 
agent (Colinsk, 1996). The problem is intractable and well beyond the conceptual and compu-
tational abilities of ordinary humans or decision support systems. In addition, response time 
limitations or the framing effects and cognitive limitations of the human mind prevent bidders 
from behaving rationally. The framing and cognitive limitations of human thinking have been 
widely studied and reported (Camerer, 1995, Kagel, 1995), mainly in the psychology and 
economics literature. Therefore, the basic motivation for studying models of bounded ratio-
nality in TM environments comes about from the implausibility of perfect rationality models.  
 
When the complexity of the auction problem precludes bidders from implementing a full 
game theoretic approach, computational agents (or human beings with the help of decision 
support systems) need to simplify or alter the original choice or decision problem. Bounded 
rational behavior, as studied in this research, is born out of these simplifications or alterations 
to the original insurmountable problem. This chapter attempts to provide a behavioral frame-
work to understand how carriers can tackle the overwhelming complexity of the problems 
they face in a TM (complex detailed stories, numerous current options, future infinite contin-
gent options, and the potential consequences). 
 
Bounded rational bidders solve a less complex problem than fully rational bidders. The type 
of problem they solve is directly influenced by available response time, existing computation-
al/material resources, and their own cognitive/decision-making process. Although the result of 
bounded rational deliberation would not necessarily be an equilibrium solution, the bounded 
rational response would have more bearing on how ordinary carriers or human decision mak-
ers would act in sequential auction TM. The introduction of bounded rational decision makers 



 9

radically alters the notion of equilibrium and decision making.  Game theory assumes that 
players know the prevailing equilibrium and act consequently. For bounded rational agents, 
the equilibrium, if any, is not known beforehand, it is built.  
 
Bounded rational behavior is born out of simplifying a (complex) problem or the cogni-
tive/material limitations of the decision maker (or decision support system). Therefore, 
bounded rationality is always associated with the notion of deficiency or insufficiency of a 
positive quality (of a rational player). Although bounded rationality as a research topic is not 
new, it was first proposed by Simon (1956), many modeling issues surrounding bounded ra-
tional decision making have not yet been fully addressed. Bounded rationality and learning in 
games are currently very active areas of research; however general and comprehensive mod-
els that integrate how agents (or humans) acquire, process, evaluate, search for information, 
and make decisions are still mostly open. As expressed by Aumman, “there is no unified 
theory of bounded rationality, and probably never will be.” (Aumann, 1997 - page 4).  
 
Rationality assumptions are very convenient from a modeling point of view. The self-
referential nature of rationality (coupled with common knowledge in games) imposes astrin-
gent limitations on how a rational agent (player in a game) foresees his competitors’ behavior 
and how the competitors foresee other players’ behavior. Bounded rationality come with an 
embarrassment of riches in terms of the number of possible deviations from a fully “rational” 
model. When bounded rational behavior appears, it may take on many different forms. 
Bounded rational decision makers do not necessarily choose equally, even when having the 
same knowledge or information. Furthermore, there may be many “plausible” bounded ra-
tional models that can explain a given social or economic phenomenon. Correspondingly, the 
many possible ways each bounded rational bidder can model his competition adds a class of 
uncertainty not found where all players are perfectly rational.  
 
Determining the bounded rationality of a carrier is crucial since it is equivalent to determining 
how the carrier bids (i.e. his bidding function) in a TM. Similarly, determining that all carriers 
are rational is equivalent to determining how the carriers bid (i.e. their bidding function) in a 
SIPV setting. A bidding function, as understood in this research, is a process, whose inputs 
are a carrier’s private information and his knowledge about the auction and competitors, and 
whose output is a bid. Given the plethora of games and decision problems, bounded rational 
behavior is hard to define, classify, and model in general terms. When the restrictions of ra-
tionality are lifted, any general assumption about the behavior of the bidders that is not prop-
erly justified, introduces a strong sense of arbitrariness. In order to avoid this kind of arbitra-
riness, the discussion of bounded rationality is limited to the TM context. Any departure from 
the rationality model is connected to carriers’ cognitive and problem solving processes. 
 
Bounded rationality can stem from different cognitive and computational/physical limitations, 
in the TM context, the following classification of sources is proposed:  
 

• Bounded Recall and Memory: a carrier has limited memory (physical capacity) to: 
– record and keep past data/information 
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– simulate and record data of all future possible paths in the decision tree 
• Processing Speed: time is valuable in a dynamic setting. Most practical problems 

have a limited response time that may limit the solution quality or decrease the ef-
fectiveness of a delayed response.  

• Data Acquisition and Transmission: data acquisition and processing is usually cost-
ly. Furthermore, the transmission of data among agents can be noisy. In a world with 
bounded resources (budget/memory/attention), deciding how, how much, and what 
type of information should be acquired, kept, transmitted, or analyzed can lead to 
complex decision problems.  

• Knowledge Acquisition: in a dynamic strategic situation, as data is being revealed or 
obtained, carriers have the potential to acquire knowledge (truths about competitors 
or the environment) from logical and sound inferences. In particular, the decision 
maker may have limited ability to discover competitors’ behavior, which may in-
volve modeling and solving complex logical and econometrics problems. 

• Problem Solving: as a carrier participates in a TM market, it is required to make de-
cisions (bidding or fleet management decisions). These decisions may lead the carri-
er to formulate and solve complex optimization problems. In particular, the decision 
maker may have limited ability to predict or model the impact of his own actions on 
future fleet operational costs or on his competitors’ behavior.  

 
Although the five aspects of bounded rationality are somewhat interrelated, this research fo-
cuses on the knowledge acquisition and problem solving aspects. Memory and processing 
speed are physical limitations. It is assumed carriers have enough material resources and re-
sponse time/speed to implement bidding and fleet management strategies with different de-
grees of sophistication. Carriers have limitations to formulate and elucidate knowledge acqui-
sition problems. Similarly, carriers have limitations to formulate and solve complex optimiza-
tion problems. The data available to carriers is only limited to data publicly and freely dis-
closed after each auction, which renders the data acquisition problem trivial.  No transmission 
losses or alterations are considered.  
 
The focus of this research is on the knowledge acquisition and problem solving aspects, as 
they capture how carriers can frame and solve TM problems. Therefore, the emphasis is on 
the more “mental” processes that determine behavior rather than on the “physical” limitations. 
Knowledge acquisition and problem solving in a TM are analyzed in the next two sections 
respectively.  
 

5 Knowledge Acquisition in a Transportation Marketplace 
 
In a TM, each carrier is aware that his actions have significant impact upon his rival’s profits, 
and vice-versa. In the perfect rational model, common knowledge and logical inferences al-
low the estimation of the impact of a carrier’s actions on competitors’ profits and vice-versa. 
It is implicit that a rational bidder bids as a rational bidder.  In a bounded rational model, a 



 11

carrier faces two basic types of uncertainties regarding the competition: (a) an uncertainty 
relative to the private information of his opponents, and (b) a strategic uncertainty relative to 
bounded rationality type of the others players.  
The first type of uncertainty is about { ,a ,c }i i i i

j jzθ − − − −=  for a carrier i∈ℑ  at time jt , the pri-
vate information regarding competitors’ fleet status, assignment, and cost functions respec-
tively. This type of uncertainty is also present in most game theoretic auction models (games 
of incomplete information). The second type of uncertainty is about the bidding strategies that 
the competitors use, 1 1 1b {b ,..., b ,b ,..., b }i i i n− − += the set of bidding functions of all carriers but 
carrier i . It is implicit that a bounded rational bidder bids accordingly, i.e. as a bounded ra-
tional bidder. However, it is not evident for the competition to determine what “type” of 
bounded rationality a carrier has.  This type of uncertainty is not present in game theoretic 
auction models.  
Depending on a carrier’s ability to elucidate uncertainties (a) and (b), two extreme cases may 
take place:  
 

1. No knowledge acquisition. The carrier cannot form a useful model of competitors’ be-
havior that links their private information and their bids. In this situation, the “best” a 
carrier can do is to observe market prices and estimate them as the result of a random 
process. This is similar to assuming that competitors are playing b ( ) f ( )i ξ ξ− =  or 

simply b ( )i ξ ξ− =  , where ξ  is a random process that is not linked in any way to car-
rier 'i s  bidding, capacity/deployment, and history of play or to the competitors’ pri-
vate information { ,a ,c }i i i i

j jzθ − − − −= .  

2. Full knowledge acquisition. The carrier knows { ,a ,c }i i i i
j jzθ − − − −= and al-

so 1 1 1b {b ,..., b ,b ,..., b }i i i n− − += , therefore carrier i  is able to precisely foresee what the 
competition is going to bid for shipment js .   However, carrier i  still has uncertain-
ties about the future bids, simply because carrier i  does not know the future realiza-
tions of the demand. Nevertheless, carrier i  can estimate future prices not just as a 
stationary random process but as a function of shipment arrival distribution, shipment 
characteristics distribution, competitors’ behavior, and competitors’ private informa-
tion. This is f ( , , b )i i

jξ θ − −= Ω .  
 
In game theoretic terms the former case is not possible since there is no “strategic” game if 
players cannot speculate about the competitors’ actions. The latter case corresponds to a game 
of perfect and complete information if all the players are rational and the private information 
is common knowledge. Knowledge states in between the two extreme cases correspond to 
games of imperfect information, if all the players are rational and there is uncertainty about 
the players’ private information.   
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The uncertainty about the players’ private information can be expressed as 1p( | , )i i
j j jhθ θ−

− . In 
a game of incomplete information each player (bidder) has expectations (beliefs) about the 
competitors’ private values. Following Harsanyi’s (1967) modeling of games of incomplete 
information, players’ types 1{ }i n

j j iθ θℑ
== are drawn from some probability density function 

1p( ,..., )n
j jθ θ where types i

jθ belong to a space iΘ . The conditional probability about his oppo-

nents’ types 1 1 1{ ,..., , ,..., )i i i n
j j j j jθ θ θ θ θ− − += given his own type i

jθ is denoted 1p( | , )i i
j j jhθ θ−

− . 
This is what characterizes and complicates the solution of a dynamic game of incomplete in-
formation. Since the players do not know the competitors’ types at the start of each auction, 
they have to update these conditional probabilities (beliefs about the competitors’ status) as 
public information is revealed and the game evolves.  
 
 Acquiring knowledge about the competitors’ private information and bounded rationality 
type poses a potentially highly complicated econometric/logical problem. A carrier’s behavior 
is likely to be affected by his own history and how the carrier perceives and models the stra-
tegic situation. From the public information (revealed after each auction) and its own private 
information a carrier needs to build a model of the private information and bounded rationali-
ty type of his competitors.   
 
Even in simple auctions, the econometric models can quickly become extremely complex and 
data are usually not rich enough to successfully estimate those structurally complex models 
(Laffont, 1997). Furthermore, the complexity of the underlying DVRP adds hurdles to the 
problem. However, the most challenging obstacle may come from the competitors, which 
may be “sophisticated” enough to realize that they are bidding against other bidders who are 
also learning and may adjust their behavior accordingly, in order to obstruct the process of 
knowledge acquisition. This type of sophistication is particularly important when the fact that 
the same carriers interact repeatedly is common knowledge.  
 
In most game theoretic models, a simple private value probability distribution, symmetry, 
rationality, and common knowledge assumptions permit a closed analytical solution. In equi-
librium bidders know the competitors’ bidding function, however, they do not know the reali-
zation of the competitors’ private value, therefore they do not know the competitors’ actual 
bid. Conversely, in a TM, private values are not random but correlated, the status of a carrier 
at time jt  provide useful information to estimate the status of the carrier at time 1jt + .  A bid-
der may potentially obtain information about competitors’ private values and bidding func-
tions if the bidder invests resources to infer them. Market settings, such as auction data dis-
closed and number of competitors, strongly affect the difficulty of the inference process.  
 
Summarizing, repeated interaction can lead to learning and knowledge acquisition. This re-
search distinguishes among the two. Learning takes place in the no-knowledge case; the carri-
er does not get to know the competitors’ behavioral processes just the price function as a ran-
dom process. Learning is superficial, it is merely phenomenological. In the full knowledge 
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case, the carrier acquires knowledge about the competitors’ behavioral processes. Knowledge 
acquisition is deeper; it is causal. Learning in a TM environment is discussed in Section 7.  
 

6 Problem Solving in a Transportation Marketplace 
 
The previous section focused on “what can be learnt or known” about the competition. This 
section specifically contemplates “how carriers come up” with a bid or decision given what 
has been learnt or what knowledge has been acquired about a problem. Usually, models in 
which decision makers are assumed rational do not explain the procedures by which decisions 
are taken, rational procedures are implicitly embedded in the answer or approach. Further-
more, economic models pay no or little attention to how hard it is to make decisions.  Con-
versely, bounded rational decision maker models detail the procedural aspects of decision 
making. Those detail procedures are the essence of a bounded rational decision making mod-
el. The degree of intricacy of the decision making procedure is used in the last part of this 
chapter to classify bounded rational behaviors. As a carrier participates in a TM market, it is 
required to make decisions, to choose among alternative future paths. Each decision poses a 
problem that the carrier has to solve (not necessarily optimally). The rest of this section ana-
lyzes, in this order, the type of decision a carrier faces in a TM and how bounded rationality 
can appear in the steps of a decision making process.  
 
From the carriers’ point of view, the choice problems that take place in a TM are either bid-
ding or operational (fleet management) decisions. Bidding decisions may carry a strategic 
value since they directly affect competitors’ profits. Bidding decisions are also the result of a 
bounded rational decision process, a carrier’s choice and therefore can reveal or transmit in-
formation about a carrier’s decision making process or intentions. Operational (fleet manage-
ment) decisions mostly affect a carriers’ own fleet status (private information). Therefore, 
operational decisions are considered non-strategic and take place as new information arrives: 
auctions are won or shipments are served. This type of decision, for example, includes the 
estimation of a shipment value or service cost, the rerouting of the fleet after a successful bid, 
the reaction to unexpected increase in travel times, etc. A detailed formulation of the value or 
service cost problem is found in Figliozzi et al. (2006, 2007).  
 
There are several factors that contribute to the complexity of biding in a TM. These factors 
are: competitors bounded rationality, knowledge about the competitors, look-ahead depth, and 
the type of auction utilized. This section analyzes the first three factors. The auction characte-
ristics that significantly affect bidding complexity, from the bidder’s perspective, are: (a) the 
use of incentive compatible mechanisms and (b) the number of item being auctioned, e.g. 
combinatorial auctions are more demanding computationally than single item auctions. Incen-
tive compatible mechanism simplify considerable the bidder’s problem because the optimal 
bid is the cost or reservation value, regardless of the actions of the competitors (Figliozzi, 
2006). 
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Sophisticated bounded rational players have a “model” of the other players. For example, in 
the work of Stahl and Wilson (1995) and Vidal and Durfee (1995), players model other play-
ers’ cognitive process and decision rules up to a finite number of steps of iterated thinking. 
The number of iterations that a player can perform is a measure of the sophistication of a 
player. A zero level player does not model his opponents, it simply ignores the fact that other 
agents exit.  Reinforcement learning is an example of this type of agent sophistication. A one 
level agent models only the frequency or another statistic that represents other players’ ac-
tions. Fictitious play is an example of this type of agent sophistication. A two level agent can 
simulate the other agents’ internal reasoning process (i.e. a model of level zero or level one 
agents) and take an action by taking into account how the other players (of level zero or one) 
are going to play. A level three agent can build models, simulate them, and act in response to 
the behavior of players up to level two. Recursively, a level four agent can model the actions 
of level three agents and so on. Perfectly rational agents can follow the recursion to an infinite 
level. Then, if the level of rationality of a player is denoted by iL , then that player can model 
the most sophisticated of his competitors up to a level 1i iL L− = − .  
 
Section 5 dealt with the level of knowledge about the competition. A player with no-
knowledge about the competition can only implement a level zero or level one type of player 
since it cannot link his actions (bids) to the consequences that his actions have.  A player with 
full knowledge could possibly foresee (if it could only solve the corresponding problems) the 
behavior of any player type. However, the complexity increases as the level type to be im-
plemented increases, i.e. as the competitors bounded rationality sophistication increases. The 
carrier with full-knowledge knows { ,a ,c }i i i i

j jzθ − − − −=  about the competition and al-

so 1 1 1b {b ,..., b ,b ,..., b }i i i n− − += . Therefore, carrier i  can compute precisely what the competi-
tion is going to bid for shipment js .  However, carrier i  still has uncertainties about the fu-
ture bids, simply because carrier i  does not know the future realizations of the demand. Nev-
ertheless, carrier i  can estimate future prices, not just as a random process but as a function 
of shipment arrival and characteristics distribution, competitors’ behavior and competitors’ 
private information. When the knowledge is imperfect, complexity further increases since 
there is a probability distribution over the competitors’ private information space. Further-
more, the probability distribution is a function of the history of play and the competitors’ fleet 
management strategies. In mathematical notation, the probability distribution of competitors’ 
future private information is p( | )i

N Nhθ − .   
 
The third factor is the look-ahead depth. In a sequential auction setting like a TM, bids affect 
future auctions profits. The look-ahead depth is the number of future auctions that are taken 
into account when estimating how a bid may affect future auctions profits. A zero step look-
ahead (or myopic) analysis does not consider future auction profits, just the profit for the cur-
rent auction. A one-step look-ahead analysis considers one future auction, current plus the 
following auction profits. Similarly, a m -step look-ahead analysis considers m  future auc-
tions, current plus the following m  auction profits. When the analysis is myopic, shipment js  
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is known and the uncertainties are reduced to a minimum. Projecting one step into the future, 
the arrival time ( 1jt + ) and characteristics of shipment 1js +  are uncertain. Furthermore, if the 
link between bidding and future prices 1jξ +  is incorporated, the optimal bid for shipment js  
takes into account its impact on competitors’ bids (prices) in the next auction. Then, for ship-
ment 1js +  the price function at time 1jt +  is a function of the previous bids and the unknown 

previous arrival *
1( , )i

j j js bξ + . In the one-step problem, the arrival and characteristics of 1js +  
are uncertain, but the future history 1jh +  is a function of the already known js . Projecting two 
steps into the future, the estimation of the future price function 2jξ +  becomes more complex. 
The price function 2jξ +  for shipment 2js +  is a function of the yet unknown 1js +  and the two 

previous bids * *
1 1{ , | )i i

j j jb b h+ + . Moving one extra step into the future increases the problem 
complexity significantly. For shipment 2js +  the price function at time 2jt +  is a function of the 

previous bids and the unknown previous arrival * *
2 1 1 1( , ( , ), , | )i i

j j j j j j js s t b b hξ + + + +Ω .  Calculation 
of future price functions is increasingly difficult as uncertainties and dependencies on earlier 
(but not yet realized) bids and shipments accumulate. When the look ahead is up to ship-
ment Ns , the number of decision variables * * *{ ,..., | }i i i

j N NB b b h=  to be estimated is: 

0

N j
k

k

p
−

=
∑ .  

When the number of players (bidders) is n , after each auction there are n  possible outcomes 
and future histories. If backward induction is used, for each possible history it is necessary to 
estimate an optimal bid, the total number of decision variables increases exponentially with 
the number of future look-ahead steps. Let denote by 1 1{ , ( , )..., ( , )}j j j N Ns s t s t+ −Σ = Ω Ω  the set of 
shipments to be analyzed. Then, the future price function when earlier bids affect future prices 
and the carrier has imperfect information is a function of * *

1f( ,..., , , p( | ))i i i
N j N N Nb b hξ θ −

−= Σ .  
 
Table 1 puts the three factors together.  The table is set up in such a way that the complexity 
of the price function ξ  increases, moving downward or rightward. With higher levels of 
competitors’ bounded rationality, the complexity of the problem increases exponentially with 
the number of iterations and players to be simulated.  
 
The symbol 

inL−〈⋅〉 is used to denote the number of iterations as a function of the number of 
players and the highest level of iterations that the competition can sustain. A “fully rational” 
equilibrium, is a special case of the imperfect knowledge case when all players are rational 
and iL− →∞ . In the game theoretic case, it is common knowledge that all the bidders are si-
multaneously foreseeing and simulating each other’s bids and decisions at infinitum. Each 
cell of table 2 is a different decision theory problem that can potentially be expressed as a 
mathematical program or algorithm. It was mentioned that the complexity increases moving 
downward or rightward. 
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Table 1: Bidding Complexity as a function of price function ( ξ ) complexity 
 

Knowledge 
Level 

Own 
Type 

iL  

Comp. 
Type 

iL−
 

Look-Ahead Depth 

Myopic 
 

{ }jsΣ =  
* *{ }i i

jB b=     

1-step 
 

1{ , ( , )}j j js s t+Σ = Ω
* * *

1 1{ , | }i i i
j j jB b b h+ +=

 

Multi-step  
 

1{ ,..., ( , )}j N Ns s t −Σ = Ω
* * *{ ,..., | }i i i

j N NB b b h=  

NO 

0iL =
 - Reinforc. 

Learning - - 

1iL =  - Fictitious  Play 
Stationary ξ 

Fictitious Play 
Stationary ξ 

Fictitious Play Sta-
tionary ξ 

FULL 

1iL =  - Acceptance 
Rejection 

Acceptance Re-
jection Stationary 

ξ 

Acceptance      Rejec-
tion        Stationary ξ 

2iL ≥
 

1iL− ≤  Acceptance 
Rejection 

 
Optimal Pricing    
Non-stationary 

*
1 f( , )i

j jbξ + = Σ  

 
Optimal Pricing      
Non-stationary 

* *
1f( ,..., , )i i

N j Nb bξ −= Σ
 

iL m=
 

2 iL m−≤ <
 

Iterated Accep-
tance Rejection 

 
Iterated     Op-
timal Pricing      

Non-stationary 
*

1 f( , )
nLi

j jbξ
−

+ = Σ

 

 
Iterated              Op-

timal Pricing 
Non-stationary 

* *
1f( ,..., , )i i

N j Nb bξ −= Σ

 

IMPER-
FECT 

1iL =  1iL− ≤  
Fictitious  Play 

f(p( | ))i
j j jhξ θ −=

 

Acceptance Re-
jection Stationary 

1j jξ ξ+ =  

Acceptance      Rejec-
tion        Stationary 

1...N j jξ ξ ξ+= = =  

2iL ≥
 

1iL− ≤  
Fictitious  Play 

f(p( | ))i
j j jhξ θ −=

 

 
Optimal Pricing    
Non-stationary 

*
1

1 1

f( , ,

p( | )

i
j j

i
j j

b

h

ξ

θ
+

−
+ +

= Σ

 

 
Optimal Pricing      
Non-stationary 

* *
1f( ,..., , ,

p( | ))

i i
N j N

i
N N

b b

h

ξ

θ
−

−

= Σ

 

iL m=
 

 
2 iL m−≤ <

 

Iterated         
Fictitious Play 

f(p( | ))
i

j

nLi
j jh

ξ

θ
−

−

=

 

Iterated     Op-
timal Pricing      

Non-stationary 
*

1

1 1

f( , ,

p( | )

i
j j

ni
j j

b

h

ξ

θ

+

−
+ +

= Σ

 

Iterated              Op-
timal Pricing      Non-

stationary 
* *

1,..., , ,

p( | )
i

i i
N j N

nLi
N N

b b

h

ξ

θ
−

−

−

= Σ
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The problem solving capabilities of the carrier determines the type of problem the carrier 
solves. For example, a carrier may have imperfect information about the competitors; howev-
er, problem solving limitation may force him to solve a myopic problem assuming no-
knowledge about the competition. When cost or time limitations are added to the problems, 
carriers can choose to ignore part of his knowledge in order to get a reasonable answer in a 
reasonable time, in the spirit of the “satisfying” rule as proposed by Simon (1955). According 
to Simon, economic agents do not always optimize fully, they optimize up to a satisfying lev-
el. Level that depends on personal characteristics and circumstances.  
 
Simplifying (downgrading complexity) the problem due to bounded rational limitations is 
always possible. It can be interpreted that each problem type (each cell) of table 1 is a differ-
ent way of measuring how desirable each possible bid is, for a given DVRP technology. If the 
value of knowledge can be defined as the profit difference that a carrier can obtain going from 
the no to full knowledge assumption, likewise, the value of computational power is the profit 
difference that a carrier can obtain from solving a more complex problem due to the increased 
performance of his computational resources. Summarizing, based on their knowledge level 
and problem solving capabilities, agents differ in the type of problem they can solve. 
 

7 Learning in a Transportation Marketplace  
 
The reminder of this chapter studies the bidding behavior of carriers in a no-knowledge and 
no-strategic environments of Table 1.  Henceforth, it is assumed that carriers bid trying to 
maximize their profits but limited by their bounded rational limitations. In this competitive 
setting, three different auction formats are compared using computational experiments. These 
auction formats are second price auctions, first price auction with minimum information dis-
closure, and first price auctions with maximum information disclosure.  
 
The high complexity of acquiring and using knowledge about competitors’ behaviors was 
discussed in Section 5, even in TM market/model that has been streamlined to the indispensa-
ble elements. Knowledge acquisition and its use can be considerably more complex in a more 
complete model where other critical constraints and variables are added (for example, getting 
drivers home, variation in travel times, delays incurred while unloading the truck, etc).  Fur-
thermore, noisy information transmission, as reported by Powell et al. (2002), even among 
agents that respond to the same carrier (i.e. drivers, dispatchers, decisions support systems), 
seem to sustain the notion that perfect knowledge about competitors’ private information and 
behavior could only be possible in a flight of the imagination. Imperfect knowledge is possi-
ble, but at the cost of even higher modeling complexity. Given the high level of complexity of 
full or imperfect knowledge assumptions, it is methodologically sensible to first focus on be-
haviors and settings which are more plausible for implementation in real-life TM marketplac-
es. The first tool that bounded-rational agents use to cope with insurmountable complexity is 
simplification. Henceforward, it is assumed that carriers can acquire a limited knowledge of 
the competitors’ behavior. Carriers’ knowledge is limited to learn about the distribution of 
past market prices or the relationships between realized profits and bids.  
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In an auction context, learning methods seek good bidding strategies by approximating the 
behavior of competitors. Most learning methods assume that competitors’ bidding behavior is 
stable. This assumed bidding stability is akin to believing that all competitors are in a strategic 
equilibrium. Walliser (1998) distinguishes four distinct dynamic processes to play games. In a 
decreasing order of cognitive capacities they are: eductive processes, epistematic learning 
(fictitious play), behavioral learning (reinforcement learning), and evolutionary processes. An 
eductive process requires knowledge about competitors’ behavior (agents simulate competi-
tors’ behavior).  Epistemic and behavioral learning are similar to fictitious play and rein-
forcement learning respectively (fully described in the next section). In the evolutionary 
process, a player has (is born with) a given strategy; after playing that strategy the player dies 
and reproduces in proportion to the utilities obtained (usually in a game where it has been 
randomly matched to another player).  
 
This reminder of this chapter studies the two intermediate types of learning. Eductive-like 
type of play requires carriers to have almost unbounded computational power and expertise.  
On the other hand, evolutionary model players seem too simplistic: they have no memory, and 
simply react in response to the last result. Furthermore, the notion that a company is born, 
dies, and reproduces with each auction does not fit well behaviorally in the defined TM. Ul-
timately, neither extreme approach is practically or theoretically compelling in the TM con-
text. Carriers that survive competition in a competitive market like truck-load (TL) procure-
ment cannot be inefficient or unskilled. They are merely limited in the strategies they can im-
plement. It is assumed that carriers would like to implement the strategy (regardless of its 
complexity) that ensured higher profits, but they are restricted by their cognitive and informa-
tional (which give rise to bounded rationality).  
 
In practical and theoretical applications, the process of setting initial beliefs has always been a 
thorny issue. Implemented learning models must specify what agents initially know. Ideally, 
how or why these initial assumptions were built should always be reasonable justified or ex-
plained. In this respect, restricting the research to the TM context has clear advantages. Nor-
mal operating ratios in the TL industry range from 0.90 to 0.95 (TCA, 2003). It is expected 
that operating ratios in a TM would not radically differ from that range. If prices are too high 
shippers can always opt out, abandon the marketplace and find an external carrier. Prices can-
not be substantially lower because carriers would run continuously in the red, which does not 
lead to a self-sustainable marketplace. Obviously, operating ratios fluctuations in a competi-
tive market are expected, in response to natural changes in demand and supply. However, 
these fluctuations should be in the neighborhood of historical long term operating ratios un-
less the market structure is substantially changed.   Another practical consideration is the 
usage of ratios or factors in the trucking industry. Traditionally, the trucking industry has used 
numerous factors and indicators to analyze a carrier’s performance, costs, and profits. It 
seems natural that some carriers would obtain a bid after multiplying the estimated cost by a 
bidding coefficient or factor. Actually, experimental data show that the use of multiplicative 
bidding factors is quite common (Paarsh, 1991).  
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7.1 Learning Mechanisms 
In reinforcement learning the required knowledge about the game payoff structure and com-
petitors behavior is extremely limited or null. From a single carrier’s perspective the situation 
is modeled as a game against nature; each action (bid) has some random payoff about which 
the carrier has no prior knowledge. Learning in this situation is the process of moving (in the 
action space) in a direction of higher profit. Experimentation (trial and error) is necessary to 
identify good and bad directions. 
 
Let M  be the ordered set of real numbers that are multiplicative coeffi-
cients 0M { ,..., }Kmc mc= , such that if Mkmc ∈  and 1 Mkmc + ∈ , then 1k kmc mc +< . Using mul-
tiplicative coefficients the profit obtained for any shipment js , when using the multiplicative 
coefficient kmc   is equal to: 

( ) ( ) ( 1)i
j

i i i i i
k k j j j j j kmc mc c c I c I mcπ = − = −         (1) 

(2)( ) ( )i
j

i i
k j j jmc b c Iπ = −           (2) 

 
The first equation applies to first price auctions while the second equation applies to second 
price auctions. In the second price auction the payment depends on the value of the second 
best bid which is represent by the term (2)

jb . Adapting the reinforcement model to TM bid-

ding, the probability ( )i
j kmcϕ of carrier i  using a multiplicative coefficient kmc  in the auction 

for shipment js  is equal to: 

 1 1 1 1( ) (1 ( ) ) ( ) ( ) ( )i i i i i
j k j k j k j k j kmc mc mc I mc mcϕ λπ ϕ λπ− − − −= − +     (3) 

 
Narenda and Tatcher (1974) showed that a players’ time average utility, when confronting an 
opponent playing a random but stationary strategy, converges to the maximum payoff level 
obtainable against the distribution of opponents’ play. The convergence is obtained as the 
reinforcement parameter λ goes to zero. To use equation (3), each bidder only needs informa-
tion about his bids and the result of the auction.  To use this model the profits 1( )i

j kmcπ −  must 
be normalized to lie between zero and one so that they may be interpreted as probabilities. 
The indicator variable ( )i

j kI mc  is equal to one if carrier i  used the multiplicative coefficient 

kmc  when bidding for shipment js , the indicator is equal to zero otherwise. The parameter λ  
is called the reinforcement learning parameter, it usually varies between 0 1λ< < .   
 
The reinforcement is proportional to the realized payoff, which is always positive by assump-
tion. Any action played with these assumptions, even those with low performance, receives 
positive reinforcement as long as it is played (Fudenberg and Levine, 1998). Therefore, a 
“mediocre” action can be reinforced while at the same time “better” actions are negatively 
reinforced.  Furthermore, in an auction context there is no learning when the auction is lost 
since 1( ) 0 Mi

j k kmc mcπ − = ∀ ∈  if 1 0i
jI − = . Borgers and Sarin (1996) propose a model that 
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deals with the aforementioned problems. In this model the stimulus can be positive or nega-
tive depending on whether the realized profit is greater or less than the agent’s “aspiration 
level”. If the agent’s aspiration level for shipment js  is denoted i

jρ  and the effective profit is 
denoted: 

1 1( ) ( )i i i
j k j k jmc mcπ π ρ− −= − ,         (4) 

and the probability becomes: 
1 1 1 1( ) (1 ( ) ) ( ) ( ) ( )i i i i i

j k j k j k j k j kmc mc mc I mc mcϕ λπ ϕ λπ− − − −= − +     (5) 

When 0i
jρ = , the equation (5) provides the same probability updating equation as (3). Borgers 

and Sarin explore the implications of different policies to set the level of the aspiration level. 
These implications are clearly game dependent.  A general observation applies for aspiration 
levels that are unreachable. In this case equation (4) is always negative; therefore the learning 
algorithm can never settle on a given strategy, even if the opponent plays a stationary strate-
gy.  
 
These learning mechanisms were originally designed for games with a finite number of ac-
tions and without private values (or at a minimum for players with a constant private value). 
In the TM context, the cost of serving shipments may vary significantly. Furthermore, even 
the “best” or optimal multiplier coefficient can get a negative reinforcement when an auction 
is lost simply because the cost of serving a shipment is too high. This negative reinforcement 
for the “good” coefficient creates instability and tends to equalize the attractiveness of the 
different multiplicative coefficients.  This problem worsens as the number of competitors is 
increased causing a higher proportion of lost auctions, i.e. negative reinforcement. This chap-
ter utilizes a modified version of the stimulus response model with reinforcement learning 
that better adapts to TM bidding (Figliozzi, 2004, 2005). Each multiplicative coefficient km  
has an associated average profit value ( )i

j kmπ  that is equal to: 

{1,..., }

{1,..., }

( ) ( )
( )

( )

i i
t t t k

t ji
j k i

t k
t j

s I m
m

I m

π
π ∈

∈

=
∑
∑

 

The aspiration level is defined as the average profit over all past auctions: 

 {1,..., }

( )i i
t t t

t ji
j

s I

j

π
ρ ∈=

∑
 

Therefore the average effective profit is defined as 1 1( ) ( )i i i
j k j k jmc mcπ π ρ− −= − . Probabilities 

are therefore updated using equation (6).  
1 1 1 1( ) (1 ( ) ) ( ) ( ) ( )i i i i i

j k j k j k j k j kmc mc mc I mc mcϕ λπ ϕ λπ− − − −= − +     (6) 
With the latter formulation (6), a “good” multiplicative coefficient does not get a negative 
reinforcement unless its average profit falls below the general profit average. At the same 
time, there is learning even if the auction is lost. The learning mechanism that uses equation 
(6) is named as Average Reinforcement Learning (ARL) henceforth.  
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Stimulus-response learning requires the least information and can be applied to both first and 
second price auctions. The probability updating equations (3) and (6) are the same for first 
and second price auctions. Therefore the application of the reinforcement learning model does 
not change with the auction format that is being utilized in the TM.  Using this learning me-
thod, a carrier does not need to model neither the behavior nor the actions of competitors. The 
learning method is essentially myopic since it does not attempt to measure the effect of the 
current auction on future auctions. The method clearly fits in the category of no-
knowledge/myopic carrier bounded rationality. Since the method is myopic, for the first price 
auction the multiplicative coefficients must be equal or bigger than one, i.e. 0 1mc ≥ . A coef-
ficient smaller than one, generates only zero or negative profits. In a second price auction the 
multiplicative coefficients can be smaller than one and still generate positive profits since the 
payment is dependent on the competitors’ bids. In both types of auctions it is necessary to 
specify not just the set of multiplicative coefficients but the initial probabilities. If equation 
(5) is used it is also necessary to set the aspiration level. If equation (6) is used it is necessary 
to set the level of the initial profits but not the aspiration level. A uniform probability distribu-
tion is the classical assumption and indicates a complete lack of knowledge about the compet-
itive environment.  
 
Summarizing, in reinforcement learning, the agent does not consider strategic interaction.  
The agent is unable to model an agent play or behavior but his own. This agent is informed 
only by his past experiences and is content with observing the sequence of their own past ac-
tions and the corresponding payoffs. Using only his action-reward experience, he reinforces 
strategies that succeeded and inhibit strategies which failed. He does not maximize but moves 
in a utility-increasing direction, by choosing a strategy or by switching to a strategy with a 
probability positively related to the utility index. Reinforcement learning (and its variants) is a 
strategy that is designed to operate in an environment where the player (carrier) is unable to 
see the competitors’ actions. Therefore, it is able to strongly reinforce (positively or negative-
ly) only one action: the last action played. Unlike reinforcement learning, fictitious play re-
quires the observation of competitors’ actions. A good introduction to types of learning em-
ployed in this chapter (reinforcement learning and fictitious play) can be found in the work of 
Fudenberg and Levine (1998).  
 
Fictitious play came about as an algorithm to look for Nash equilibrium in finite games of 
complete information (Brown, 1951). It is assumed that the carrier observes the whole se-
quence of competitors’ actions and draws a probabilistic behavioral model of the opponents’ 
actions. The agent does not try to reveal his or her opponents’ bounded rationality from their 
actions although the agent may eventually know that opponents learn and modified their strat-
egies too.  The agent models not behavior but simply a distribution of opponents’ actions. 
Players do not try to influence the future play of their opponents. Players behave as if they 
think they are facing a stationary, but unknown, distribution of the opponents’ strategies. 
Players ignore any dynamic links between their play today and their opponents’ play tomor-
row. A player that uses a generalized fictitious play learning scheme assumes that his oppo-
nents' next bid vector is distributed according to a weighted empirical distribution of their past 
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bid vectors. The method cannot be straightforwardly adapted to games with an infinite set of 
strategies (for example the real numbers in an auction). Two ways of tackling this problem 
are: a) the player divides the set of real numbers into a finite number of subsets, which are 
then associated with a strategy or b) the player uses a probability distribution, defined over the 
set of real number to approximate the probabilities of competitors play.  In either case, the 
carrier must come up with a estimated stationary price function ξ (in our experiments carriers 
estimate a normal distribution using on competitors’ past bids). If a second price auction for-
mat is used in the TM, the carrier bids using:  

*
( )arg max {[ ( , )] }i i i i

j j j jb E c s z I

b R
ξ ξ∈ −

∈
       (7) 

If a first price auction format is used in the TM, the carriers bid using:   
*

( )arg max { [( ( , )] }i i i i
j j j jb E b c s z I

b R
ξ∈ −

∈
       (8) 

In the second price auction (equation 7) the best price is simply the corresponding cost 
( , )i i

j jc s z  due to the special properties of one-item second price auctions (8) (independence 
between the winners bid and the corresponding payment). Equation 8 has to be solved numer-
ically or analytically.  

7.2 Automaton Interpretation  
The previous sections have described reinforcement learning and fictitious play models of 
learning. Reinforcement learning and fictitious play were originally conceived as human me-
thods of learning. However, they can also be used by machines or computerized systems. This 
section tries to link both views. An automaton is a self operating machine or mechanism. In a 
game context, an automaton is meant to be an abstraction of the process by which a player 
implements a given bounded rationality behavior. Rubenstein (1998) replaces the notion of a 
strategy with the notion of a machine called finite automaton. In Rubenstein’s model a finite 
automaton that represents player i  is a four-tuple 0( , , b ,a )i i i iZ z , where iZ  is a finite set of 
machine states (from this constraint the adjective “finite”), 0

iz  is the initial state for carri-
er i , b :i iZ A→  is an output function that produces an action (given the state of the automa-
ton), and a :i i i iZ A Z−× →  is a transition function that updates the state of the automaton 
(given the actions taken by the competitors in the previous period). The set of possible actions 
is denoted by A . Adapting these concepts to this research, a TM automaton can be defined as 
an abstraction of the process by which a carrier implements a given bounded rational behavior 
in a TM. A TM automaton can be defined by the eight-tuple 0 0( , , , , , b , u ,a )i i i i i iZ z SξΞ  com-
prised by: 

iZ  the set of possible states (private information states) ; 
0
iz   the initial state for carrier i ; 
Ξ  the set of possible price functions; 

0
iξ  the initial price function  for carrier i ; 
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js S∈  the stimulus sent by marketplace; 

b :i iZ S R×Ξ× →  the bidding (output) function;  
u :i h× Ξ→Ξ  the update function (updates the price function ξ ∈ Ξ ) ; and 
a :i i iZ S Z× →  the assignment function (assignment if an auction is won).  
 
A TM automaton would work in the following way: the initial state and price function are 0

iz  
and 0

iξ  respectively, the automaton chooses a bid 0 0 1b ( , , )i i iz sξ when the first shipment arrives. 
If carrier i  wins, the assignment function updates the carrier’s status 0 1a ( , )i iz s . The price 
function is updated based on the information revealed after the auction 1 0u ( , )i ih ξ . When the 
second shipment arrives the same process is repeated but starting with the new state and price 
function 1

iz  and 1
iξ  respectively. Once the initial conditions are set, the transitions, bidding, 

and updating are set by the arrival of shipments. A TM automata game takes place when a 
player cannot change the working of his machine during the course of the game. The two 
learning approaches described in this section, reinforcement learning and fictitious play, can 
be interpreted as the work of an automaton (which is valid in general for any learning strategy 
that seeks or uses no knowledge about the competitors’ behavior). Therefore, the simulation 
results presented in the next sections can also be interpreted as the interaction or competition 
of TM automata (which may represent the behavior of human, computerized, or hybrid dis-
patchers). It is assumed in this research that for a given status, price function, and stimulus, an 
action has the same probability of being played; as if the decision process is wired-up and 
cannot change (data and information can change over time, but not the decision-making 
process). This is consistent (in the short-medium term) with the industry experience (Powell 
et al., 2002).  
 

8 Experimental Results  
 
Closed analytical solutions for the complex carriers’ decision problem in a TM setting would 
require many simplifications that could compromise the validity of the results. Therefore, 
computational experiments and simulation are used as needed to enhance and extend simpler 
theoretical models. Furthermore, simulation is used to study the dynamics of carriers’ beha-
viors and interactions in controlled and replicable experiments.  

8.1 Simulation Framework 
The following sections study truck-load (TL) carriers that compete over a square area; the 
sides’ lengths are equal to 1 unit of distance. For convenience, trucks travel at constant speed 
equal to one unit of distance per unit of time. Demands for truckload pickup-and-delivery 
arise over this area and over time. Origins and destinations of demands are uniformly distri-
buted over the square area, so the average loaded distance for a request is 0.52 units of dis-
tance. All the arrivals are random; the arrival process follows a time Poisson process. The 
expected inter-arrival time is E [T] = 1/ (Kλ), where λ is the demand request rate per vehicle 
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and K is the total market fleet size. The total market fleet size that was used in the results is 4 
(though similar trends were obtained with larger fleets – 8 vehicles – as long as the same ar-
rival rate/fleet size ratio is used). Roughly, the average service time for a shipment is 0.77 
units of time (approximately λ = 1.3). The service time is broken down into 0.52 units of time 
corresponding to the average loaded distance, plus 0.25 units of time that approximate the 
average empty distance (average empty distance vary with arrival rates and time windows 
considered). Different Poisson arrival rates per truck per unit of time are simulated (ranging 
from 0.5 to 1.5). As a general guideline, these values correspond to situations where the carri-
ers are: 

• λ = 0.5  (uncongested) 
• λ = 1.0  (congested) 
• λ = 1.5  (extremely congested) 

The shipments have hard time windows. In all cases, it is assumed that the earliest pickup 
time is the arriving time of the demand to the marketplace. The latest delivery time (LDT) is 
assumed to be:   
LDT = arrival time + 2 x (shipment loaded distance + 0.25) + 2 x uniform (0.0, 1.0).  
All the shipments have a reservation price distributed as uniform (1.42, 1.52). In all cases, 
reservation prices exceed the maximum marginal cost possible in the simulated area (≈1.41 
units of distance). It is also assumed that all the vehicles and loads are compatible; no special 
equipment is required for specific loads. In all the simulations, two carriers are competing for 
the demands. In all cases there is an initial warm up or learning period of 250 auctions. 
 
Multiple performance measures are used. The first is total profits, which equal the sum of all 
payments received by won auctions minus the empty distance incurred to serve all won ship-
ments (it was already mentioned that shipment loaded distances are not included in the bids, 
loaded distances cancel out when computing profits). The profit for a particular shipment is 
defined as the difference between the payment received and the increment of the empty dis-
tance cost necessary to serve this shipment. The second performance measure is number of 
auctions won or number of shipments served, an indicator of market share. The third is ship-
pers’ consumer surplus, which is the accumulated difference between reservation prices and 
prices paid. The fourth is total wealth generated that is equal to the accumulated difference 
between reservation price (of served shipments) and empty distance traveled.   
 
The second price auction used in the TM operates as follows: (a) each carrier submits a single 
bid, (b) the winner is the carrier with the lowest bid (which must be below the reservation 
price; otherwise the auction is declared vacant), (c) the item (shipment) is awarded to the 
winner, (d) the winner is paid either the value of the second lowest bid or the reservation 
price, whichever is the lowest, and (e) the other carriers (not winners) do not win, pay, or re-
ceive anything. The same procedure applies to first price auctions but the winner is paid the 
value of the winning bid, only point (d) changes.  
 
In real time situations, this is an increasingly difficult task when optimal decision-making 
involves the solution of larger NP hard problems and the necessity of taking into account the 
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stochastic nature of future demands. Three levels of DVRP technologies were simulated. 
These technologies are presented in an order that shows an increasing level of sophistication. 
 

1. Base or Naïve Technology: this type of carrier simply serves shipments in the order 
they arrive. If the carrier has just one truck, it estimates the marginal cost of an arriv-
ing shipment js  simply as the additional empty distance incurred when appending js  
to the end of the current route. If the carrier has more than one truck, the marginal cost 
is the cost of the truck with the lowest appending cost. This technology does not take 
into account the stochastic or combinatorial aspect of the cost estimation problem and 
is considered one of the simplest possible. Nonetheless, it provides a useful bench-
mark against which to compare the performance of more complex and computational-
ly demanding technologies. 

2. Static Fleet Optimal (SFO): this carrier optimizes the static vehicle routing problem at 
the fleet level. If the carrier has just one truck, the technology is equivalent to the pre-
vious case. If the carrier has more than one truck, the marginal cost is the increment in 
empty distance that results from adding js  to the total pool of trucks and loads yet to 
be serviced. If the problem where static, this technology would provide the optimal 
cost. Again, like the two previous technology, it does not take into account the sto-
chastic nature of the problem. This technology roughly stands for “the best” a myopic 
(as ignoring the future but with real time information) fleet dispatcher can achieve. 
Carriers fleet assignment and cost estimation is based on the static optimization based 
approach proposed by Yang et al. (2004).  

3. One step Look ahead Fleet Optimal (1SLA): as the previous carrier, this carrier opti-
mizes the static vehicle routing problem the fleet level. This provides the static mar-
ginal cost for adding js . However, this carrier also knows the distribution of load ar-
rivals over time and their spatial distribution. Hence, the carrier can simulate whether 
and how much winning js  affects the marginal cost of serving the next arriving load. 
This technology roughly stands for what a fleet dispatcher with real time information 
and knowledge of future (yet unrealized probabilistic demands) can do. However, 
1SLA is not an “optimal” technology, rather it is a heuristic that tries to estimate how 
serving js  affects the cost of serving the next shipment.  

8.2 Analysis of Experimental Results  
A significant characteristic of one-item second price auction is also cost bidding, i.e. one-item 
second price auctions are incentive compatible mechanisms. That characteristic cannot be 
necessarily maintained in multiunit sequential auctions setting such as the TM marketplace. 
Of the two learning methods proposed, only reinforcement learning can be applied to second 
price auctions since fictitious play in a single-item second price auction coincides with mar-
ginal cost bidding. Regardless of the price distribution, the expected profit is always opti-
mized with marginal cost bidding.. In the TM context, the objective of reinforcement learning 
is to “learn” what the best bidding coefficient is; the bidding coefficient that maximizes a car-
rier’s profits. Which raises the question: in a TM second price auction environment can carri-
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ers be better off by using bidding factors? This question is answered using computational ex-
periments. Two carriers using the same type of DVRP technology compete against each other. 
However, while one carrier bids the marginal cost (called MC carrier) the other bids the mar-
ginal cost multiplied by a bidding factor (called BF carrier). Eleven different bidding factors 
are utilized, ranging from 0.5 to 1.5. The impact of these factors on carrier BF’s profits are 
depicted in figure 2. The profit levels of a BF carrier when the bidding factor is equal to 1.0 
are used as the reference or base level – they correspond to 100% level. Both carriers are us-
ing the SFO technology. 

8.3 Performance of Marginal Cost Bidding 
The results depicted in figure 2 show that for low arrival rates the best bidding factor is 1.0, 
corresponding to simply bidding the marginal cost. For medium arrival rates the best bidding 
factor is 1.1.  For high arrival rates the best bidding factor is 1.3. Regardless of the arrival rate 
level, the “curve” is quite flat around the “optimal”. Furthermore, if the profits are connected 
the resulting curve is concave-shaped. A possible explanation to the results of figure 2 may be 
obtained by analyzing how profits are generated. Total profits can be expressed as the average 
profit obtained per shipment multiplied by the number of shipments served. Figure 3 and fig-
ure 4  show the impact of bidding factors on number of shipments served and average ship-
ment served profit respectively. Again, the number of shipments served and average profit 
used as reference are those of a BF carrier when the bidding factor is equal to 1.0.   
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Figure 2: Profit Level for a BF Carrier 

It is clear from figure 3 and figure 4 that, as expected, higher bidding factors increase the av-
erage profit per shipment won but decreases the number of shipments won. Vice versa, lower 
bidding factors decrease the average profit per shipment won but increases the number of 
shipments won. There are clearly two opposing forces at work when the bidding factor 
changes; this fact helps to explain the concave shape of the profit curve in figure 2. 
At this point, it has not yet been explained why the low arrival rate “optimal” bidding factor is 
around 1.0 (marginal cost case), while the “optimal” bidding factors are shifted to the right for 
higher arrival rates. The answer to this matter lies in the relation between profit elasticity and 
shipment served volume elasticity. To understand why profit elasticity and shipment served 
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volume elasticity changes with the arrival rate is necessary to introduce figure 5 and figure 6. 
They illustrate the different fleet utilization rates of carriers MC and BF respectively. Fleet 
utilization rate is defined as the average vehicle utilization. Vehicle utilization is defined as 
the percentage of the time a vehicle is moving (i.e. not idle).  

0%
20%
40%
60%
80%

100%
120%
140%
160%
180%
200%

0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5

Bidding Factor 

Low Med. High

 
Figure 3: Shipments Served by BF carrier 

0%
20%

40%
60%
80%

100%
120%

140%
160%

0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5

Bidding Factor 

Low Med. High

 
Figure 4: Average Profit per Shipment Won for a BF Carrier 

With low arrival rates the utilization of the MC carrier is low (around 35% if the BF carrier 
uses a bidding factor equal to 1.0 - see figure 5). Therefore when carrier BF increases his 
prices (utilizing higher bidding factors) carrier MC gains a significant percentage of the de-
mand. This explains why in figure 6 there is such an abrupt drop in demand (from 100 to 
80%) when carrier BF moves from a bidding factor of 1.0 to 1.1. With higher arrival rates the 
fleet utilization of carrier MC is higher (at or over 70% - see figure 5) and at very high utiliza-
tion rates it is more difficult to accommodate or to inexpensively add new shipments. As fleet 
utilization grows the capacity to serve new shipments decreases, therefore on average the op-
portunity costs of serving additional shipments starts to be significant. Figure 6 is the reverse 
mirror image of figure 5. With high arrival rates carrier BF can rise prices substantially and 
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still have a high fleet utilization; the increase in profits prevails over the decrease in ship-
ments served. The explanation provided is plausible but not definitive. However, similar phe-
nomena as the ones observed in figure 2-6 have been widely recognized in the economics-
industrial organization literature.  
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Figure 5: Fleet Utilization (MC Carrier) 
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Figure 6: Fleet Utilization (BF Carrier) 

The incentives to increase prices as remaining market capacity decreases are contemplated in 
price-capacity oligopoly models. For example, in the Edgeworth-Bertrand model of competi-
tion, pricing is at marginal cost levels when demand is low, however prices increase after a 
critical capacity utilization threshold is surpassed (Martin, 1993). Similar intuition is obtained 
from Benoit and Krishna (2001) model of capacity constrained auctions, with limited capacity 
it is advantageous to speculate. Even in fleet management, the idea of filtering out shipments 
or similarly increasing the “admission” price of shipments under very high arrival rate condi-
tions has been previously used (though not in a competitive environment). The Kim et al. 
(2002) study indicates that a fleet dispatcher under very high arrival rates (over capacity) is 
better off filtering out some demands (not being too close to capacity). Similar results are also 
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found when carriers use other technologies such as the naïve or 1SLA. Figure 7 shows the 
profit changes when both carriers use naive technologies. Even when carriers have different 
technologies, similar results can be expected. Figure 8 show the profit changes for the BF 
carrier using naïve technology against a MC carrier using SFO technology.  
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Figure 7: Profit Level for a BF Carrier (both carrier use naïve technology) 

The question that motivated these simulations was: in a TM second price auction environment 
can carriers be better off by using bidding factors? The answer is yes, but only at high arrival 
rates. This answer provides additional insights into the applicability of auction analysis to 
online algorithms/technologies. The results confirm the notion that DVRP technological lea-
dership can be better exploited under low to moderate arrival rate conditions, where there is 
no incentive to adopt bidding factors that are not one. If there is an incentive to adopt bidding 
factors that are higher than one, there is an incentive to restrain capacity or to increase prices 
(profits are increased without increasing fleet management efficiency). As the arrival rate 
grows the advantage of being more efficient decreases; in general, scarcity exposes the in-
competent while abundance hides inefficiencies. 

8.4 Learning Methods Performance  
The following results address the issue of learning performance of the two learning methods 
presented in this chapter. The previous results show that bidding factors can be used to in-
crease carriers’ profits in TM second price auctions with high arrival rates. Reinforcement 
learning could be used to “learn” which bidding factors produce a higher profits on average; 
as the auction results accumulates the most profitable bidding factors continuously increase 
their probability of being used. With low arrival rates, there is nothing to learn but the fact 
that marginal cost bidding (bidding factor 1.0) is the best alternative. Learning can be expen-
sive though. For example, in a second price auction the longer it takes a bidder to learn that 
underbidding (bidding below his marginal costs) is not a good strategy, the more the bidder 
loses potential profits. The importance of the right learning coefficient then becomes evident. 
If the learning coefficient λ  is too small learning is too slow; if λ  is too big it may lock the 
learning algorithm in an undesirable bidding factor too quickly. Another important element is 
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the number of alternatives that the learning algorithm must choose from; as a general rule, the 
more the alternatives the smaller the λ .    
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Figure 8: Profit Level for a BF Carrier (SFO vs. naïve technology) 

The speed of reinforcement learning can be quite slow in an auction setting like TM. The “op-
timal” bidding factor can be used and there is still roughly a 50% chance of losing (assuming 
two bidders with equal fleets and technologies). If the “optimal” bidding factor loses two or 
three times its chances of being played again may reduce considerably which hinders conver-
gence to the “optimal” or even convergence at all. As discussed previously in this section, this 
issue can be avoided using “averages” (ARL method). Figure 9 illustrates the relative perfor-
mance of Average Reinforcement Learning (ARL) and Reinforcement Learning (RL) in a 
first price auction. Both learning methods select a bidding factor among 11 different possibili-
ties, ranging from 1.0 to 2.0 in intervals of 0.1. The learning factor is 0.10λ = . Figure 9 
shows the relative performance of ARL and RL after 500 auctions. It is clear that RLA ob-
tains higher profits as the arrival rate increases. RL has a poorer performance because it can-
not converge steadily to the “optimal” coefficient due to the reasons mentioned in the pre-
vious paragraph. The carrier RL tends to price lower (it keeps probing low bidding coeffi-
cients longer) and therefore serves a higher number of shipments. As shown in the previous 
section, as arrival rates increase after a critical point, a carrier can charge higher prices regard-
less of what the competitor is doing.  
 
In first price auctions reinforcement learning and fictitious play can be used. The latter uses 
more information than the former. Therefore, it is expected that a carrier using fictitious play 
must outperform a carrier using reinforcement learning. Figure 10 shows the relative perfor-
mance of Fictitious Play (FP) and ARL after 500 auctions. The ARL player is the same as in 
figure 9. The FP carrier divides the possible competitors’ bids in 15 intervals (from 0.0 to 1.5 
in intervals of width 0.1) and start with a uniform probability distribution over them.  
 
Clearly the FP carrier obtains higher profits across the board. The usage of a competitor past 
bidding data to obtain the bid that maximizes expected profits clearly pays off. In this case 
carrier ARL tends to bid less and serve more shipments, again, the difference diminished as 
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the arrival rate increase. In the TM context even a simple static optimization provides better 
results than a search based on reinforcement learning. Not surprisingly, more information and 
optimization lead to better results. Therefore, if there is maximum information disclosure, 
carriers will choose to play fictitious play or a similar bidding strategy, especially since the 
complexity of FP (myopic) and ARL are not too different.  
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Figure 9: ARL vs. RL   (RL performance base of comparison) 
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Figure 10: ARL vs. FP   (RL performance base of comparison) 

8.5 Comparing Auction Settings 
The following results describe the outcomes of TM competition with different sequential auc-
tion settings. Within the competitive no-knowledge assumptions, three basic auction settings 
are compared: second price auction with marginal cost bidding, first price auction with rein-
forcement learning, and first price auction with fictitious play. Four different measures are 
used to compare the auction environments: carriers’ profits, consumer surplus, number of 
shipments served, and total wealth generated.  
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Figure 11: Carriers’ Profit level (Second Price Auction MC as base) 
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Figure 12: Consumer Surplus level (Second Price Auction MC as base) 

To facilitate comparisons in all the four graphs that are presented subsequently, second price 
auctions with marginal cost bidding are used as the standard to measure up the two types of 
first price auction. All two carriers use SFO technologies. Figure 11 illustrates the profits ob-
tained by carriers. After the results of the previous section, it is not surprising that FP carriers 
obtain higher profits than ARL carriers. FP carriers use the obtained price information to their 
advantage. The highest carrier profit levels takes place with the second price auctions. These 
results do not alter or contradict theoretical results. With asymmetric cost distribution func-
tions, Maskin and Riley (2000) show that there is not revenue ordering between independent 
value first and second price auctions. Figure 12 illustrates the consumer surplus obtained with 
the three auction types. Clearly, first price auction with reinforcement learning (minimum 
information disclosed) benefit shippers. Unsurprisingly, figure 12 is almost the reverse image 
of figure 11. 
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Figure 13: Number of Shipments Served (Second Price Auction MC as base) 
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Figure 14: Total Wealth Generated (Second Price Auction MC as base) 

Figure 13 shows the number of shipments served with each auction setting. As expected, with 
second price auctions more shipments get served. Even in asymmetric auctions, it is still a 
weakly dominant strategy for a bidder to bid his value in a second price auction – recall that 
this property of one-item second price auction is independent of the competitors’ valuations. 
Therefore, in the second price auction the shipment goes to the carrier with the lowest cost.  
In contrast, with ARL there is a positive probability that there are inefficient assignments 
since a higher cost competitor can use a bidding coefficient that results in a lower bid. Simi-
larly with FP carriers, if the price functions are different (which is very likely since each car-
rier models the competitors’ prices), a lower cost carrier can be underbid by a higher cost car-
rier with a positive probability.  The results of figure 12 and figure 13 are similar to the in-
sights provided by the reverse auction model with elastic demand (Wolfstetter, 1999), where 
introducing higher price uncertainty decreases prices (carriers’ profits) but also decreases the 
probability of completing a potentially feasible transaction (number of shipments served). 
Figure 14 shows the wealth generated with each auction setting. Predictably, with second 
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price auctions more wealth is generated. This is not surprising since marginal cost bidding is a 
“price efficient” mechanism. As the arrival rate increases the gap in total wealth generated 
tends to close up (figure 14). Consistently, the lowest wealth generated corresponds to the 
case with FP bidders.  
 
Summarizing, under the current TM setting, carriers, shippers, and a social planner would 
each select a different auction setting. Carriers would like to choose a second price auction. If 
first price auction are used, carriers would like to have maximum information disclosure. 
More information allows players to maximize profits, though total wealth generated is the 
lowest. Shippers would like to choose a first price auction with minimum information disclo-
sure; more uncertainty about winning leads carriers to offer lower prices. However, the uncer-
tainty leads to a reduction in the number of shipments served. Finally, from society viewpoint 
the most efficient system is the second price auction. More shipments are served and more 
wealth is generated.  

 
 
 
 
 
 
 
 
 
 
 
 

Figure 15: Impact of Auction Type and Technology upgrading on Profits 

8.6 Auction Settings and DVRP Technology Benefits 
The final set of experiments looks at how auction settings impact the competitive edge that a 
more sophisticated DVRP can provide. Figure 15 illustrates the profit improvement of a carri-
er using a SFO technology over a carrier using the naïve technology. As expected, the second 
price auction better rewards a lower cost carrier. Again, this can be attributed to the lack of 
speculation about prices, which removes unnecessary speculation about competitors.  
 

9 Conclusions 
 
A competitive TM setting was analyzed to determine the likely sources of bounded rationality 
and the context of carriers’ decision making process. Given the complexity of the bid-
ding/fleet management problem, carriers can tackle it with different levels of sophistication. 
The complexity of the different bidding problems that a bounded rational carrier can be faced 
with was analyzed and classified.  In the framework presented, sequential auctions can be 
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used to model an ongoing transportation market, where the effect of carrier competition, 
knowledge and information availability, dynamic vehicle routing technologies, computational 
power, and decision making processes can be studied. This is an alternative framework to 
traditional models of behavior, equilibrium, decision-making, and analysis for transportation 
carriers. Decision making and behavior is defined as an expression of the goals and bounded 
rationality of the carrier as the type of pricing/bidding/fleet management problem that the car-
rier is able to tackle. Table 1 coupled with the appropriate learning mechanisms (for example 
reinforcement learning and fictitious play when they suit) embody the approach to carrier be-
havior proposed in this research.  
 
Reinforcement learning and fictitious play, two learning methodologies for this type auction 
setting and assumptions are introduced and analyzed, as well as carrier learning and behavior-
al assumptions. Carrier’s behavior is compared with the behavior of a machine. Computation-
al experiments indicate that auction setting and information disclosure matters. Maximum 
information disclosure allows carriers to maximize profits at the expense of shippers’ con-
sumer surplus; minimum information disclosure allows shippers to maximize consumer sur-
plus but at the expense of lowering the number of shipments served. Marginal bidding in 
second price auctions remains the most efficient incentive compatible auction mechanism, 
producing more wealth and more shipments served than first price auctions. It is demonstrated 
that under critical arrival rate there is no incentive to use bidding factors (no deviations from 
static marginal cost bidding).  Furthermore, second price auction TM is the mechanism that 
provides the highest reward to carriers with more sophisticated DVRP technology.  
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