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Chapter 1: Introduction

1.1. Motivation

Information and communication technologies (ICT) are transforming key
market processes and the very architecture of the markets. The Internet and
especially auctions have emerged as an effective catayst to sell/buy through
electronic marketplaces. Transaction time, cost and effort can be dramatically
reduced, creating new markets and connecting buyers and sellers in ways that were
not previously possible (Lucking-Reily, 2001). Inexpensive, ubiquitous, and reliable
communication networks are allowing a physical decentraization of the decision
making process while connecting market agentsin real time.

Network business to business transactions have reached $2.4 trillion,
fulfilling early growth forecasts (Mullaney, 2003). This growth is partly supported by
the increasing use of private exchanges, where a company invites selected suppliers
to interact in area time marketplace, compete, and provide the required services. A
report published in mid 2002 estimated that by June 2003, 15 percent of al Fortune
2000 companies would have set up private exchanges (Hoffman, 2002). Furthermore,
the same source indicated that an additional 28 percent of all Fortune 2000 companies
planned to implement a private exchange by the end of 2003. At the moment of
writing (March 2004) these figures have not yet been confirmed, however the
dominance of business to business transaction in United States (over 93%) has been

recognized (UNCTD, 2003).



The changes that ICT could bring to companies strategies and market
structures have been examined from a broad perspective. As early as 1987, Ma one et
al. (1987) predicted that reducing coordination costs (while holding other factors
constant) should increase the proportion of economic activity coordinated by the
markets. Factors that favor electronic market systems include the simplicity of the
product description, the adoption of common standards, and access to multiple
potential suppliersin the marketplace.

Other authors suggest the opposite, namely that widespread availability of
ICT will reduce the number of suppliers and foster long-term cooperative
partnerships (Clemmons, 1993). These two opposite views respectively lead to the
market model or to the emergence of hierarchies. Compromising views have also
been suggested (Holland, 1994), specifically that organizations gain the benefits of a
controlled and known hierarchy, while aso retaining an element of market
competition to gain efficiency.

The transportation and logistics sector has also been affected by the recent
technological advancesin ICT (Regan and Golob, 1999). Among many changes, it is
only recently that ICT has started to modify the way contracts are negotiated, by
enabling demand and supply to be matched dynamically through online market
mechanisms. Important changes have been taking place in the structure of the
transportation market, with the development of auction and load matching markets for
transportation services, in the form of Internet sites that match shipments (shippers

demand) and transportation capacity (carriers offer). The effect and impact of these



changes on a 585 hillion dollar industry (American Trucking Association, 2003) are
still unraveling.

Transportation auctions are still arelatively recent phenomenon, characterized
by rapid change and fast development. There is a large number and variety of online
markets as detailed by Tankersley (2001) and Huff (2002). This type of market has
not yet reached maturity as indicated by the significant number of start-ups, mergers,
consolidations, and constant evolution and changes in the services offered to shippers
and carriers. Appendix A containsalist of freight-matching services.

This dissertation explores how carriers compete in a transportation
marketplace and studies the performance of a marketplace under different
supply/demand conditions, auction formats, and carriers’ behavioral assumptions. In
this dissertation the type of marketplace where carriers compete is a spot truck-load
(TL) procurement market using sequential auctions. Herein, for the sake of brevity
this type of marketplace is referred as the TL procurement market (TLPM) problem
or simply TLPM.

This chapter is organized as follows: section 2 positions the TLPM problem
under study in the context of shipper-carrier procurement relations. It also surveys
relevant literature. Section 3 provides a general definition of a TLPM. Section 4
presents the research context and genera approach to tackle the TLPM problem.
Section 5 details the research objectives and contributions. Section 6 explains the
rational behind the dissertation organization. It aso presents the outline of the
dissertation. Section 7 delves into the notation convention to be used throughout this

research.



1.2. Shipper-Carrier Procurement Structures

Online markets are just one way to organize trading and resource allocation
among carriers and shippers. In the continuum from marketsto vertical hierarchies (in
which al activities are performed internally), shippers and carriers can meet under a
wide array of relational structures. All these structures share a basic functionality:
shippers can procure transportation services. The cost and characteristics of the
provided services are dependent on the shipper procurement strategy and needs, how
prices are negotiated, and the efficiency of the fleet operation.

The span of shipper/carrier relationships is depicted in Figure 1. The different
structures range from vertical integration (on the left) to spot markets or public
exchanges (on the right). Long term contracts and private exchanges are located
between vertical and spot markets. While plethora of procurement arrangements
between shippers, carriers, third party logistic (3PL) companies, and brokers are
possible, the discussion is limited to the main four structures depicted in Figure 1.

Vertical integration takes place when the shipper uses a private fleet.
Ownership’s main advantage is total control over the fleet operation, therefore
guarantying direct influence over equipment availability and service quality.
However, ownership distracts resources from core activities and may result in high
transportation costs due to excessive deadheading. Conversely, in a market, shippers
must search for and transact with carriers interested in providing the demanded

services.



Vertical Long Term Private Spot Market
Integration Contracts Exchanges Brokers/Public
3PL Services Exchange
Private Fleet Core Carriers Any Carrier/Shipper

<

Figure 1 Spectrum of Shipper-Carrier procurement structures

Long term contracts with a carrier or a 3PL guarantee service while releasing
the shipper from owing/managing the fleet. Less resources are distracted from the
core company activities but control is somewhat relinquished. Service characteristics,
prices, and payment mechanisms are usually detailed in a binding contract.

Private exchanges are usually owned and maintained by asingle owner. Itisa
one-to-many environment, among a shipper and a small number of selected carriers
or 3PLs. Negotiations are no longer bilateral, they take place in the private exchange,
a private forum where carriers compete. Shipper and carriers participate in each
transaction, which may range from a single shipment to a long term contract over a
network lane/s. If severa shipments or lanes are transacted simultaneously they are
generally assigned using combinatoria auctions. Competition is increased but at the

price of owning and maintaining the private exchange.



Public exchanges or markets connect many shippers and many carriers. They
are usually owned by atrusted third party, acting as a connecting hub. Market reach is
expanded, maintenance costs are spread out among many parties, but parties aso
relinquish control over operations and transaction formats.

Along the procurement spectrum, the number of self-interested agents
involved in the market increases from one (integrated shipper-carrier) to many
shippers/carriers buying/selling services in a market (public exchange). In a similar
way, the lengths of the relationships shorten while the services provided are
increasingly becoming a commodity.

The commoditization of services provided as well as the utilization of
meaningful service standards are key factors in the development of public markets.
Search and transaction time and cost are reduced while guarantying specified levels
of service. Furthermore, bringing together many shippers and carriers creates a
positive synergy as it alows for economies of scale and scope while keeping
transaction costs low. Alternatively, if a shipper’s product/service requirements are
such that they cannot be met with standard equipment/operations, the shipper must
negotiate with a carrier or manage its own fleet in order to customize services to meet
his own special needs.

The changes and trends in shipper-carrier procurement strategies have
received a great deal of attention in the transportation and logistics academic
literature. This type of study specially flourished after legislation regarding motor
carrier deregulation was passed by the United States Congress in the late 1970s and

early 1980s. Crum and Allen (1990) report how Just In Time (JIT) inventory and



production systems and economic deregulation have impacted carrier-shipper
relations. These authors use survey data to show trends towards a reduction in the
number of motor carriers utilized by individual shippers and towards long term
contracting. A slightly different trend is reported by Lieb and Randall (1996). These
authors report a trend, mainly among big companies, towards outsourcing
transportation and logistics responsibilities to 3PLs. Crum and Allen (1997), after
comparing survey data taken in 1990 and 1996, conclude that the trend in carrier-
shipper relationships continues to move away from a transactional framework to a
relational one (from a cost based procurement to a collaboration based procurement)

Technology has also spurred changes and transformation of transportation-
logistics procurement structures. Shortly after deregulation legislation was passed,
Electronic Data Interchange (EDI) started to become available. Williams (1994)
studies and reports how EDI facilitates and fosters a seamless integration between a
shipper and group of core carriers. The internet has been widely reported as a catal yst
to foster integration of business processes in the supply chain, collaboration, and the
usage of market mechanisms (e.g. auctions) (Garcia-Dastungue, 2003).

A survey study about the adoption and usage of Internet procurement tools by
shippers was conducted by Lin et a. (2002). That survey indicated that 60% of the
shippers use the internet to procure transportation services (phone usage was tallied at
90%). Load matching and transportation auctions were used by 15% of the shippers
that used some transportation online service (2001 data). Another survey cited by
Huff (2002) includes results from 373 for-hire-trucking companies. More than 90% of

the respondents use phones to bid and accept loads, 40% use email, and 30% use



freight boards or exchanges (data from December 2001). Song and Regan (2001)
examine the potential benefits and costs of shifting from traditional 3PLs to online
procurement markets.

Another line of work has focused on the study of new means of price
discovery made possible by ICT advances and the advent of electronic marketplaces.
A semina work by Caplice (1996) studies combinatoria bidding over network lanes
(long term contracts). Caplice's comprehensive work focuses mainly on the design of
combinatorial auctions to reduce carriers repositioning costs. Song and Reagan
(2003) propose a fast and optimization-based bid construction strategy that carriers
can use to evaluate transportation costs. Abrache et al. (2003) propose a bidding
framework that seeks to simplify bidding complexities in combinatorial auctions
while allowing bidders to express their preferences over sets of items. Sheffi (2004)
reports on the benefits and practical applications of combinatorial auctionsin the TL
industry.

Most of the oldest and major online transportation marketplaces offer a
combination of services that encompass a large portion of the procurement continuum
(eg. NTE (www.nte.com), BestTransport (www.BestTransport.com), and
LeanLogistics (www.LeanLogistics.com)). As an example, the LeanLogistics
Transportation Marketplace consists of three market formats: (1) ContracTender (1:1)
electronically tenders a load to a core carrier, based on specific rules, with a
previously negotiated contract rate attached. (2) Private Spot Market (1. Many)
electronically tenders aload to the shipper's carrier base (or a subset) simultaneously.

The shipper could use the contract rate as a base price and receive bids from core



carriers. The Private Spot Market has a dynamic set of rules that can vary by product,
by region, by division, and over time. (3) Exchange (Many: Many) electronicaly
tenders loads from many shippers to many carriers for improved access to the best
load opportunities and capacity available (expanded search capabilities).

Work in the area of eectronic transportation procurement has so far focused
on contracting issues and trends in the design and solution of combinatorial auctions.
Even though the items being auctioned can range from long term contract services
(over network lanes) to a sequence of one-time shipment auctions, issues related to
spot markets or the usage of sequential auctions in a transportation context have not
yet been explored. Furthermore, there appears to be no published work of a
fundamental, scholarly or methodological nature specifically dealing with
procurement of truckload (TL) services using sequential auctions (spot market).

In the context of the procurement spectrum (Figure 1) the range yet to be
explored is the area between private exchanges and public marketplaces (especially
with real time or sequential operation). This procurement range is characterized by
short term and frequent transactions (spot market), two or more carriers offering
transportation services, and one (private exchange) or several shippers (public
exchange) requesting transportation services. Many types of procurement
arrangements can be found in the described range. The next section will delineate the

type of market to be studied herein.



1.3. Spot Truck-load Procurement Market using Sequential Auctions

Many Internet-based transportation marketplaces have emerged to serve the
transportation industry, each offering awide variety of services. These services range
from load posting boards, cargo matching, and auctions, to the procurement of
transportation equipment, parts and systems for logistics and supply chain
management (Wolfe, 1999).

The transportation marketplace to be studied enables the sale of cargo
capacity, based mainly on price yet sill satisfying customer level of service
requirements (e.g. shipment time window).

A diversity of market timings may exist. In the cases where demand can be
anticipated (days, weeks, or months ahead), forward markets are used. Forward
markets allow for balancing of both power and storage equipment. This alows (@)
shippers to hedge against demand/supply fluctuations and (b) carriers to increase fleet
operational efficiency.

Spot markets are useful to deal with unanticipated demand or supply shocks.
Unanticipated demand may be originated by the increasing number of companies
(especidly  manufacturing)  adopting  customer-responsive,  made-to-order
manufacturing systems (Dell Computers exemplifies this trend). Though a diversity
of market timings may coexist (i.e. the aforementioned LeanL ogistics marketplace),
the type of market to be studied herein is solely restricted to spot markets.

The market is comprised of a shipper (private exchange) or set of shippers
(public exchange) that independently call for TL procurement auctions and the

carriers that participate in them. Without loss of generality, it is assumed herein that
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shipments are generated independently by a set of shippers. Prices and allocations are
determined using a reverse auction format (to be defined shortrly), where shippers
post loads and carriers compete for them (bidding). A set of shippers generates a
stream of shipments, with their corresponding attributes. Shipment attributes are
defined as al the shipment characteristics that can affect the cost or likelihood of
being serviced (e.g. arival time, origin-destination, delivery time windows,
reservation price, etc.).

Reverse auctions that comprise a buyer and several sellers are used in the
TLPM. Theterm “auction” usually refers to the case that involves a seller and severd
buyers. The term “reverse” is added because sellers (carriers) bid instead of buyers
(shippers); prices are bid down instead of up. In “reverse auctions’ sellers have a
production or service costs, while in “auctions’ buyers have a vauation of the
object/service to be purchased. Fortunately, models and intuition derived for most
“auctions’ can be easily reversed and applied to “reverse auctions’ and vice versa
(Rothkopf, 1994a). Throughout this dissertation, the words “value’ or “vauation”
imply the usage of an auction while the word “cost” imply the usage of a reverse
auction. ). Throughout this dissertation it is implicit the usage of reverse auctions
when referring to or analyzing a TLPM.

Auctions are performed one at a time as shipments arrive to the auction
market. It is assumed that auctions take place in a private exchange. Furthermore, a
stable set of pre-screened or selected core carriers participate in each and every
auction. Therefore, each and every carrier participates in a sequence of one shipment

auctions. When an auction is called, carriers do not know with certainty, neither when
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the next auction will be called, nor the characteristics of the next shipment to be
auctioned.

The auctions are assumed to operate in rea time: transaction volumes and
prices reflect the status of demand and supply. Auction announcement, bidding, and
resolution take place in rea time, thereby precluding the option of bidding on two
auctions simultaneoudly (the likelihood of two auctions being called at the same time
IS zero).

The items to be auctioned in the market are restricted to TL shipments. A
characteristic of TL carrier operations is that trucks do not follow regular routes.
Trucks travel from shipment origin to destination without any intermediate stops
(there is no shipment consolidation). A significant proportion of a carrier’s costs is
due to repositioning of empty vehicles (deadheading or empty distance) from the
destination of one load to the origin of the next load to be served. Given that carriers
operate in an uncertain and dynamic environment, deadheading costs are never
known with certainty.

This type of TL sequential market is suitable for shippers who are required to
interact with multiple carriers over time. The sequential nature of the auctions mirrors
in some degree the demand for transportation services, which is a derived demand.
This derived demand originates over time as shippers fulfill new orders or replenish
stock.

Shippers are assumed to be non-strategic agents. Thisimplies that they do not
speculate on the arrival or reservation price of their market postings. Shippers are

assumed to know the exact value of the reservation price (the highest price a shipper
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iswilling to pay acarrier for serving a given shipment) of their shipment as afunction
of its attributes (origin-destination, commodity type, stock out costs, time window,
etc.). Shippers achieve a profit (saving) when paying less than the reservation price.
Shippers regject bids that exceed the reservation price.

The dynamic interaction among a stable set of carriers creates a public history
and environment that enables learning, the evaluation of current actions future
consequences, and the implementation of evolving strategies. Thereis arich gamut of
possible carrier behaviors in the proposed TLPM. Different levels of rationality and
cognitive capabilities are employed in this dissertation, which are specified as needed.
Section 6 (in this chapter) broadly illustrates how these levels of rationality are used.
Chapters 5 and 6 study carriers' behavior as a function of their cognitive and learning
capabilities.

This section has defined the genera characteristics of the market to be

studied. The next section presents the research approach.

1.4. Research Context and General Approach

Markets, especially auctions, are a powerful socia information-processing
mechanism. They are useful for the social construction of value; they provide a
formidable set of tools for price discovery. McAffee and McMillan (1987) define
auctions as market institutions with an explicit set of rules determining resource
allocation and prices, based on the bids from the market participants. In a more
genera way, auctions can be defined as any well defined set of rules for determining

the terms of exchange of some good or service for money (Wurman, 2002).
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The design of an auction requires the precise specification of a set of rules.
These rules determine an auction model, the system by which bidding is conducted,
how information is revealed, how communications are structured between buyers and
sellers, and how allocations and payments are settled. The outcome of the auction
strongly depends on the set of rules used. This study will not deal with the design of
an auction, the details regarding how the process is conducted, or how information is
processed. Rather, it will use existing standard auctions mechanisms (e.g. second
price auction) and analyze their performance in a TLPM context as a function of
information revealed. Considering a given set of rules (rules that include how
information is revealed), this dissertation looks into how exogenous (to the TLPM)
factors affect the performance of the system. The exogenous factors to be considered
include supply/demand patterns, carriers' fleet assignment technologies, and carriers
behavior.

The decision problem that a carrier faces is strategic in nature due to the inter-
dependency among competitors' bids, costs, and profits. Game theoretical anaysis of
auctions can be quite challenging and often intractable. In the proposed TLPM
carriers face a highly complicated decision problem. Furthermore, sequential auctions
with bidders with multiunit demand/supply curves, remains intractable (Krishna,
2002). However, this is not the only source of complexity. In the TLPM context,
adequate fleet management and bidding entails estimating the shipment service cost
and assigning shipments to vehicles. These are NP hard problems (vehicle routing

problems with time windows). Additionally, in a dynamic environment, the decision-
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maker has to consider future impact of current decisions, and update policies or
strategies as new information becomes available.

Closed analytical solutions for this complex carrier decision problem would
require many simplifications that could compromise the validity of the results.
Therefore, computational experiments and simulation are used as needed to enhance
and extend simpler theoretical models. Furthermore, simulation is used to study the
dynamics of carriers behaviors and interactions in controlled and replicable
experiments.

This dissertation deals with both the shippers and carriers perspective.
Shippers are concerned about service levels and prices available in an auction market.
Carriers focus on maximizing profits, which is hindered by competition and by
requirements to provide a suitable level of service. The two perspectives are strongly
intertwined, and will be examined concurrently through the same conceptual
framework.

This dissertation does not consider the market operator or auctioneer’s
perspective; i.e. the profits of the entity running the auction site, the profitability of
the web site, etc. Similarly, the organizational aspects of delivering the auction web
site are not of primary concern. The latter might be an industry effort, a partnership,
or athird party -- these issues are only relevant to the extent that they might affect the

rules of the transactions and hence the resulting service levels and prices to shippers.
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1.5. Research Objectives and Contributions

The properties or performance of a spot TL transportation market are not
evident a priori; nor are approaches to study them. A primary contribution of this
dissertation is to initiate the study carriers behavior in an ongoing competitive
environment. Sequential auctions are the framework chosen to model and study
carrier competition. This research examines TLPM markets using sequential auctions
under different demand/supply conditions, carriers fleet management technologies,
and behaviora assumptions.

The specific goals of thisresearch are as follows:

1. Model a competitive spot market for TL procurement using sequential
auctions;

2. Analyze characteristics and complexity of sequential TL procurement
auctions;

3. Formulate the bidding problem for TLPM using sequential auctions as an
equilibrium and decision theory problem;

4. Define a benchmark to compare the efficiency of sequential transportation
marketplaces;

5. Provide amethodology to compare carriers fleet assignment asymmetries,

6. Evauate the competitive performance of vehicle routing technologies with
different degrees of sophistication under different demand patterns;

7. Propose a framework for carrier behavior in sequential auctions for
transportation procurement, where behavior is shaped by learning and

cognitive capabilities;
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8. Develop a market simulation framework to get insights into complex dynamic
aspect of the TL spot market using sequential auctions; and

9. Study the influence auction format and data disclosure on learning (fictitious
play and reinforcement learning), market performance, and technological

advantages.

1.6. Dissertation Organization

In TLPM markets, it is possible to identify two layers of interdependent
dlocations. The first layer is a public alocation, the auction layer, which is an
alocation from the set of carriersto the set of shipments (the set of shippers). Thereis
an exchange of services and money (dynamic pricing through auctions) and a first
alocation process. The second layer, a private alocation, constitutes allocation of
shipments to vehicles as determined by the carriers’ fleet management technology.
While the first layer (auctions) performance is best described by economic indicators
(e.g. prices, efficiency of alocations, etc.), the second (fleet management) is best
described by engineering indicators (empty distance, fleet utilization, etc.).

From a carrier’s point of view, these layers represent two distinct problems:
(1) profit maximization problem (choose best bidding policy) and (2) cost
minimization (best fleet assignment to serve acquired shipments). The set of skills
and capabilities (i.e. problem solving skills, software, technology, human resources,
etc.) that a carrier requires to excel in each layer are distinct, though both are
indispensable for a successful operation. Given the complexity of the bidding/fleet

management problem, carriers can formulate and solve the bidding/fleet management
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problem using different approaches and levels of sophistication. Three distinct
approaches are: game theoretical (several decision makers, strategic rationality),
decision theory (one decision maker, non-strategic rationality), and bounded
rationality (non-optimal decision maker, can be strategic or non-strategic).

These concepts (alocation layers and approaches) are used to provide the
structural organization of this dissertation (see Figure 2). After introducing the topic,
chapter 2 examines relevant auction theory, mainly considering strategic issues that
arise in sequential auctions (game theoretic approaches). Chapter 3 formulates the
entire bidding-fleet management problem still using a game theoretic approach. The
complexity and characteristics of the problem are analyzed. Chapter 4 assumes the
existence of an ideal market where bidding best policy equals marginal cost bidding.
Under this assumption, fleet management technologies are the only source of
competitive advantage. Chapter 5 relaxes the full rationality assumption of chapters 2
and 3 and presents a framework for learning and boundedly rational behavior in the
anayzed market. Chapter 6 looks at competition under different boundedly rational
behaviors.

A more detailed outline of the chapters follows. Chapter 2 presents a review
of auction theory and its relation to the present research. The chapter begins
presenting an archetypical (though highly idealized) auction model and comparing it
to TL sequential auction. Relaxations of the archetypica model are discussed,
specifically models dealing with sequential auctions.

Chapter 3 formulates the complete decision problem as an equilibrium

problem, using a game theoretical approach. The characteristics and complexity of

18



this approach are analyzed. Additionally, the validity of a full rationality assumption
and market efficiency measures are proposed. The chapter ends with an introduction
to the simulation framework and experiment design.

Chapter 4 is dedicated to studying the effect of fleet management technology
asymmetries in a competitive market. Algorithm analysis and vehicle routing
technologies literature are surveyed and discussed. The bidding problem is
formulated using non-strategic approach. A methodology to compare dynamic fleet
management technologies is introduced. Simulation results are presented and
analyzed.

Chapter 5 presents a framework to study carrier behavior in TL sequentid
auctions. Carriers’ decision making processes and bounded rationality are anayzed.
Behavior is also analyzed in relation to the auction information disclosed and decision
making complexity.

Chapter 6 analyzes the market performance under different carrier behavioral
assumptions. Reinforcement learning and fictitious play implementations are
discussed. The performance of different auction formats is studied. Simulated
scenarios are presented and their results discussed.

The last chapter presents a summary of the main findings and results as well

as suggested avenues for future research.

1.7. Notation Convention

This section presents the notation convention that is used throughout this

dissertation. Unless explicitly stated otherwise, thisis the convention used:
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Superscripts are used for carriers (players). The letter “i”is preferably used to
refer to any carrier; “ —i "refers to the set of al carriers but carrier “i”, that is, the
opponents of carrier “i”.

When the superscript is a number within parentheses, it is referring to the carrier

that occupies that position in an ordered set (e.g. an ordered set of bids). For
example arranging the bids from lowest to highest, b® is the k™ lowest submitted
bid, then b® <b® <..<b™.

Subscripts are used for shipments and time, j or k are the letters preferably used

to refer to any shipment/arrival time.
N and n are used to denote the number of objects for sale on a sequential auction
(sequential auction length) and the number of participating bidders, respectively.

Variables and constants are formatted in italics while functions are not. For
example b’ isthe bid of carrier i (area number) while b' isthe bidding function
of carrier i .

The letter 3 isused for the set of carriers, then b™ ={b',...,b"} ={b',b"'} denotes
the set of carriers bids, similarly b” denotes the set of carriers bidding

functions.
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Chapter 2: Game Theoretic Auction Literature Survey

This chapter reviews relevant game theoretic auction equilibrium models and
presents characteristics of TLPM markets. Special attention is given to sequential
auction models. This chapter focuses on literature and models that are fundamentally
game theoretical, i.e. with strategic rationa players. This chapter does not include
boundedly rational models of auctions and bidding (chapter 5 deals with boundedly
rational behavior; this chapter contains a survey of bounded rationality models).

Section 1 describes auctions as pricing mechanisms. Section 2 reviews some
basic auction terminology and notation that is used throughout this dissertation.
Section 3 discusses the assumptions of an archetypical auction model. Section 4
presents solutions to the archetypical model. Section 5 discusses the characteristics of
TL sequential auctions, characteristics that are also compared to the ones of the
archetypical model. Section 6 reviews relaxations of the archetypical model. Section

7 summarizes results and insights presented in the chapter.

2.1. Auctions as a pricing mechanism

Economic markets can be defined as “a set of products, a set of buyers, a set
of sellers, and a geographic area in which the buyers and sellers interact and
determine prices for each product.” (Church, 2000, page 601) Typical means of price
discovery are fixed pricing, haggling, and auctions. In traditional markets, where

buyers and sellers physically meet, market participants can haggle with each other
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directly (even over fixed prices) or use an auction to reach a price. In an electronic
marketplace, participation is physicaly decentralized but linked through
communications and computing processes. Auctions and fixed prices are the most
ubiquitous transaction methods used in el ectronic marketplaces. Fixed pricing reduces
transaction time cost but decreases flexibility and allocation efficiency when
compared to auctions (Sashi, 2002).

Auctions are specially useful and practical when there is uncertainty about an
object (or service) value. In such cases, an auction mechanism is used to “extract”
buyers or sellers’ valuations. If there were no uncertainty, the seller/buyer would just
transact with the buyer/seller that had the highest valuation. Speed and simplicity are
two other auction advantages, which are clearly essential in a transportation spot
market where transaction resolution time could be a significant constraint in real time
markets. These advantages are increasingly important as the difference between the
shipments' delivery time deadline and their posting time decreases. In the case of
transportation auctions, where participating shippers and carriers are physically
decentralized but linked through the market, auction simplicity facilitates
communication and transaction completion.

Non-cooperative game theory studies the behavior of agents in situations
where each agent’s optimal choice may depend on his forecast of the choices of his
opponents. From a modeling perspective, game theory formulations of auctions
formally capture market competition and strategic interactions. These auction models
recognize that individuals /companies behaviors are affected by the presence of

competition. Auction models try to replicate the behavior of real world companies
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and decision makers (ideally successful ones), who formulate strategies with a keen
awareness of their market competition, and react proactively to potential competitive
responses.

Game theory makes explicit and highly restrictive assumptions about the
behavior of agents in a game (in this dissertation, bidders in an auction). These
assumptions include the rationality of the players, common knowledge, and
unbounded computational resources. Agents' rationality (typically) follows the von
Neumann-Morgenstern (1953) preference axioms. Something is common knowledge
if al game players know this information; know that the other players are aware of
this information; and so on ad infinitum. This “something” could be a bidding
strategy, the structure of the game, agents characteristics, etc. Any strategy has to go
through this process to reach equilibrium. Unbounded computational resources are
necessary in games where a player perfectly needs to simulate his own behavior at the
same time as he simulates that of his opponents, ad infinitum.

Despite these limitations, game theoretical anaysis provides insightful models
in awide variety of strategic situations, ranging from nuclear deterrence (international
relations) and voting in Congress (political science), to labor-labor management

relations and auctions (McMillan, 2001).

2.2. Basic Auction Terminology and Concepts

Different auctions produce different outcomes. There are two main
guantitative performance measures used to evaluate auctions: (@) revenue and (b)

efficiency. Revenue is the expected price or income that a seller would obtain or the
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expected price that a buyer would pay (reverse auctions). Efficiency does not
explicitly consider prices but rather how the object/service is allocated. An auction is
efficient if it allocates the object/service to the buyer/seller with the highest/lowest
vauation/cost. While the first performance parameter takes into account the
buyer/seller point of view, the second performance parameter takes into account
society’s point of view.

The relationship among buyers vauations (auctions) or among sellers’ costs
(reverse auctions) has important strategic implications. This relationship is commonly
used to classify auction models. Two extreme and opposite relationships among
bidders' valuations exist: these are usually called private values and common values
assumptions, introduced in the auction literature by Friedman (1956) and Capen et a.
(1971) respectively.

Bidders have private values (costs) when each bidder knows its own value
(cost) of the object at the time of bidding (other bidders’ valuations does not influence
its value or cost). This value (cost) is the utility (disutility) that the bidder itself
obtains from the consumption, use, possession or service of the auctioned item.

Bidders have common values (costs) when each bidder (by itself) does not know
the value (cost) of the object at the time of bidding because other bidders' valuations
and quality assessments influence its own valuation. Furthermore, the object has a
unigue true value. An archetypical common vaue example is the auction of
underground oil property rights where (a) each bidder has an estimate of some sort
(i.e. expert’s estimate or tests results); (b) the other bidders posses extra information

(additional estimates or different test results) that affect the value that a bidder
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attaches to the object; (c) the true value of the object is the same for al bidders (the
amount of oil to be extracted is the same for all bidders). Another classic example is
the auction of an object which is bought with the intention of reselling it shortly after
the auction (i.e. stock in the stock market)

Intermediate cases between private and common values (costs) assumptions are
called interdependent values (costs) assumption. The relationship among buyers
valuations (or sellers costs) can be expressed in mathematical terms. Let
3={1,2,...,n} betheset of biddersand &' denote the private information that buyer

(seller) i possesses about the value (cost) of the item being auctioned. Then, the cost
¢ for bidder i isafunction of:
¢ =f(6") (Private costs assumption)
¢ =f(6',...,6M (Interdependent cost assumption)

¢ =c' =1(6",..,0") Vi, je{1,2..,n} (Common cost assumption)

2.2.1. Strategic Equivalence among Auctions

In the ascending English auction, the auctioneer raises the bids until all
bidders but the winner are eliminated. The winner pays the price of the last bid. In the
Dutch auction the auctioneer lowers the bids until a bidder claims the object. The
winner pays the price of the last announced bid.

In first and second price sealed bid auctions, all bidders submit a sealed bid. In

both cases the highest bidder gets the object. However, in the first price auction the
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winner pays the amount of his bid, while in the second price auction the winner pays
the amount of the second highest bid.

The strategic equivalence between the Dutch and first price auctions can be
easily established. In both auctions the bidder decides how much to bid for or clam
the object without receiving any signa from the other bidders. At the moment of
bidding, the bidder does not know competitors aready submitted/about to be
submitted bids. If a bidder knows a competitor’s bid it implies that the auction is
already over. If the strategy space as well as the information available to the bidders
is the same in both auctions, the payoff functions and equilibrium outcomes are
equivalent.

The English auction and the second price auctions have in common the fact
that the winner pays the second best bid. Thisis explicit in the second price sealed bid
auction. In the English auction it is implicit. In this auction bidding stops at the price
set by the second best bidder. Therefore, in either case the price paid by the winner is
exclusively determined by rivals bids. However, prices paid in each auction are not
aways equivalent. In the interdependent or common value (cost) case the two
auctions are not strategically equivalent.

Two conditions must be met to have dissmilar outcomes. (a) bidders have
interdependent or common values, and (b) in the English auction bidders can observe
prices at which bidders drop out. Outcomes are dissimilar because competitors bids
carry relevant information about the object valuation. However, in both cases, bidders
have the (weakly) dominant strategy to bid up (down) to an amount equal to the

current best estimation of their own true valuation (cost). The fact that there is
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information revelation in English auctions may help to explain why they are so
widely used. Bidders have a chance to update their valuations as the auction evolves,
which in turn may drive bids up (Krishna, 2002).

Outcomes and auctions are aways equivaent in the private value case.
English auctions with static proxy bidding are also strategically equivalent to second
price sealed auctions. Proxy bidding occurs when an automated bidding agent bids on
behalf of the bidder, as prices go up (down), up to the bidder’s reservation price. In
static proxy bidding the bidder sets his reservation price before the auction starts
(reservation prices cannot be updated during the auction).

The auction formats used in this dissertation are limited to first price seaed
bid auctions and second price sealed bid auctions. Given the strategic equivaence
discussed in this chapter, the results obtained automatically extend to Dutch and

English auctions with static proxy bidding respectively.

2.3. The Symmetric | ndependent Private Values M odel

This section reviews the assumptions and solution of the symmetric
independent private values (SIPV) model, which is one of the simplest and most
comprehensively studied auction models (Wolfstetter, 1999). This model is usually
used as a benchmark in auction theory. In this dissertation this model is useful to
illustrate the working of game theory in auctions and to serve as a starting point to

characterize TL procurement sequential auctions.
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2.3.1. Model Assumptions

The first six assumptions are exclusive to the SIPV model. The rest are

implicitly used or assumed in the subsequent game theoretic formulation and solution

of the model. Thisisalist of the main assumptions of the SIVP model:

[ —

7.

8.

. Oneindivisible object is being auctioned;

Severa bidders (more than one) compete for the object;

Complete symmetry among bidders (all bidders are identical);

A bidder’ s valuation (cost) is only known to himself (private value);
Bidders' vauation (costs) are identically independently distributed (iid);
Bidders' and seller are risk neutral;.

There is a symmetric Nash equilibrium in increasing bidding functions,

Valuations (costs) are drawn from continuous and differentiable distributions;

The following items are all common knowledge:

0.

Bidders are rationa (rationality assumption);

10. Therules of the auction;

11. Private information probability distribution functions;

12. Fixed number of bidders;

13. Thereis no uncertainty about bidders’ participation;

14. Seller’ sreservation price is zero;

15. No fees or participation costs, losers do not pay anything;

16. No budget constraints;

17. Bidders have no uncertainties about their private values; and
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18. Time is not an issue (time at which the auction takes place or resolution time

does not affect results or valuations).

2.3.2. Game Theoretic Solution to the SIPV M odel

Since vauations are private information and bidders are assumed to behave
strategically, the SIPV model is formulated as a non-cooperative game under
incompl ete information.

There are n>1 potentia buyers and an object for sale. Let 3={1,2,...,n} bethe
set of bidders and &' denote the private information that buyer i possesses about
the value of the item being auctioned. If bidders valuations {é',...,60"} are
identically independently distributed (iid) and uniformly distributed on the support

[0,1] then there is a unique symmetric equilibrium bid functions b :[0,1] - R"
b (9) = (1— 1) 0 (Dutch and first price sealed bid auction)
n

b'(0)=6 (English and second price sealed bid auction)

2.3.2.1. First Price and Dutch Auctions

The solution to the first price auction presented here is adapted from
Wolfstetter (1999). Suppose bidder i bids the amount b', and each and every
competitor bidder bids according to the strictly monotonic increasing equilibrium

strategy b (6) . Theinverse bidding function is denoted B(b) =A(b (8)) =(b (6)) ™.
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Using the symmetry assumption, bidder i wins the auction if and only if all
rivals valuations are below S(b') .Ties have zero probability (continuous valuation
distributionsand b’ () is strictly monotone increasing).

The probability density function of the private value distribution is

denoted f(x), the cumulative density function is F(@) = J' f(X) dx. The probability

x<[0,0]

of winning when bidding an amount b and competitors play bidding equilibrium
function b’ (8) is p(b)=F((b) ()" =F(B(b))"" (if the bidding function is
reversible and private values areiid).

In equilibrium, the bid b' must maximize the expected utility:

n(b',6') =p(b') (0" —b') . Thefirst order condition (FOC) is:

%n(bi ,0)=p[©) (@ -b)-p®)=0 (differentiability and concavity
assumptions). Due to symmetry the superscript can be dropped. Replacing € = £(b)
(by definition) and £(0) =0 (border condition):

(n-Df(s[0))(B(b)-b)s'(b)-F (b)) =0

In the uniform distribution is assumed for the private values:

F(5(b)) = 4(b) , then,

(n-1)(5(b)-b)s'(b)-L(b)=0

This differential equation has the solution f(b) =[n/(n-1)]b, solving for the

optimal bidding function:

b (0) = (1- 1} 0
n
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The equilibrium expected price can be easily obtained by introducing the

highest order statistic of the entire sample of n valuations in the bidding function.

Then,
ov = %1 (k™ order statistic uniform distribution with support [0,1])
n
* _1
Elb' (0™)] ==
[b (6™)] 1

2.3.2.2. Observationsof First Price Auction Solution

The equilibrium bidding strategy and prices are dependent on the amount of
competition in the market. As expected, when the number of bidders grows the
expected price fetched in the aucton also grows. Therefore, a seller benefits while the
buyers are worse off with competition.

On the technical side, the derivation of a closed analytical equilibrium bidding
formula has severa essentia requirements. a well behaved probability density
function (continuity, differentiability, and easy to work with and few parameters), an
increasing bidding function, and a solvable differential equation. Game theoretic
models of auctions are in genera very difficult to solve mathematically. This
mathematical complexity usually leads to the formulation of models that make
extremely strong simplifying assumptions (Rothkopf, 2001).

On the behavioral side, the symmetry, rationality, and common knowledge
assumptions made about the bidder are extremely restrictive. Symmetry implies that
no bidder is known to have an advantage. Furthermore, no bidder believes that he is

in an advantageous or disadvantageous position with respect to the other bidders.
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Common knowledge implies that every bidder possesses exactly the same public
information about the others. All bidders model other bidders private values (costs)
in exactly the same way and analyze the strategic situation in the same rational way;

rationality that leads to a Nash-Bayes equilibrium.

2.3.2.3. Second Price and English Auctions

In a second price sealed bid or English auction with private values truthful
bidding is aweakly dominant strategy. In mathematical terms: b () =6

This bidding strategy survives the elimination of weakly dominated strategies
as shown first by Vickrey (1961). It is easy to show that a bid equal to the valuation
of the object weakly dominates any other bid. Asin the previous auction, let’s assume
that a bidder has a valuation 8 . The best of the competitors bid or value is denoted

as"s".Let "b" denote any possible bidding value such that b= & . Then

(@ Assume b>6

Profit obtained from bidding

b 0
s<# <b (6-9>0 (6-9)>0
f<s <b (0-b)<0 Zero
f<b <s Zero Zero
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(b) Assume b<@

Profit obtained from bidding
IF

b 6
s<# <b (6-9)>0 (6-9)>0
0<s <b Zero (6-s)>0
f<b <s zero Zero

In the first case, overbidding may result in having a negative profit
(underlined). Bidding the value of the object profits cannot be negative. In the second
case, underbidding may result in a profit of zero; bidding the value of the object
results in a positive profit (underlined). There are cases where the profits are
equivalent, either (9—s)>0 or zero. This is why bidding the true value weakly
dominates other values.

The expected equilibrium price is equal to the n—1 order statistic of the given
sample. This sample consists of n realizations from the uniform distribution with
support on [0, 1]. The expected price is equal to the one obtained in the Dutch-first
price auction:

* _1
E[b’ (0" )] =E[0" ] = ==
b0 )] =El0" ) =2

However it is not the only equilibrium, there are a multiplicity of asymmetric

equilibria (Wolfstetter, 1999). For example:



b (0) =1, b*(0) =0 for k #iandi,k €{12,..., i}

2.3.2.4. Observations of Second Price Auction Solution

As in the other auctions (Dutch and first price) the equilibrium bidding
strategy and price are dependent on the amount of competition in the market. As
expected, when the number of bidders grows the expected price fetched in the auction
also grows. Therefore, the seller benefits while the buyers are worse off with
competition.

In general, sealed second-price and English auction bidding functions are
conditional expectations (i.e. interdependent values), which can yield closed-form
expressions for sufficient simple underlying distributions (Rothkopf, 1994b). The
SIPV model, with values being uniformly distributed, provides an unusually ssmple
equilibrium bid function.

Behaviorally, the rationality requirements for this type of auctions are less
restrictive than in the Dutch or first price auction. Thisis plainly evident in the private
value (costs) case, where bidders are required to just estimate and bid their best
estimation of their values (costs). Competitors' beliefs or vaue (cost) distributions are
not relevant in SIPV model. Unfortunately this characteristic does not apply in multi-
unit sequential auctions (Sandholm, 1996).

It was shown that there exists an asymmetric equilibrium. In this case it is
easy to rule out the “plausibility” of this type of asymmetric equilibrium. However, it
is not so easy in more complex models. A strong criticism of game theory is directed

specifically at its inability to reach a unique equilibrium. In many games where
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multiple equilibria may exist, how can theory convincingly explain how players
would agree on playing just one out of the possible equilibria? This and other
criticisms to game theory are revisited in chapter 5, as part of the motivation for
proposing a bounded rationality approach.

A notable result is that the four auction types lead to the same level of
expected revenue and efficiency. This is usualy caled the “revenue equivaence’

principle, which does not usually hold outside the SIPV model.

2.3.3. A Reverse Auction Model

This section shows the results of a reverse auction model, with one buyer and
several sellers. The notation and assumptions used are all the same as in the previous
SIPV mode but the reservation price of the buyer is known to be equal to one. In the

Dutch-first price auction the equilibrium bidding function is:

b (9) :(1_1j 9+£
n n

The expected price reached is:

. 2
el (0¥)] =——

As expected, this is the reverse case of the analyzed SIPV model with one
seller and several buyers. The sum of the expected pricesin the first price auction and
reverse auction models sums to one, for any number of bidders (i.e. with two bidders
expected prices are respectively 1/3 and 2/3 respectively). More competition leads

to more aggressive bidding which leads to lower bids. This ssmple model can be

viewed as alink to oligopoly theory (Wolfstestter, 1999). The structure of the model
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is similar to an incomplete information Bertrand oligopoly game with inelastic
demand and n> 2identical firms. A Bertrand game where each firm has constant unit
costs €' (which is private information) and unlimited capacity. If it is common
knowledge that companies’ unit costs are iid uniformly distributed with support [0,1],

then the oligopoly gameis similar to a Dutch auction (lowest price wins the market).

2.3.4. Extension to Price-elastic Demand

If the reservation price of the seller (denoted asr) follows a uniform
distribution with support [0,1] , then the equilibrium bidding in the Dutch-first price
auctionisasif there was an extra bidder:

b*(e) :(1—ijl9+i

n+1 n+1
Intuitively, pricing is more aggressive if demand responds to price. Of course
if the auction were second price, bidding would not be affected, since b (6) =6

independently of how many bidders there are.
In this case first price auction leads to lower expected prices, however it aso

leads to inefficiency. With positive probability there are valuations where

0Y <r(where 0® is the lowest of the cost redizations) and

oY <r <(1——1 }9@ st
n+1 n+1

This is an inefficient outcome that would be avoided using a second price
auction. It is clear that maximum efficiency and lowest expected cost for the buyer

cannot be obtained using the same auction type. This simple example shows that a
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glight departure from the SIPV model leads to contradictory results. Unfortunately,
thisis a common characteristic in auction theory, where minor relaxations of a model

can lead to unexpected or suspiciously dissimilar results (Rothkopf, 1994b).

2.4. Characteristics of Spot TL Procurement Market using Sequential

Auctions

The most influential (and obvious) characteristic is the “sequential” aspect,
which introduces a new dimension (time). In general, the sequential aspect has four
distinct impacts (a) bidding is affected by the auction data already disclosed (i.e.
carriers form expectations (beliefs) based on past data, such as bids, allocations, etc.);
(b) the current bid or action will affect the future evolution of the bidding process; ()
unlike a single object auction, in TL sequential auctions, the cost of serving one
shipment is uncertain and in genera this cost cannot be correctly estimated without
considering the other shipments already auctioned or to be auctioned; and (d) carrier
available capacity is neither static nor unlimited. Section 3.3 in chapter 3 deals with
the complexity of the auction-fleet assignment problem; it further analyzes how the
fact of being “sequential” aspect affects the complexity of the problem.

Anther important characteristic of a TLPM s that carriers do not know the
characteristics of the shipments to come. In this sense the problem can be defined as
“sequential onling”, where it is uncertain not only whether a carrier will serve future
shipments but also what the characteristic of the yet unrealized future shipments will
be. A “sequential offline” problem is one where all the shipments to be auctioned are

known before the auction starts.
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Other characteristic of a TLPM are listed below:

1. Shipments being auctioned are usually heterogeneous objects (i.e. some
shipment characteristics, such as origin-destination or the arrival-delivery time
for example, aways differ).

2. Transportation services are perishable, non-storable commodities. Therefore
the timing and ordering of the auction is important.

3. Transportation supply/capacity/infrastructure is limited and highly inelastic (at
least in the short term).

4. Demand and supply are not only geographically dispersed but also uncertain
over time and space.

5. Each shipment has no standard value; auctions facilitate the price discovery
process.

6. Strong complementarities exist among the items auctioned (the value of an
item is afunction of the acquisition of other items).

7. An item’'s value (shipment) is not only strongly dependent upon the
acquisition of other items (e.g. nearby shipments) but also highly dependent
on current spatial and temporal deployments of the fleet.

8. Penalties/costs associated with late deliveries or no delivery might be severd

times higher than the cost of transportation per se.

It was already mentioned that the SIPV model is a widely studied model. TL

procurement auctions dramatically differ from the SIPV model. A detailed
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comparison of the two models, using the assumptions of the SIPV model as abase, is
presented in Table 1.

An important common element is that in both models the values and costs are
private. Why does a carrier have private costs in a TLPM? The reasoning is simple:
the cost of servicing a shipment is not dependent on competitors' private information.
A carier’s private information encompasses al the information regarding its
assignment and cost functions, fleet status and deployment, as well as the shipments

waiting to be fully serviced (this broad definition of acarrier’s private information is
used in chapter 3 to formulate the problem). Let &' and c' be the private
information and the cost of serving a given load by carrier | respectively,
then ¢' =(6') =1(6",...,0").

Competitors fleet deployment and status do not affect i's cost of servicing a

load. They can certainly affect the profit or probability of winning that load (more or
less competitive bids) but not the cost (the number of empty and loaded miles that
carrier i's fleet have to travel to serve that load). In other words, whether or not the
carrier i knows his competitors private information may affect his bid but not his
cost.

Table 1 indicates many differences between the TLPM and SIPV model.
Though models in the literature cannot cover them all, relevant relaxations of the
SIPV model are described and analyzed in the next section with a twofold purpose:
(a) describe the state of art in sequentia auctions and (b) gain intuition about the TL

auction problem.
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2.5. Extensions to the SIPV Model

The following extensions of the SIPV model are all sequential offline auction
models. Therefore, the characteristics of all the objects being auctioned are known
before the auction starts, and the auction timing does not affect bidders vauations.
Another important distinction is between two period models and N >2 period models.
The former type of models assumes bidders with a two-unit demand function, while
the latter type of models assumes bidders with a unit-demand function. Models with
three or more objects, bidders with multiunit demands, and incomplete information
about competitors costs remain intractable (Krishna, 2002).

This section reviews game theoretic sequentia auction literature. The
literature is divided in two classes (a) papers that study expected revenue, efficiency,
and equilibrium of a given model; and (b) papers that optimize either seller choice of
auction mechanism or bidder strategies in a given auction environment. The formed
are named “Economic Models’ since they are mostly formulated by economists,
while the later are called “Operations Research Models” (OR models) since they are

studied primarily by operation research and computer science researchers.
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ASSUMPTION SIPV M odel

One object
Several bidders

Complete symmetry among bidders

A bidder’ svaluation is only known to
himself (private value)

Bidders' valuation areidentically
independently distributed

Bidders' and seller are risk neutral.

There isa symmetric Nash equilibrium
in increasing bidding functions
Vauations (costs) are drawn from
continuous and differentiable
distributions

ASSUMPTION

TL Sequential Auctions

NO. Many shipmentsin a sequence of
auctions.

l[dem

NO. Carriers are inherently asymmetric
(different fleet deployment and history)
Idem. A carrier’s private cost is afunction
of his own deployment only

NO. Carriers may have different cost
digtributions (i.e. asymmetric fleet
management technol ogies)

l[dem

NO. Asymmetries and binary variables
impede it.

NO. Asymmetries and binary variables
impede it.

Thefollowing itemsare all common knowledge:

Bidders arerational (in game
theoretical terms)

The rules of the auction

Private information probability
distribution functions

Fixed number of bidders

There is no uncertainty about bidders
participation

Seller’ sreservation priceis zero

No fees or participation costs, losers do
not pay anything

No budget constraints

Bidders have no uncertainties about
their private values

Timeisnot an issue

Assumption hard to support. If rationality
is relaxed, how competitors should be
model ed?

l[dem

Assumption hard to support in a
competitive environment. Companies
proprietary information.

Idem. A private market is assumed.

Idem. A private market is assumed.

Shippers' reservation price may not be
necessarily known

[dem.

NO. There are capacity constraints that
affect strategic interactions among
carriers and costs

NO. There are capacity constraints that
affect strategic interactions among
carriers and costs

NO. Timing of auctions affect carries
costs and capacity.

Table 1 Comparing the SIPV and TLPM model
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2.5.1. Economic M odels

The first game theoretic model of sequential auctions to be published (Weber,
1983 and Milgrom, 2000) analyzes a model of sequentia identical “N” auctions with
unit demand bidders. This model introduces just one relaxation to the SIPV model:
more than one object is for sale. However, this model assumes that bidders have unit
demands, therefore if they win one object they do not participate in the subsequent
auctions. Equivaently, a bidder’'s margina value for the rest of the objects (after
securing one) is zero or negative. It is shown that expected prices follow a martingale,
i.e. bidders expected prices will remain constant on average throughout the sequence
of auctions. The prices remain constant on average because there are two opposite
forces at work as objects are being sold (1) less demand -- a reduction in competition
(fewer buyers) drives prices downward, and (2) less supply — an increment in
competition (fewer objects) drives prices upward.

The problems posed by the repeated interaction of bidders in multiunit
auctions in business to business (B2B) online markets led to a revival of sequential
auction theory in recent years. Branco (1997) finds equilibrium in an example of a
two unit sequential ascending auction where there are two types of bidders. some
bidders have unit demand functions and some bidders have super-additive demand
functions. The equilibrium is in pure strategies. In equilibrium the expected price
declines from the first to the second auction.

The importance of information transmission is studied by Jeitschko (1998),

who presents a model with two identical objects. These objects are auctioned in
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sequence to three bidders. Each bidder has a unit-demand function and his valuations
can be of two possible types, low or high (valuation). Bidders have an ex-ante
probability of having a high valuation a, which is common knowledge. Ties are
broken with the roll of a dice. The auction format is afirst price sealed bid auction in
which only the winning bid is announced. After the conclusion of the first auction,
bidders use this information to update their expectations (beliefs) regarding the types
of their opponents. The remaining bidders perform Bayesian updating of their
expectations about the competitors values after the result of the first auction is
revealed. The model shows that bidders who are aware of informational effects place
lower bids on average and hence have higher payoffs. Regardless of the outcome of
the first auction, the second price is expected to be equal to the first price.

The first model with two-unit demand bidders is formulated by Katzman
(1999), who establishes the efficiency of second price auctions when the seller is
auctioning two homogeneous objects in a sequence. Katzman uses an auction model
of incomplete information where bidders valuations are determined by two
independent draws from a twice differentiable, atomless distribution. These two
draws are ranked as high (H) and low (L). The study finds a symmetric equilibrium
where the bidding function b (H)is strictly increasing and generates a bid shaded
below the high valuation.

The primary obstacle faced when introducing multi-unit bidder demands into
amodel of sequentia auctions is asymmetry of bidder expectations (beliefs), even if
expectations are ex ante symmetric. Any symmetry is broken after the first auction,

since one bidder has won and the rest have lost. Katzman avoids this problem using a



second price auction and backward induction. The second and fina auction can be
viewed as a one-shot auction. It was shown that in a one object second price auction,
bidders have a weakly dominant strategy of bidding their valuation for the object.
Therefore, by limiting the auctions to two the asymmetry problem has been avoided.

Jeitschko (1999) analyses sequential auctions when the supply is unknown ex
ante. There are n>2 bidders and an unknown number of identical objects to be
auctioned sequentialy. Bidders have unit demands, and their vauations are
independent random variables drawn from a continuous distribution. Objects are
auctioned in a sequence of second price auctions. Jeitschko presents two scenarios. In
the first scenario, whether an object will be auctioned does not become known until
immediately before the auction for the item is about to commence. In this case, given
the supply uncertainty, prices decline as more items are put for sale. In the second
scenario, information regarding whether there are either one or two further objects for
auction becomes available before each auction. As expected, if good news is
announced (two more objects are for sale), prices decline.

Jeitschko concludes that prices depend on information regarding supply:
uncertain supply reduces the ‘option value and yields declining prices as more
objects are put for sale. However, prices increase if it becomes known that supply
falls short of expectations.

Menezes and Monteiro (1999) consider the sale of two homogenous objects
using two second price sequentia auctions. They consider that bidders have synergies
(or super-additive demand functions). Buyers' valuations are iid; the positive synergy

for owing two objects is modeled as a positive continuous increasing function of one
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object value. Synergies can be positive (the two objects are worth more as a bundle
than as separate objects) or negative (the two objects are worth less as a bundle than
as separate objects). In presence of positive synergies, prices in the first auction
include a premium and prices decline in the second auction. The opposite effect is
found in presence of negative synergies.

Jeitschko and Wolfstetter (2002) study a two object sequential auction with
two bidders, where economies of scale can be present. Prior to the first auction each
bidder privately observes his valuation for the first object, but not for the second.
There are two possible valuations for the objects: high and low. In the first auction,
both bidders have the same probability “t” of having a high valuation. After the
winner is announced, bidders privately observe their valuation for the second auction.
The winner of the first auction has a probability ¢ of having a high valuation (for the
2n object) while the loser has a probability t (with economies of scae: ¢ > t, with
diseconomies of scale: ¢ < 1). Jeitschko and Wolfstetter show that economies of scale
give rise to higher bids in the first auction, where as the converse is not true.
Moreover, first and second price auctions are not revenue equivalent. With economies
of scale second price auctions have higher revenues, whereas the revenue equivalence
is preserved in the case of diseconomies of scale.

Unlike previous models, the last “economic” model to be reviewed is one of
complete information and budget constraints. This implies that the values of the
objects and the bidders' budgets are common knowledge. With complete information
the SIVP model becomes trivial; Benoit and Krishna (2001) introduce bidders with

budget constraints in a sequential auction. They examine the revenue generated by the
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sale of two heterogeneous objects under a complete information setting under
sequential and simultaneous auctions. Depending on the nature of the relationship
between the two objects (i.e., whether they are complements or substitutes) and the
differencein their values, the optimal sequencing of the auctions may change.

An appedling insight of Benoit and Krishna's paper is that when multiple
objects are auctioned in the presence of budget constraints, it may be advantageous
for a bidder to bid aggressively on one object in order to raise the price paid by his
rival. This high price may diminish his competitor’s budget so that the second object
may then be obtained at a lower price. The same idea can be applied to a reverse
auction, with one buyer and several capacity-constraint service providers. To
illustrate how this intuition can be applied to the problem studied in this dissertation,
three examples have been adapted from Benoit and Krishna' s paper.

Example 1: Assume two shipments (A and B) sold sequentially by means of
two successive English Auctions. Two carriers compete for the shipments; both

carriers have the same costs: C, =40and C, =50. The shipper has a reservation

value of 100 for each shipment. Carrier 1 can serve both shipments while carrier 2
can serve either shipment but not both. Suppose that the object sell in the order A
followed by B.

Analysis. Being a game of complete information, the game can be solved with
backward induction (assuming that weakly dominated strategies are not played). In a
descending English auction without capacity constraints the buyer (shipper) would
have paid only $90 for having both A and B served. The profit for both carriers would

have been zero.
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With capacity constraints it is an equilibrium for carrier 1 to let carrier 2 win
the first auction with a bid of $41 (or $40+e, without loss of generality natural
numbers are used), then carrier 1 can win shipment B for $100 (carrier 2 cannot
compete after wining shipment A). In thisway carrier 1 has a profit of $50 and carrier
B aprofit of $1. The shipper pays $141 for both shipments.

It isobvious that carrier 1 isusing its market power to drive up its profits. The
order of sale isimportant too. If the order of the auctions is reversed, i.e. B followed
by A, the shipper would pay $151, carrier 1 would have a profit of $60 and carrier B a
profit of $1.

Example 2: This example is similar to the preceding one, but with different

costs: C; =40, C; =50, and C;, =90for carier 1. Costs for carrier 2

are: C5 =60, C2 =30, and CZ, =o. The shipper still has a reservation value of 100

for each shipment. Carrier 1 can serve both shipments while carrier 2 can serve either
shipment but not both. Suppose that the object sell in the order A followed by B.

Analysis: with capacity constraints it is an equilibrium for carrier 1 to let
carrier 2 win the first auction with a bid of $61 and then to win shipment B for $100
(carrier 2 cannot compete after wining shipment A). In thisway carrier 1 has a profit
of $50 and carrier B aprofit of $1. The shipper pays $161 for both shipments.

It is obvious that the assignment is completely inefficient from a “society”
point of view. The shipments are allocated to the carriers with the highest cost. Social
wealth is $90 = $40 + $50. However, inverting the auction order, first B, followed by
A, social wedlth is $130 = $60 + $70. Therefore, the ordering of the auctions affects

the efficiency of the allocations.
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Example 3: C; =40, C; =50, and C;, =« for carrier 1. Costs for carrier 2
are the same as for carrier 1. The shipper still has a reservation value of 100 for each
shipment. Neither carrier has capacity to serve both shipments. Suppose that the
objects sell in the order A followed by B.

Anaysis. In equilibrium carriers go down to $90 for the first object. The
second object is sold for $100. In this equilibrium both carriers get a profit of $50 and

are indifferent about what shipment they serve.

It was shown in the examples that capacity constraints provide incentives for
carriers to exercise market power and capacity rationing. This is possible because a
particular bidder’s payoff is affected by the remaining capacity of the competition.
Obvioudly, thisis only possible when more than one shipment is sold sequentially.

On the technical side, if the assumption of complete information about
capacities is relaxed, one should not expect the bidding strategy in the incomplete
information setting to be monotonically increasing. It was shown in example two that
there is no decreasing equilibrium regardless of the auction order. Benoit and Krishna
indicate that typical differential equation techniques used to determine equilibrium

strategies do not work under these conditions.

2.5.2. Operations Research Models
Oren and Rothkopf (1975) study optimal bidding in sequential auctions. Their
model has a distinctive (unique to the author’s best knowledge) characteristic: the

opponents explicitly adapt to the competition level. The competition level is
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characterized by a scalar. A reaction function relates bids to changes in the state of
the competition level. The base model is a common value model where bidders draw
their valuations from a Weibull distribution. The bidders develop a dynamic
programming approach to find the best bidding policy. However, the bidding policy is
not updated as the sequentia auction evolves, ipso facto the model has become static
in nature. Since the bidders account for the future impact of ther bids, as the
competitive reaction increases (competition responds harshly) bids and expected
profits increase too. A similar effect takes place when the discount factors and the
number of periods increase. The results are similar to those obtained using game
theoretic modelsin oligopoly theory (for example Maskin (1988), and Philips (1995))

More recently, Friedman and Parkes (2002) describe the challenges associated
with the design of an online sequential auction mechanism to allocate computational
resources among consumers. They specifically anayze the challenges of designing an
auction mechanism to allocate internet bandwidth when the arrival of customers is
uncertain.

Chaky et al. (2002) use sequential auctions to optimize the allocation of
(homogenous) computational resources among users. They are interested in designing
a fast and simple (from a computational standpoint) auction mechanism that
guarantees equilibrium where users (agents) report their true valuation. They propose
a mechanism that distributes users into auction pools and match them with the
available resources using sequentia auctions.

Vulcano et al. (2002) try to optimize the revenue for a sdler with C

homogeneous items. The seller uses a sequential auction, in which a seller faces a
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sequence of buyers separated into T time periods. Each group of buyers has
independent, private values for a single unit. The number of buyers in each period as
well as the individual buyers valuations is random. In this setting they prove that
revenues are higher in dynamic versions of the 1st and 2nd price auctions than a
selling mechanism using prices set as a function of time and remaining capacity.

The previous model is the game theoretical equivalent of traditional revenue
models in OR. A seller with limited products or capacity tries to maximize his
revenue using auctions. The analysis is greatly simplified by assuming that
customers appear in just one period, therefore customers do not |earn/specul ate about
prices. Likewise, buyers do not return to the system if they lose one auction.
Furthermore, buyers have unit demand functions.

Elmaghraby (2003) studies what ordering is optimal in a sequential
procurement auction of two heterogeneous jobs. The set suppliers (two or more) have
capacity constraints and two different technological costs that are assumed to be

distributed over[0,1] . Because any supplier can win just one auction, the sequence of

the auctions affects their behavior (similar idea to what was already examined in
Benoit and Krishna s paper). The ability of the buyer to select the efficient suppliers
is complicated by the presence of asymmetry in information (each supplier's
technology type is private information) and supplier capacity constraints. While the
buyer does not know the types of the suppliers competing in the auction, the buyer
assumes that knows their suppliers: common distribution function, as well as their

cost functions for each job.
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2.6. Summary

This chapter describes characteristics of TL procurement auctions, which are
compared to a basic auction model widely studied in the game theoretic auction
literature, the SIPV model. Basic auction terminology is introduced, as well as the
strategic equivalence between Dutch and first price auctions, and the strategic
eguivalence among English, proxy bidding English, and second price auctions.

Relevant relaxations of the SIVP model are presented. It is clear from the
literature review that no game theoretical model provides a redlistic representation of
the TLPM under study. However, they provide useful insights. Capacity constraints
affect carriers bidding behavior and introduce speculation in the market. Furthermore,
the models presented indicate that in general supply/demand variations affect market
prices, even in the smple SIPV model. Links between results in auction theory and
oligopoly theory also confirm these results.

The relationship among bidders and objects valuations is aso important. The
presence of economies of scale (or positive synergies) tends to increase the price of
the first object being auctioned. The opposite can be sad when there are
diseconomies of scale or negative synergies. Intuition that agrees with results
obtained in chapter 4 when analyzing fleet management technol ogies.

The SIPV model solution is explained in detail to show the number of
assumptions that are necessary to develop a mathematicaly simple and solvable
auction model. Relaxed SIPV models introduce new elements, but usually at the cost

of introducing more simplifying assumptions that make the rel axation tractable.
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This chapter provides the necessary background to formulate and analyze the
complexity of the whole bidding-fleet assignment problem in chapter 3. The intuition
developed from the presented models will also be useful in chapter 6 when the results
of competition among boundedly rational carriers are analyzed.

This chapter focused on literature and models that are fundamentally game
theoretical, i.e. with strategic rational players. This chapter does not include
boundedly rational models of auctions and bidding. Chapter 5 deals with boundedly
rational behavior and contains a survey of bounded rationality models. Chapter 4
deals with technology based competition in a TLPM, a survey of relevant literature

regarding technology and algorithms analysisis presented in chapter 4. .
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Chapter 3: Conceptual Formulation

The focus of this chapter is on providing the specific context and formal
definition of the problem addressed in this dissertation. Section 1 introduces the
problem context. The overal bidding-fleet management problem for a TLPM
problem is formulated as an equilibrium problem in section 2. This formulation is
used to illustrate the game theoretic approach to the problem. Section 3 analyzes the
complexity and behavioral assumptions of this approach. Section 4 introduces the
simulation framework and parameters that are used throughout this dissertation.
Section 5 formally introduces the concept of auctions as mechanisms. The mechanism
approach is used to define market performance measures and to introduce the concept
of truthful mechanisms that is used in chapter 4. Section 6 ends the chapter with a

summary.

3.1. Problem Context

The elements that constitute a TLPM using sequentia auctions were broadly
defined in chapter 1. The specifics of the problem are defined in this section.

Shippers are assumed to procure TL services using sequential auctions. A
fixed set of carriers bid on each announced auction. The auctioneer’s role
(marketplace) is limited to setting the auction rules, as well as specifying and
monitoring alowable communication among carries and shippers. Rules and settings

do not change once auctions have started. A TLPM is a spot market, where auctions
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for shipment service requests are taken or rejected on thefly; it is not possible to book
or reserve capacity without buying it. Future markets are not alowed (no bidding
alowed on shipments that cannot be served immediately). Carries cannot resae
already won shipments.

Shippers announce to the market time-sensitive shipment service requests and
call for auctions as needed on a continuous basis. Shipments have time windows that
must be strictly satisfied (hard time windows). Once the auction announcement has
been made, changes in the auction call or to the shipment service request
characteristics are not possible.

Given that al service quality (i.e. time windows) elements of the request are
met, a shipper pre-selects the carrier with the lowest bid. The time windows are
aways respected since (a) deterministic service (travel) times are assumed, and (b)
carriers are assumed to meet the shippers request (check for feasibility) before
submitting abid. If the payment that the lowest bid carrier should receive is less than
the shipper’s reservation value, the shipper selects the lowest bid carrier and the
transaction is completed. Otherwise, the shipper uses an aternative system to obtain
transportation services (long term contractor, own fleet, etc. paying the shipment
reservation value). Shipments that are not successfully matched do not return to the
market.

Cariers fleet management decisions are binding in the sense that past
decisions affect future costs and even constrain whether future shipments can be
served. Each carrier has a constant fleet size. Carriers serve the secured shipments by

picking up the loads at their origins and delivering them to the destinations within
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their specified time-windows. Loads are not combined as part of a tour (truckload
operation).

Carriers bid on just one shipment auction at atime, in the same order (first in,
first out) as these are arriving. The possibility of two or more requests arriving at the
same time or composed requests (one order that involves severa distinct shipments)
is ruled out. The auction process, announcement, bidding, and resolution are done in
real-time.

In order to deal with this dynamic problem a carrier has to make two kinds of
decisions: (@) bidding decisions (i.e. decide how much to bid), and (b) demand-truck
assignment decisions for the accepted demands (i.e. when and which trucks serve the
accepted demands within specified time-windows).

The main objective of the carriers is to maximize profits while managing the
fleet to satisfy the service quality requirements (time windows). This objective may
run against other performance parameters, such as serving high number of loads,
market share, or highest efficiency (low empty distance). The revenue from a secured
auction is the auction payment. The primary operating costs are proportional to the
haul-length and the distance traveled by atruck to serve it (loaded and empty distance

respectively). Fixed costs are considered aready sunk and therefore not considered.

3.2. Formulation of a TLPM problem as a Game (Equilibrium

Formulation)

This section describes the notation and theoretical concepts required to

describe (a) the strategic issues involved in bidding, and (b) the dynamic fleet
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management aspects. A sequential auction belongs to the class of dynamic games of
incomplete information. Its characterization as a dynamic game refers to the fact that
players (carriers) face each other at different stages that are usually associated with
different time periods. Sequential auctions are aso characterized by incomplete
information since players do not know with certainty the private information that
affects competitors' costs.

A sequentia auction game is defined by the auction rules (allocation/payment
functions), a set of players (carriers), a set of feasible actions (bids), a set of
sequential auctions (stages), and a set of bidders' private signals about its costs. In
addition, TLPM requires the definition of shipment characteristics, carriers
endowments (fleet size, vehicle routing technology, cost functions, etc.), and the
market/demand geographic and temporal boundaries and characteristics.

It is assumed that stages are identified with shipment arrival epochs. More
precisely, each stage or auction is fully identified by the arrival of the shipment to be
auctioned. In the previous chapter, it was noted that the auction literature by and large
assumes that costs are drawn from a stationary probability distribution. Thisis not the
case in a TLPM problem, in which history and fleet management decisions affect
future cost probability distributions. The TLPM formulation distinguishes itself from
other auction formulations in several aspects. (@) the description of items to be
auctioned (shipments) require a multi-attribute characterization; (b) costs are
functions of carriers status and vehicle routing technologies (carriers private
information); (c) history affects costs; (d) capacity constraints are linked to private

information and shipments characteristics; (e) bidding strategies are dependent on
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public and private history; (f) timing of auctions is important; and (e) it is an online
sequential auction.

The formulation presented below is intended for the strategic situation where
the operationa information is private. Consequently, a carrier has full knowledge
about its fleet status (vehicles and shipments) and its technology (how the carrier
determines the routing and costing of vehicles and shipments). However, a carrier has
uncertainty about its competitors' fleet status or technology. The formulation follows

the notation convention adopted in chapter 1, section 7.

3.2.1. Players(carriers)

There are n carriers competing in the sequential auction market place, each carrier

i €3 where 3={12,...,n} isthefinite set of players.

3.2.2. Stages/Auctions

Let the shipment/auction arrival/announcement epochs be{t,t,,...,ty} such
that t <t,,, where N e N (set of natural numbers). Let {s,s,,...,S,} be the set of
arriving shipments. Let t; represent the time when shipments, arives and is
auctioned. Each shipment has an associated reservation value, denotedv; , that is only
known to the shipper. There is a one to one correspondence between eacht, , s, and
v, forany j=1,2,..,N (i.e foreach t; thereisjustone s; and v,).

The subset of the first j=1,2,.,N arival times is denoted as T,

where T, ={t,,...,t;} , the corresponding subsets of shipments and reservation values

are denoted S; and V, whereS, ={s,...,s}and V, ={v,,..,v;} respectively. The

J
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subset of last shipmentsisdenoted as S;  ={s;,...,s;} (T;  andV, , aredefinedin

asimilar way).

3.2.3. History and Public Information

In an auction for shipments;, each carrieri eI smultaneously bids a

monetary amount b} e R. A set of bids bjj :{bjl,...,b;‘} generates publicly observed
information y;. The public information at the beginning of the auction for
shipments; is h, =(hy, ¥, ¥,,-- ¥; 1) » Where h, denotes information publicly known
to al carriers before bidding for snipments,. The elements and corresponding
attributes of y; and h, may greatly vary with the auction type and rules; therefore
they will be specified on a case-by-case basis (when analyzing a particular auction).
Once the game is over, all the information revealed to the carriersis contained in h,.
The set of al possible histories up to time t; (not including auction information for

shipments; ) isH;.

3.2.4. Private Information

Each carrier also has private information. Private information embodies any
information that is relevant to a player’s decision making without being common
knowledge for al carriers (Fudenberg, 1991). This private information is generaly
called (in game theory) the “type’ of a player. In this formulation a carrier’s “type’

includes, in addition to its status, its cost and assignment functions. Denote this

private information for each carrier i € 3 at time t; by 0} :
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In general, a “type” may include not only what a carrier believes about other
carries cost functions, routing technology, and current status, but aso its
expectations (beliefs) about what other carriers expect (belief) its expectations

(beliefs) are, and so on.

The fleet status of carrier i when shipments; arrives is denoted asz‘j , which
comprises two different sets:

S;: set of shipments acquired up to time t,

VJ.i . set of vehiclesin the fleet of carrier i (vehicle status updated to timet; )
The elements of these sets have the following attributes:
For eachs|se S, , attributes of shipment s are:

Location of origin of shipment s, denoted o(s)

Location of destination of shipment s, denoted d(s)

Earliest pickup time of shipment s, denoted ept(s)

Latest pickup time of shipment s, denoted Ipt(s)

Status of shipment s at time t; (served or not served), denoted sts(st;)
For eachv|veV, , attributes of vehicle v are:

Current location of vehicle v at time t; , denoted loc(v,t;)

Status of vehicle vat time t; (empty or loaded with a shipments), denoted

sts(v,t,)
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Locations belong to a subset of R*and times belong to a subset of R*. At

time t, each carrier i has an initial status of his fleet denoted asz, (vehicles are not
necessarily empty or idle at timet, ).

There is a state or assignment function such that the status of carrier i3
when shipment s, arrivesis z, =a (t;,h;, Z_,) . It is assumed that the fleet status at a
given time is a function of time, previous fleet status, and history of play up to the

previous epoch. The estimated cost of serving shipment s; by carrier i € 3 of type z‘j

is denoted c'(s;,Z) . The sets of possible assignment and cost functions are denoted

by A and C respectively, thenfor each i € 3 it followsthat a8 € A andc eC.
The private information or type for carrier at timet; is ¢, ={z;,d,c}. Ina

game of incomplete information each player (bidder) has expectations (beliefs) about

the competitors' private values. Following Harsanyi’s (1967) modeling of games of
incomplete information, players types 0; :{6'}}{‘:l are drawn from some probability
density function p(é;,...,6]) where types 6, belong to a space®'. The conditional
probability about his opponents’ types 6,' ={6;,..,6,*,6/",...,6) given his own
type 6, is denoted p(¢;" |6, ,h, ;). This is what characterizes and complicates the

solution of a dynamic game of incomplete information. Since the players do not know
the competitors types at the start of each auction, they have to update these
conditional probabilities (beliefs about the competitors' status) as public information

isrevealed and the game evolves.
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3.2.5. Bidding, Payment and Profit functions

The set of feasible actions is the same in al the auctions. Each and every
carrier must participate in each action (submit a bid) and bids are restricted to the set
of real numbers. A bidding strategy is a contingent plan on how to bid in each auction

given current private information and a possible history.

Let b':S,H,0' — R bethe bidding function. Carrier i's bid for shipments, ,
given history h,, and type 6, is equa tob =b'(s,h;,6). Denote by
b” ={b',...,b,b"™,...,b"} the set of bidding functions of all carriers but carrier i.
Denote by b} =b*(s;,h,,67) = (b'=b™)(s;,h,,67) ={b;,...,b} , where the set of all
carriers’ bids is denotedbf‘. For each carrier i €3 the set of all possible bidding
functions is denoted B'. The set of all possible bids for al carriers is denoted B~ .
Arranging the bids from lowest to highest, b is the k™ lowest submitted bid for
serving shipments;, thenb{® <b{® <...<b™

Let q‘j be the probability that carrier i wins shipment s;. Let g be the

auction assignment function that given the set of bids b; determines the probability

that a carrier wins shipment s; . Then, q(b’) =q; ={q;,...,q/} €[0,1]" and > q =1.

Ties are solved with the roll of adice or any other random device. Let I} be
the indicator variable for carrier i for shipment s, , such that Iij =1 if carrier i
secured the auction for shipment s; and I} =0 otherwise. The set of indicator

variablesisdenoted 1° ={17,...,17} and D 1} <1.

ie3
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Let m be the auction payment function, then m’ =m(b’,q’), where
m’ ={m,..,m} e R" is the set of corresponding expected payments (ex-ante).
Replacing g by |7 the realized payments (ex-post) are indicates
by m’ =m(b’,17).

Let m =m'(b’,0), where m' is the auction payment function that returns
the expected payment for carrier i. Replacing b’ and q;':

m =m' (b}, ;') =m'((b'e b~ )(s;,hy,67),q((b'e b™)(s;,h;,6)))

This is the expected payment obtained by carrier i for shipment s; when (a)
using bidding function (strategy) b' (b) the other players are using bidding functions
(strategies) b () history of play is h., and (€) the private information of al players
is6.

Let 7, bethe expected profit for carrier i for shipments, , then:

7, =m —c[s;,6,]d], replacing terms:

7 =m ((b'ob)(s,,h,07),q((b'ob)(s;,h,67)))-

[

~C[s;,0]1d ((b'ob™)(s;,h;,67)))

ﬂ'; :ni(mi,qi,bi,b_i s, h

.5.0,,0,,0,",¢[s,,0]])

Therefore, a carrier’s profit is affected by the auction payment and allocation
rules, by its bidding function as well as the competitors' bidding functions, by the
characteristics of the shipment, by the history of play, by the private information of

al carriers, and by its own cost function and fleet status.
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3.2.6. Equilibrium Formulation

The problem is to find a bidding function b" for each carrier i € 3 such that
the set of functions{b™,...,b™} ={b", b} form a Bayes-Nash Equilibrium for each

carrier, possible auction, history of play, and possible set of private information. In

mathematical terms:

b'eagmax Y > > p(d,6) x'(m'.d,b,b",s,h,6,.6.cs,6])

SN 9} gj*‘

b eB' ‘v’ieS,‘v’SjeSN,‘v’hjeHj,‘v’Hj‘:’eG)S (3.1

In the spirit of the auction models studied in chapter 2, the following concepts
are common knowledge among carriers. their rationaity, the space of private
information and the corresponding probability density function, the auction rules, and
the set of bidding functions.

This equilibrium assumes that before the game starts, players (carriers) have
already simulated all possible game paths and have selected a bidding strategy that
satisfies equation (3.1). In game theory, this type of formulation is called “normal
form game,” equilibrium. An alternative approach for dynamic games is the “agent
form” equilibrium, This approach requires that the agent (player) finds the best
bidding strategy for each and every possible decision point in the game. Then, if the

agent based approach is taken, the formulation becomes:

bl cagmax Y S p@.07)xim .6, b ,s.h 0.0 s .6])

S;€S;. N 9} 91.*‘

b eB' Vie 3,Vs, € S |hj ,6’} (3.2



3.2.7.0nline TLPM

The previous formulation assumes that the sets T,, and S, are known before
bidding starts (offline sequential auction).

In general, arrival times and shipments will not be known in advance. The

arrival instants {t,t,,...,t,} will follow some genera arrival process. Furthermore,
arrival times and shipments are assumed to come from a probability space (2, F, 7),
with outcomes{®,, @,,...,m} . Any arriving shipment s; represents a realization at

timet; from the aforementioned probability space, therefore o, ={t;,s;} .

If the TLPM problem is considered online, the equilibrium formulation will
need to be reformulated. In the spirit of a Markof Perfect Equilibrium (MPE)
(Fudenberg, 1991) and agent based formulation, in equilibrium, a carrier bidding
function has to maximize current period plus expected future profits, given the
competitors equilibrium bidding functions, and the current state of the system (private

information). A carrier’s profit function becomes:
n om0, b"s,h,,0°,c[s, 0] =n'(m,q,b,b",s, h 6% C[s,6])

1 J, J_]_l j

k=j+1

The profit function has been expressed as the sum of current period profits

plus expected future profits (E(wi ) 1S the expectation of the future shipment

-------

arrivals). Calling niij the current plus expected future profits function, the

equilibrium formulation becomes:
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b’ eagmax ) > p(@,6") ' (m,d,b', b7, s, 0,67, C[s,,6])

o o

b' B’ Vie3|s,h ,60° (3.3

1T

Equation (3.3) it is not a MPE, since the whole history of play is used to
estimate the current distribution of the competitors private information or carriers

“belief” about the competitive status of the competition. A MPE is a relaxation of
equation (3.3), where h; isreplaced by y,, (i.e. the hole history is replaced by the

information provided by the last bid only).

3.3. Sources of Complexity Analysis

This section deals with the complexity of the formulated equilibrium problem.
The literature review in chapter 2 illustrated that the state of the art sequential auction
models are fairly rudimentary compared to the problem described in the previous
section. There are many factors that contribute to the intractability of TLPM game
theoretic models. In this section these factors are divided into two groups. (a)
technical problems — characteristics that impede reaching a closed analytical solution
or even any solution for rea-life problems and computational resources, and (b)
conceptual problems — characteristics that go against the appropriateness of game

theory to describe the strategic interaction among carriers.
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3.3.1. Technical Problems

1. Even with extremely ssimple assumptions, the number of paths to be evaluated
grows dramaticaly quickly. Assuming ten auctions, two carriers, two valuations
(high-low), and two possible bids (high-low bids), the number of possible game
pathsis 2.

2. There is no possible symmetry among carriers. Even if carriers start in identical
conditions, symmetry is broken in round two (there is only one winner and many
losers). The differential equation approach used in the SIPV model is not possible.
Furthermore, asymmetries are what make the problem interesting. Each carrier
has essentialy the same information about the nature of the shipment but a
different opportunity cost of completing it. Whenever the existence of
asymmetries is common knowledge, the problem is asymmetric (Maskin, 2000).

3. The accurate estimation of service costs may involve the solution of NP-hard
problems (multi-vehicle-multi-shipment routing problem with time windows)

4. Updating the beliefs about competitors' private information (competition status
conditioned on the public information revealed) might be a very complex

problem.

5. The cost functions d[s; ,6’}] are neither convex, nor differentiable, nor continuous
(presence of binary variablesin the routing problem).

6. The online problem is characterized by stochastic arrival times and unknown

origins and destinations of future shipments. Finding the expected profit function

isnot atrivial task.
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3.3.2. Conceptual Problems

. It was mentioned that large game theoretic problems usually have a multiplicity of
solutions. If several equilibria are possible, how do carries agree on what unique
equilibrium is played?

. Thelack of equilibrium uniqueness is exacerbated in dynamic problems. Severa
equilibrium refinements exist (perfect equilibrium (Selten, 1975), Nash
refinements (Myerson, 1978), sequentia equilibrium (Kreps, 1982), etc.) that try
to eliminate the set of “unreasonable equilibria’. However, these refinements are
not guaranteed to provide the same set of equilibria or even to eliminate all but
one equilibrium (Fudenberg, 1991).

. The use of equilibrium refinements to reduce the number of equilibria assume
some kind of “super-rationality” (Aumman, 1997), necessary to solve the
indeterminacy of beliefs at decision points that follow unexpected actions.

. Thetwo ways of formulating the offline problem (Equation 3.1 and Equation 3.2)
are both compatible with the concept of rationality, though they may provide
different equilibrium sets even in simple games (Fudenberg, 1991).

. What information is common knowledge? What information is not common
knowledge? Who knows what others know? How is this common knowledge
obtained?

. How is learning taken into account by bidders? How is the potentia information
transmission and signaling taken into account by rational players?

. The presence of capacity constraints introduces complex considerations into

multi-object sequentia auctions. Can bidders estimate al the implications?
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Real-life computational resources and bidding time limitations preclude
exceedingly complex approaches. It seems impossible to conciliate a full game
theoretic analysis and its real-life implementation. However, the game theoretic
approach provides an ideal and useful reference point. This reference point is used in
subsequent chapters to introduce simplifying assumptions about carriers' behavior;
simplifying assumptions that try conciliate both, implementation feasibility and some

degree of rationality (i.e. bounded rationality).

3.4. Simulation Framework

The complexity of the TLPM problem calls for the use of computational
simulation. Although al models (even smulation models) necessarily abstract from
some aspects of reality, smulation is indispensable given that closed analytical
solutions for these complex dynamic systems would require many simplifications that
could compromise the validity of the results. This is especialy important in auction
models, where relaxation of assumptions can lead to unexpected results. As expressed
by Rothkopf and Harstad (1994b, page 374): “... auction models have shown a
striking tendency for the answers to change as enrichments to their realism are
introduced. This tendency should discourage attempts to derive general answers in
abstract models. Attempts to enrich mainstream models with a view toward relevance
to practice are still a small part of the bidding theory literature, but they suggest that

result reversals may be common.”
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Roth (2002) argues that the complications of an auction marketplace require
new tools to supplement the traditional analytical toolbox of the theorist. He argues
that experimental and computational economics are natura complements to game
theory in the task of designing marketplaces.

A realistic market experiment may require alarge amount of economic resources.
The analysis of actual market data could provide important insights into the behavior
of a given TL marketplace. However, companies cooperation and willingness to
fully disclose proprietary and competitive information is unlikely at best, if not
impossible. Simulation enables the computational study of interactions among
carriers by means of controlled and replicable experiments. In a wide spectrum of
scenarios allowed by the many potential market settings it is also possible to explore
and systematically test changes in key market parameter values.

This section introduces the framework used to ssmulate a TLPM and section five
describes the simulation performance measures. The simulation framework presented
in this section simplifies rea-world TL markets but still provides useful insights
about their performance — mainly to freight transportation researchers and
practitioners. A discrete-event simulation (DES) framework is employed. The
backbone of any DES is a set of events that take place at a specific time (Law, 1991).
In this framework there are auction and fleet management related events. The former
includes posting, bidding, and resolution of an auction. The latter includes
demand arrival, pick up, and delivery.

Simulations are used to compare how auction types, behavioral assumptions,

and demand patterns affect the performance of the market (performance measures are
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defined in the next section). In order to correctly compare the results, each run has a
unique set of random number seed generators. Simulation results are obtained from
ten runs of one thousand auctions each. The same random number generator sets are
used across al experiments.

The auction events are assumed to take place in rea time. Computation times
or delays are not taken into account, therefore the computationally efficiency or speed
of different bidding/fleet management strategies are not compared. Shipment service
times are taken into account in order to simulate dynamic truckload pickup-and-
delivery situations (dynamic multi-vehicle routing problems with time-windows). It is
assumed that pick-ups and deliveries are instantaneous, i.e. the time spent at origins
and destinations is negligible relative to travel times; vehicles are assumed to travel
at a constant speed in a Euclidean two-dimensional space. Shipments and vehicles are
fully compatible in al cases; there are no special shipments or commodity specific
equipment (for example, just tractors and trailers).

The results obtained reflect the steady state operation of the smulated system.
This is obtained using an adequate warm-up period - in all cases set to one hundred
auctions;, awarm up length that is more than adequate for the fleet sizes and shipment

time windows considered.

3.4.1. Market Geographic Area
The shipments to be auctioned are circumscribed to a bounded geographical
region. The ssimulated region is a 1 by 1, square area. Trucks travel from shipment

origins to destinations at a constant unit speed (1 unit distance per unit time). The
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carriers do not know information concerning the precise origin and destination of the
shipments in advance. Shipment origins and destinations are uniformly distributed
over the region; the average loaded distancefor an auctioned shipment is
approximately 0.52 units.

There is no explicit underlying network structure in the chosen origin-
destination demand pattern. Alternatively, it can be seen as a network with infinite
number of origins and destinations (basically each point in the set [0,1]x[0,1]) and the
infinite number of corresponding links. Each and every link possesses an equa
infinitesimal probability of occurrence.

This geographical demand pattern creates a significant amount of uncertainty
for fleet management decisions such as costing a shipment or vehicle routing. Since
the degree of deadheading is unknown, any fleet management decision should hedge

for this uncertainty.

3.4.2. Time-Windows

A time-window constraint represents the time sensitivity of the shipment and
limits the fleet capacity to accommodate and feasibly route present and future
shipments. In the present framework, shippers aone specify the time windows before
calling an auction. In a general depiction, long time windows are characteristic of
push inventory systems based on order and transportation economies of scale, while
short time windows are a characteristic of pull inventory systems based on lean, just-

in-time (JIT) inventory and production control systems (Hopp, 2000).
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A growing trend in the TL market is the increase of Time-Definite Freight
(TDF) (FHWA, 2001), defined as any shipment that is required to arrive within very
tight time windows. Late and early arrivals are penalized with hefty fines. TDF is a
standard requirement in most JIT manufacturing environments.

From the carrier’s point of view, the ratio between shipment time window
lengths and service time duration (or trip length) affects how many shipments can be
accommodated in a vehicle' s route. In genera (not always true), the more shipments
that can be accommodated, the lesser the deadheading (or average empty distance). A
low ratio indicates that few shipments can be accommodated, either due to short time
windows (time sensitive shipment) or long trips (for example intercity operation) or
both. A high ratio indicates that many shipments can be accommodated, either due to
long time windows (no-time sensitive shipment) or relatively short trips (for example
city deliveries) or both.

Given the importance of thisratio in carriers’ operations and as a characterizer
of shipper/geographic demand patterns, three different TW length/shipment service
duration ratios are simulated. These ratios are denoted short, medium, and long,
making reference to the average time window length. The different Time Window

Lengths (TWL) for a shipment s, where |d(s) denotes the function that returns the

distance between a shipment origin and destination, are:

*  TWL(s) =1(Id(s) +0.25) + uniform[0.0,1.0] (short)
*  TWL(s) = 2(Id(s) +0.25) + uniform[ 0.0, 2.0] (medium)
*  TWL(s) = 3(Id(s) + 0.25) + uniform[0.0, 3.0] (long)
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In the ssmulated market, vehicle speeds are a unit, the average shipment length
is =0.52, and the average empty distance may range between [0.2, 0.3]. Average
empty distance changes with arrival rate, time window length, and carrier fleet

management technology.

3.4.3. Arrival Rates

It was seen in chapter 2 that the ratio between demand and supply influences
auction prices. In the simulated market, different demand/supply ratios are studied.
Arrival rates range from low to high. At alow arrival rate, al the shipments can be
served (if some shipments are not serviced it is due to avery short time window). At a
high arrival rate carriers operate at capacity and many shipments have to be re ected.

Changing demand/supply ratios can be caused by increases/decreases in
economic activity and the lagging response of the supply (new vehicle orders/vehicle
retirement). Changing ratios can aso reflect tempora patterns (peak hourly demand,
time of day, etc.). It is assumed that the auction announcements are random and that
their arrival process follows a time Poisson process. The expected inter-arrival timeis
normalized with respect to the market fleet size. The expected inter-arrival times are

1/2 arrivals per unit time per truck, 2/2 arrivals per unit time per truck, and 3/2

arrivals per unit time per truck (low, medium, and high arrival rates respectively).
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3.5. Performance Measures - Auction Mechanisms

This section defines the performance measures used to compare TL markets.
The concept of auction mechanisms is first introduced. This concept is necessary to
define truthful mechanisms, which are used as a market performance benchmark and
to define carriers’ behavioral assumptions in chapter 4. The section ends defining

performance measures for carriers and shippers.

3.5.1. Auction M echanisms

Auctions were defined in chapter 1 as market institutions with an explicit set
of rules determining resource alocation and prices on the basis of bids from the
market participants (McAffee, 1987). The design of an auction requires the precise
specification of a set of rules. These rules determine an auction model, the system by
which bidding is conducted, how information is revealed, and how communications
are structured between buyers and sellers. The outcome of the auction strongly
depends on the set of rules used. This section defines auctions in a genera way,
abstracting away from the details of any particular bidding format.

There are three indispensable elements in an auction: (a) rules needed to
allocate the resource — alocation rules, (b) rules to determine prices and payments —
payment rules, and (c) bids from the auction participants — a set of possible bids.

Using notation previously defined, the auction mechanism .4 = (g, m, B~) has

all three elements: an alocation rule, a payment rule, and a set of possible bids.
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3.5.2. Direct and Truthful Mechanisms

If the set of possible bids B™ is equal to the set of possible values (costs), the
mechanism is caled direct. If the mechanism is direct, and it is an equilibrium
strategy for each player to bid his own vaue (cost), the mechanism is called truthful.
Myerson (1979) established the revelation principle, which states that: given an
auction mechanism and equilibrium for that mechanism, there exists a truthful
mechanism in which the outcome is the same as in the given equilibrium of the
original mechanism. Two sets of conditions must be met to guarantee the existence of
a truthful mechanism. Each bidder must satisfy two conditions called (a) incentive
compatibility, and (b) individual rationality constraints.

In the TLPM let m(-)={m'(}),...m"(")}andq(’) ={q'(),...q"()}. Without
loss of generdlity, the next discussion is limited to one shipment, therefore the

subscript j is dropped. Using previous notation c¢' =c'(s,z') will be the cost of
serving shipment s; when the status of the carrier is Z . The set of all bidders costs

isc® ={c',...,c"}.

3.5.3. Incentive compatibility

A direct mechanism is said to be incentive compatible (IC) for a carrier i if:

Y, (m(c)-d()c) pE'le)z Y (M@.c)-q@.c')c) p@’ld)

(6',07)e6" (0',07)e0"

(3.4)
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Where the carrier’s cost is ¢ and & is any other possible cost (in our casea' € R).

Incentive compatibility makes bidding the true cost a weakly dominated strategy. Any
other bid achieves equa or less profit. Alternatively, a bidder’s unilateral deviation

from the truthful mechanism is aweakly dominated strategy.

3.5.4. Individual Rationality

A direct mechanism is said to beindividually rationa (IR) for acarrier i if:

Y, (m(c)-d(c)c) p@.67")20 (35)

(0'.67)e6”

This guarantees voluntary participation of risk-neutral bidders, since a non-
negative utility is guaranteed. Again, participating in the auction is a weakly
dominant strategy. The second price auction in the SIPV model is an example of a
truthful mechanism. From the behaviora point of view, a truthful mechanism
simplifies bidding for rational carriers, which are only required to estimate their cost
of serving the load. In chapter 4 competition is assumed to take place under a truthful

mechanism.
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3.5.5. Efficient M echanism

In auction theory areverse auction mechanism is said to be “ price efficient”*

if itsallocation rule g is such that:

q(c’)eagmind o (c”)c (3.6)

ie3
When there are no ties, a price efficient allocation rule allocates the shipment
to the carrier with the lowest cost of service. If there are ties, only the carriers with
the lowest cost may have a positive probability of obtaining the shipment. A second
price auction of one object is an example of a “price efficient” auction. The value of

socia welfare obtained with a price efficient auction mechanism is defined as:

W) =v->.q'(c)c

However, this is not the system optima welfare outcome, which would
usually imply more than allocating the load to the lowest cost carrier (for example a
system optimal allocation may require swapping shipments among different carriers.)

The allocation that maximizes social welfare or generates the most wealth is denoted:

W(z") =v-> c(az"))

where"a" is the optimal assignment function (i.e. the assignment function that
minimizes costs), which assigns shipments to carriers, thus W(z*) >W(c®).
The TLPM defines a new class of problem, for which there is no standard or

agreed upon performance measures. The social welfare of a price efficient auction

1 A mechanism that satisfies (3.6) is called in auction theory simply “efficient”, in this report it is

called differently to differentiate from allocations that minimize system wide costs.
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mechanism is used as a benchmark to compare the efficiency of a marketplace. This
is a market-wide measure of how much wealth is generated using auctions. Specific

measures for shippers and carriers are detailed next.

3.5.6. Carrier and Shipper Performance Measures

It was already stated in the equilibrium problem formulation that profit
maximization is the primary objective of carriers. Other important performance
measures include: (a) number of shipments secured — which is closely related to
carriers market share and (b) average empty distance — a measure of how efficient
the fleet assignment is. Shippers performance measures include: (a) number of
shipments served — which is closely related to the likelihood of being served and (b)
shippers' consumer surplus — which indicates how much money shippers would have
saved if the alternative was to serve the shipments by a contract carrier, at a rate equal
to the reservation prices.

Carriers’ costs are composed of a fixed and variable part. Fixed costs are
assumed sunk since they are mainly linked to fleet size, which cannot be modified in
the shortrun. Variable costs are incurred through the total traveled
distance (including loaded and empty movements).

The set of auctioned shipments is S, ={s,s,,....S} - Let s;,5 €S, and let
X, €{0,1} be a binary variable. Let x; =1 if carrier i has served shipment s

immediately after serving shipment s, xijk =0 otherwise. Let ed(s;,s) be the
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function that returns the distance between the destination of shipment s; and the
origin of shipment s, .
The number of shipments secured by carrier i is.

ns(Sy)= > I

sjeSy

The empty distance traveled by fleet i is:

ed(S,)= D ed(s;,s)x

Sj SceSy
The average empty distance of carrier i is:
Y. ed(s;,s) %
aed (S,) = B z |
i

sjeSy

The revenue secured by carrier i is:

r(Sy)= >, 1 b® (1 priceauction)
sjeSy

i - NE) nd oy .

rS) =, I;b (2™ priceauction)
sjeSy

Assuming unit costs per unit distance, the profit secured by carrier i is:

7' (Sy) = ZSN ' b® — ZSN ed(s,,S) X, — ZSN I} 1d(x;) (1% priceauction)
Sje Sj,ske sje

7'(Sy) = Z;,N I} b — ZS“ ed(s,,s) X — % I 1d(x;) (2" priceauction)
sje Sj e sje

The number of shipments served by the maket s

ns(S) =2 ns(§)=2, 2 I

i3 i€l sjeSy

The shippers consumer surplusis:
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cs(S) =D, D1 (v, -b®) (1 priceauction)

i€l se8y

cs(S) =), >, i (v,—b?) (2™ priceauction)

€3 se8y

It was aready mentioned that the loaded distance is a constant associated to
each shipment. Carriers can easily estimate the variable cost component associated to
the loaded distance. Assuming that all carriers have the same cost per loaded mile,
adding/subtracting a constant to/from all the bids does not alter the ranking of bids.
Then, if al carriers include the loaded distance in their bids, that term cancels out
when computing profits (the payment or second bid and the winner’s cost include the
same constant: the shipment loaded distance).

Herein, it is assumed that carriers bids take into account solely empty
distance costs (correspondingly, shippers' reservation values have aso discounted the
corresponding loaded distance). This is done for two reasons: (a) it does not ater the
order of bids or profits, and (b) it emphasizes the fact that estimating the empty

distance costs is the complex part of costing shipments. Carriers’ profits can now be

expressed as.
7(S)= D 11bP = > ed(s;, ) X, (1 priceauction)
SjeSy Sj €SN
(S =D b= > ed(s;,s) X, (2™ priceauction)
sjeSy Sj ,SceSy
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3.6. SUmmary

This chapter presented the conceptua and theoretical framework to define and
measure the performance of a TLPM. The problem wasformulated as a dynamic
game of incomplete information. Section three analyzed the complexity of the
problem. The intractability of the problem raises serious questions about the validity
and feasibility of a game theoretic approach to model real life TLPM.

Simulation is a viable and helpful tool to tackle the study of TLPM. Section
four described the ssimulation framework that is used to evaluate demand/supply
patterns, fleet assignment technologies, and carriers behavioral assumptions.
Demand/supply patterns are described by the relation among time window lengths,
arrival rates, and the market geographic area.

Section five describes the performance measures used to evauate TLPM; the
notation and formulas needed to define them are aso introduced. In addition, this
section introduces the concept of truthful mechanisms. This type of mechanism is
very appealing for two reasons. (@) it considerably reduces the complexity of the
problem from the carrier perspective (b) if there is an auction winner; a carrier with
the smallest submitted bid aways wins the auction. This type of mechanism is
assumed in chapter 4 where it can be used to evaluate carriers fleet assignment

technologies.
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Chapter 4. Technology Based Competition

The focus of this chapter is on technology based competition. A crucia
chapter assumption is that a cost truth telling strategy (marginal cost bidding) is the
only dominant strategy. Section one analyses the relevance of cost competition and
technological adequacy in the TL industry. Existing approaches to evaluate carriers
Dynamic Vehicle Routing (DVR) technologies and algorithms are reviewed in
section two. Section three explores the difficulties and shortcomings of applying
existing approaches to the TLPM problem. Section four presents a methodology
based on second price auctions (auction analysis of agorithms) to evauate online
DVR technologies. The relationships between the new methodology and other vehicle
routing problems are presented in section five. Section six compares auction analysis
of algorithms with competitive analysis of algorithms. In section seven the auction
methodology is applied to the study of three different DVR technologies while
section eight applies the auction methodology to compare auction and vertical TL

market structures. The chapter summary is presented in section nine.

4.1. Industry competition, Costing, and DVR Technologies

This chapter emphasizes the importance of the DVR aspects of the TLPM
market. In this research a carrier’s DVR technology determines the estimated cost of
servicing a shipment and the manner in which vehicle routes are constructed. The

DVR technologies to be studied in this chapter are reduced to agorithms, when
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simulated; however, their real life implementation may require inherently different
communication and decision support systems, software, computational power,
qualified personnel, as well as an understanding of the nature and complexity of the
DVR problem. As such, the terms algorithm and technology are used interchangeably
throughout this chapter.

Estimating the cost of serving a shipment isnot atrivial task; it depends on al
the other loads being served and the fleet deployment as well as on the future loads to
be served. The auction models presented in chapter 2 assumed that any bidder knows
the value of the object being auctioned. However, in a TLPM market the value or cost
of servicing a shipment is not only unknown but also difficult to estimate for three
main reasons. (a) the number of potential schedules increases exponentially with the
number of trucks and shipments (NP hard problem); (b) there aways exists
uncertainties about next arriving load characteristics and timing; and (c) prices
(payments) are not only uncertain but also strongly dependent on the level of
competition. The agorithmic complexity and analytical tractability of the problem
may impede the evauation of all potential schedules for carries with bounded
computational resources and hard bid submission deadlines. The uncertainties
surrounding the problem (points b and c) affect the cost of serving a shipment
because the carrier must cover or hedge for future deadheading and opportunity costs.
The service of a shipment can affect both, the empty distance of servicing follow-on
shipments and the revenue (or payment) that can be obtained servicing those follow-

on shipments.



Adequate costing and routing is especially important in a highly competitive
environment such as the truckload industry. The Truckload Carriers Association of
America (TCA) provides a set of suggested financial benchmarks for trucking
companies. The TCA offers the following breakdown of operating ratios (operating
expenses divided by operating revenues) to measure a company’s performance (TCA,
2002):

0.90t0 0.91 - Excellent

0.92-0.95 - Average

Above 0.96 - Poor

An operating ratio of 0.95 alows 5 cents per dollar earned to cover fixed
costs, interest cost, and return to owners/taxes. The intense competition in the
trucking industry can be explained by a highly deregulated environment, low capita
constraints to entry (especialy in the TL sector), and the high number of trucking
companies (Coyle, 2000).

In such a tight and competitive environment, TL companies must constantly
search for ways to increase revenues and/or decrease costs. Revenues and market
share are influenced by many externa factors that cannot be directly controlled by
managers, while operating costs can be decreased as the result of efficient
management practices and technologica improvements. Therefore, a carrier’s
constant consideration of new means to improve efficiency and competitiveness is a
prerequisite for survival. Such competitive environment requires methodologies to

evaluate the performance and advantage of DVR technological upgrades.
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In a complex environment, such a methodology to evaluate technological
competitiveness would provide the necessary insights and tools needed to make
sound decisions. DVR researchers and developers (not just TL company’s managers)
could use such a methodology to test and compare their DVR solutions. In addition
to looking at cost competition and comparing different DV R technol ogies this chapter
aso develops and analyzes a methodology to compare DVR technologies in a
competitive environment.

Performance measures and evauation of algorithms (i.e. technologies in the
broader characterization used in this research) have been extensively studied in
computer science and operations research. However, the emphasis has not been on the
evauation of agorithms in competitive market situations. The next section reviews

related contributions of the computer science and operations research literature.

4.2. Classical and Competitive Approaches to Analyze Algorithms

The main objective of the study of agorithms is to characterize the quality of
the solution they compute and the resources (computer time or elementary computing
operations) needed to reach those solutions. “Classical” computational complexity
analysis of agorithms assumes complete information about the problem under study,
while “competitive” analysis of algorithms assumes incomplete or partial information
of the problem. A thorough introduction to the former type is presented by Cormen et
a. (1991); Borodin and El-Yaniv (1998) present a comprehensive introduction to

competitive analysis and online computation.
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Under complete information (also called “static’ or “off-line” problems),
algorithms that provide optima solutions are compared in terms of the worst case
number of computations necessary to reach a solution. Algorithms that do not always
provide optimal solutions (heuristics) are compared on the number of computations
and their performance ratio. The performance ratio is defined as the ratio between the
worst case behavior of the agorithm (measured in units of the objective function, e.g.
cost in a minimization problem) on a problem instance and the behavior of the
optimal agorithm in the same problem instance (for profits or maximization
problems the definition of the performance ration is inversed). Employing worst case
anaysis is not the only option; a different ordering of algorithms could be obtained
using average case analysis. For this type of analysis it is necessary to make some
assumptions on the input distribution or problem instances. Both measures could be
problematic. Worst case analysis could be overly pessimistic, while average case
analysis requires the specification of a “typical” or “representative’ distribution. The
latter could be problematic since the performance of agorithms may depend on the
distribution assumed; thus such a comparison does not impose a unique ordering in
the quality of the algorithms.

Competitive analysis of agorithms assumes incomplete or partial information
about the problem. This type of anaysis is especialy helpful for a problem where
information is progressively revedled over time;, this type of problem is aso
commonly caled an “online” problem. Worst case and average anaysis can be
applied to this type of problem. A major issue inherent to online problems is that

incomplete knowledge of the problem may lead an algorithm to perform very poorly.
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Another important consideration is the computational complexity of an agorithm,
particularly when the algorithm operatesin area time environment and response time
isafactor that affects the quality of the solution.

Typicaly, adistinction is made between problem parameters and the problem
instance of online problems. This distinction refers to what is known to the algorithm
in advance, i.e., the problem parameters, and what is not known ahead of time, i.e. the
problem instance. An on-line algorithm is said to be c-competitive if at each instance
its performance is within a factor of, at most, ¢ of the performance of the optimal off-
line agorithm for the same instance (Boroding, 1998. This would be characterized as
a worst-case measure since it is valid on every instance. Competitive analysis
assumes that the online algorithm being analyzed faces the competition of a powerful
adversary that begets the worst sequence of tasks in order to maximize the
competitive ratio; while the online agorithm makes decisions with partia
information.

Boroding and El-Yaniv (1998) distinguish three types of powerful
adversaries. (a) an oblivious adversary constructs the whole sequence of tasks in
advance and compares the resulting cost or profit of the online agorithm with the
result obtained with an optimal offline algorithm; (b) an adaptive-online adversary
chooses the next task based on the online algorithm’s actions so far and compares the
resulting cost to the performance obtained by the adversary’s online algorithm (which
has the advantage of knowing the future sequence of tasks); and (c¢) an adaptive-

offline chooses the next request based on the online algorithm’s actions so far and
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compares the resulting cost to the performance obtained by the optimal off-line
algorithm.

It is not surprising that with such powerful adversaries, worst case analysis
can be overly pessimistic (Karlin, 1998). Karlin attributes this to the fact that real life
studies of task/demand/request records/logs for different classes of online problems
(from computer paging to message network routing) have indicated that there exists
usualy a “structure” underlying the task sequences. However, each case or
application may have a particular input structure. Therefore, it is impossible to make
any detailed or general assumption about the input distribution.

Fiat and Woeginger (1998) suggest that the competitive approach does
provide insight into the underlying online problem. They also acknowledge that in
many cases, meaningful information about the actual quality of an agorithm is lost.
The loss of meaningful quality information occurs mainly when the worse case that
can be forced (by the powerful adversary upon the online algorithm) is abnormally
(pathologically) bad. Randomization is a recourse used successfully by many online
algorithms to decrease their competitive ratio. Randomizing over the set of possible
answers, alow the online algorithm to partially deceive the powerful adversary; it
introduces uncertainty about the worst possible sequence of future tasks. When the
competitive results are trivia even with randomization, researchers have suggested
limiting the power of the online adversary, either reducing their resources such as
memory in the paging problem (Awerbuch, 1996) or limiting an adversary’s
computing speed in scheduling problems (Phillips, 1997). Another approach to limit

the relative power of the online adversary is the diffuse adversary model proposed by
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Koustupias and Papadimitriou (1974). In the diffuse adversary model the online
algorithm is empowered since it is given the information that the request sequence
belongs to a specific class of distributions (in competitive analysis the online
algorithm knows nothing about the future request sequence).

Competitive analysis is an active area of current research. Nissan and Ronen
(2001) study algorithmic problems in distributed settings (the internet for example,
where each computer is a self-interested agent). In this environment, agents can
manipulate the central or scheduling algorithm by lying or hiding information. Thisis
an extension of the mechanism design problem, presented in chapter 3, to algorithms.
In the type of problems studied by Nissan and Ronen the agorithm designer should
ensure in advance that the agents' best interest lies in behaving correctly (i.e.
reporting the truth would be the agent’s best strategy). Ajtai et al. (2003) try to
extend competitive anaysis to distributed algorithms. Distributed agorithms are
several sub-algorithms or agents that act based on local (as opposed to global)
information. They propose to compare distributed algorithms to the best distributed
algorithm in any given input (instead of comparing against the best global algorithm),
effectively reducing the power of the adversary.

Competitive analysis has aso been applied to transportation problems.
Ausidlo et a. (1995) study competitiveness of algorithms for the online traveling
salesman problem (TSP). In their study of the single vehicle TSP, a vehicle has to
service (in an order to be determined) a sequence of requests that are presented in a

metric space in an on-line fashion. After serving al the requests the vehicle must
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return back to the departure point. For the multi-vehicle dynamic traveling repair
problem, Lu et al. (2002) present an asymptotic performance study.

Paepe (2002) studies the online TSP where the online salesman moves a no
more than unit speed and starts and ends his work at a designated origin. The
objective of the online algorithm is to find a routing which finishes as early as
possible. Pagpe reduces the power of the adversary, assuming the existence of a“non-
abusive adversary”, who is not alowed to move in a direction where there is no
request waiting to be served.

The limitations of competitive analysis (or even hind sight advantage) have
been recognized when applied to real-time dynamic routing and scheduling problems.
Powell et al. (1995) clam that comparing against hind sight solutions does not
provide a fair evaluation of real time fleet management strategies. The lack of
systematic evaluation methodologies has led researchers to compare agorithms
performance using simulation and under the same strings of randomly generated
demands, asin Kim (2003).

Since the problems faced by carriers in a TLPM can be described as online
problems, the next section describes the advantages and difficulties that arise when

applying competitive analysis of algorithmsto a TLPM problem.

4.3. Applying Competitive Analysisto TLPM Problems

Applying competitive anaysis to the TLPM market would result in a
competition among two carriers; one denoted O for “ordinary” and one denoted P for

“powerful” (the adversary). The carrier O possesses a given fleet assignment and
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bidding functions, has uncertain information about the future (only knows the
parameters of the demand function, not the future instances), and knows with
certainty his private information. Carrier O falls along the general description of a
carrier in chapter 3. The carrier P possesses a given fleet assignment and bidding
functions, determines the sequence of future shipment arrivals (the future instances),

and knows with certainty his private information as well as O’s private information.
The objective of P is to maximize the competitive ratio (max[z"(S,)/7°(S,)])

while the objective of O isto minimize the competitive ratio:

min[ 7" (S,)/ 7°(S\)]= max[-7z"(S,)/ 7°(S\)] -
These perfectly conflicting objectives determine a zero sum game between carriers O
and P.

Under the previous assumptions competitive analysis would provide trivid
results; i.e. the adversary P is so powerful that the competitive ratio would not
sufficiently distinguish among DVR technologies otherwise of distinct quality. If
carrier P determines the sequence and characteristics of shipment arrivals, these can
be easily chosen to minimize his fleet empty distance. If carrier P knows carrier O’'s
private information, P also knows O’ s bids. With this information, carrier P can bid in
away that completely minimizes carrier O’'s profitsin afirst or second price auction,
even if P does not determine the shipment arrivals. In a second price auction, P can
bid O’s bid plus a non negative negligible amount in order to limit O’s revenues. In a
first price auction, P can maximize his revenues bidding O’ s bid minus a non negative

negligible amount.
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The assumptions of competitive analysis go against standard notions of fair
market competition and operation. Firstly, in a procurement marketplace the sequence
and characteristics of arrivals are determined by the shippers needs, carriers cannot
determine those needs. Secondly, assuming that just one carrier has full and precise
knowledge about competitors private information (deployment, assignment, costing,
and bidding functions), the information asymmetry provides such an advantage in the
bidding process that it conceals any qualitative difference among carriers DVR
technologies. Thirdly, competitive analysis assigns the adversary P with an off-line
technology (since P has full information) and limits O to have an online technology.
The two carriers are not even “competing” in the same kind and problem instance.

From a behaviora perspective, the competitive analysis of algorithms cannot
capture the objectives and goals of TLPM agents. It isin the best interest of shippers
to foster competition and efficiency in the markets, therefore advocating for auction,
data disclosure rules, and carrier behaviors that do not foster monopolistic or
anticompetitive practices. Carriers are not willing to relinquish sensitive information
about thelr fleet management strategies and status that could compromise their
profits. It was already mentioned that operating ratios in the TL industry are fairly
high (0.95 is good, 0.90 is excellent). Therefore it is more redistic to anayze the
performance of DVR technologies in a market environment characterized by cut-
throat competition and perfect information symmetry than in a market characterized
by one dominant player and extreme information asymmetry. The next section
describes the attempt proposed in this research to create an environment and

procedure to analyze DVR technologiesin alevel playing field.
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4.4. Auction Analysis of Algorithms

The proposed methodology to anadyze DVR technologies in a market
environment utilizes a sequence of second price auctions. Carriers are symmetric in
all aspects but in their DVR technology. Therefore the DVR technologies and results
can be compared ceteris paribus. Shipments or auctions are generated by a demand
function that is representative of the shippers demand arrivals and characteristics. As
in chapter 3, arrival times and shipments are assumed to arise from a probability

space (2, 7, 7), with outcomes{ w,, @, ..., } . Any arriving shipment s; represents
aredization at time t; from the aforementioned probability space, therefore:
o; ={t;,s;}.

Two carriers compete for each and every shipments; € S . Sequentia second

price auctions are used to alocate the shipment to the carrier with the lowest bid (if
the lowest bid is less than the shipment reservation value). The winner is paid the
minimum between the second lowest bid and the shipment reservation value.
Therefore prices and payments are generated endogenously as a result of the
interaction between carriers and their environment. The carriers know the parameters
and functional form of the probability space but not the future demand realizations.
The only public information revealed after the auction is the price paid to the winner,
if any. Simulation is used to estimate the performance of DVR technol ogies.

It is assumed that each carrier bids his best estimation of his marginal cost

given his DVR technology and current status. As mentioned in section two,
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estimating the marginal cost of serving a shipment is not a trivial task given the
complexity of the problem and the uncertainties about future arrivals and payments. It
was noted in the game theoretic auction literature review (chapter 2) that, in a one-
item second price auction, bidding the items value (cost) is the dominant strategy.
However this generaly does not hold true for severa items and bidders with multi-
unit demand functions. Nevertheless, margina cost bidding may be reasonable or
even adominant strategy in a particular setting. For example, a setting where a carrier
believes that is being randomly matched with a group of carriers drawn from alarge
population (in each and every auction). If the chances of meeting the same
competitors are negligible, a carrier may safely ignore any inter-tempora link
between his current bid and the opponents’ future bids.

If the carriers problem is completely outstripped of ther strategic
considerations, carriers model market prices or payments as a random process that is
not influenced by their own actions (bids). Therefore, the problem is similar to a one-
item second price where competitors behavior can be ignored and the dominant

strategy is margina cost bidding. In the notation introduced in chapter 3, this is
smilar to assuming that competitors are playing b” (&) =f (&) or
simply b (&)=< |, where & is arandom process that is not linked in any way to
carrier 1'S bidding, capacity/deployment, or history of play. It can aso be

interpreted that b (&) =& reflects the degree of competition in the market or

represents different fractions of customers reservation prices. However, with
uncertainty about the prices (since prices are not revealed until the auction is

completed), the problem is still best described as an auction. If the reservation priceis
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known immediately before the auction takes place, the carrier’s problem is better

described as an acceptance/rejection decision given afix posted price.

4.4.1. Shipment Cost Function

In a one-item second price auction, the value of the item (to a particular
bidder) is equivaent to the bid that maximizes the bidder’ s profit. Applying the same
logic, the value of a shipment to a carrier is equa to the bid that maximizes the
carrier’s profit — in the assumed procurement marketplace and given the carrier’s

technological endowment and status. In mathematical terms, the cost of serving

shipment s; for carrier i isequal to b;', where:

by cargmax E,[(£- ¢/(8, 21+, (5[ =01+, (5,11} =0) @-1)]
beR (4.7

man(s 1y =1) = o 2. Eyln'(€.cis.z 11, =D1] (4.2)

k=j+1

Tcij+l,“,N (Sj L I, =0) = E(mj+1,...,wN)[ ZN: E@)[n i(g’ci W le< | I, =0)1] (4.3

k=j+1

Eoln'(€,¢,5,2)]1=E[(E—C (Sen Zu)) L IBT - (44)
I, =1 if &>b and I, =0 if &<b (4.5

7 =a(t, h, 1 Z1) (4.6)
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The vaue of the shipment s; in equation (4.1) is the value of the bid that

maximizes the expected sum of present plus future profits conditional on bidding a

real number b. In equation (4.1) there are two kinds of profits. (a) present expected
profit — estimated as if shipment s, is the last shipment to be auctioned — and (b)

future expected profits — depending on whether the auction for s, is won or not. The

former type of profit expressed is by (£—c'(s;,Z))and the latter is expressed

177
by ., (S 11} =) +x,, (5117 =0) .
Equation (4.4) shows the recursive nature of the problem while equation (4.6)
is the “rule’ to be applied to obtain a carrier’s status when a new shipment arrives

(given a history of outcomes and the previous fleet status — this could include

repositioning of vehicles and projection of a schedule into the future). The cost
provided by ¢ (sj,zij) is the change in distance traveled by incorporating s; to the

carrier schedule when his statusis zij (change estimated using the carriers assignment

function a'). This change in distance traveled is estimated at time t, asif s; isthe

last shipment to be acquired in the marketplace and the vehicles do not have to return
to the depot. Equation (4.5) simply states that an auction is won by the carrier if his

bid islower than the competitors' bids or the realized shipment price.

4.4.2. Solving for the Optimal Bid
Neither equation (4.2) nor equation (4.3) are affected by the bid vaue for

shipment s, , they are simply conditioned on the outcome of the auction for s; . The
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expected value of the present plus future profits for any bid be R can be expressed

as

El(-C (8,201} + (S 1 =D+, (s 11]=0)@-1)] = (47)

=[ (- ¢(5,2) POUE [ 7., (5 11} =D PO A+

b

+[ . (8 11=0) p@)d(E)

—00

Thefirst two integrals are evaluated in the interval [b, «] because they are not

zero only if the bid b is smaller than the competitors' bids(b < &), or equivaently, if
the auction for s; iswon. The last integral is evauated in the interval [-oo, b] because
it is not zero only when the bid b is bigger than the competitors bids(b>¢&), or

equivalently, if the auction for s; islost. Grouping termsin (4.7):

J- (68 - Ci (Sj ' Zij ) + T[ij+1,,,,N (Sj || ; :1)_ nij+1,,,,N (Sj || l] = O)) p(‘f) d(‘f) +

+ 7 (s 11 =0) p&)d()

—00

0

:j (5_ Ci (Sj ) ZIJ) +Tcij+1,..,N(sj |I; =1)_Tcij+1,..,N (Sj ||I] :0)) p(g)d(g)-'-

b

+ (s ]15=0) (48)
Theterm
= €(8,2) + (8 1] =D —7, (s 1] =0)
does not depend on the redization of & or the value of b. Denoting

c'= c(s,z)-n. (s1l]=D+x", (sl =0) andreplacingin (4.8):
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Eg{ [ = C'(s;, 2D+ my (5 11 =D+, (11 = 0)] [ =b} =
=8 11 =0+ [ (G- ) p@)d©E) (49

Then, (4.9) is strategically equivalent to a second price auction, where & is
the distribution of the best competitors’ bids and c}i isthe carrier i's value. The bid
that maximizes equation (4.9) is simply c}i , the proof that c}i is optimal parallels the
proof given in chapter 2 for the one-item second price auction. Assuming b>c’;i

then:
[ (€€ p@d@) <[ (¢~ ) AU + [ (-6 &) d()

since all the elements in the last integral are equal or bigger than zero. Assuming
b<c; then:

[ -6 pOdE) > | (- c)p@dE+ ] -6 pdE)

since in the last integral the term & — c}‘ IS negative while the other the elements are
equal or bigger than zero. Therefore, equation (4.9) is maximized when b:c’;‘.
Therefore, the optimal bid for a shipment s‘j Is:

¢l = C(5.2)-m. (511 =D+r, (5 ]1;=0) (4.10)
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4.4.3. Optimal Bid Analysis

Equation (4.10) represents the value of the best bid given a carier’s
assignment technology a and estimated price functionb™ (&) . Therefore, a carrier
with a different technology or estimated price function may have a different value for
the optimal bid (even if the both carriers have the same fleet status).

The intuition behind (4.10) is fairly straightforward. The first term represents
the “static marginal cost” of serving shipment s; as if it was the last shipment to
arrive. The other two terms are linked to the future and are best interpreted together.
If the difference (s, |1} =0)—n, (s |1} =1) is:

am (s |1}=0)—m (s} =1)>0

Having to serve s; decreases the future profits since the carrier is better off
without servings;. The carrier must hedge against the expected decrease in future

profits increasing the static marginal cost by the positive difference. This increase
may not be only due to the increase in the probability of deadheading but also due to
the carrier’s operation at or near capacity levels (serving the present shipment may

preclude serving a more profitable shipment in the future)
b) (s 11} =0)—m,_(s;[1j =D=0
Having to serve s; does not change future profits. The carrier must not hedge

any value.

c) Tcij,A.,N (s ||] :O)_Tcij,u,N (s ||; =<0
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Having to serve s, increases future profits since the carrier is better off
servings;. The carrier must bid more aggressively for shipment s; decreasing the

static marginal cost by the negative difference. This last case may seem

counterintuitive at first glance. However, if avehicleislocated in a“sink” area (alot

of trips are attracted and few are generated) and s; originatesin a“sink” and goes to

a“source” (alot of trips are generated and few are attracted), it is absolutely plausible

that future expected profitswith s; are greater than withouts; .

The true cost of serving shipment s; is equal to the payment that carrier [

has to receive in order to make him indifferent between serving the shipment or not,

this payment is cil. . Therefore, paying the exact value of the shipment makes the

bidder indifferent between winning and losing the auction.

4.4.4. Optimal Bid Complexity

Analyzing the complexity of (4.10) helpsto put in perspective the complexity
of equation (3.1) or equation (3.3), where carriers not only have to estimate their own
and competitors' costs but to find equilibrium in bidding strategies. The expectation
over the sums of expected profits can be an insurmountable task since it involves
several random variables: arrivals, shipment characteristics, and prices. Furthermore,
eguation (4.10) contains an exponential number of future histories. Even assuming,

for thetime being, that S,,,  isknown at timet;, since each auction can be won or

lost, the corresponding decision tree has 2%+-*! = 2N-J end nodes and possible future
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histories. Furthermore, the potential NP hard complexity of the underlying VRP is
present every time ¢ (s, 2 ) hasto be estimated.

The intricacies do not stop there. The profitability of each history is linked to
the value of future costs (which are unknown when going forward). The value of
future costs are known when moving backwards, but not the carrier’s status at the
time (a carrier’ s status is dependent on the previous history).

Therefore, in general, equation (4.1) cannot be solved on one pass, neither
going forward or backward, nor by brute force enumeration or simulation. Some kind
of iterative process becomes necessary (if convergence were possible) to break the
circular process where the future depends on the present. It is important to note that
future deployment depend on the present bid and its probability of winning. At the
same time, the present depends on the future, the present bid depend on the future

profits and future fleet statuses.

4.5. Relaxations of Auction Analysis

Auction analysis can be seen as a general methodology to evaluate algorithms,
which is closely linked to two well known problems. Under specia demand and
auction settings, auction analysis can be reduced to (a) the acceptance/rgection

problem and (b) optimal DV R assignment and average analysis of the DVR.
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4.5.1. Acceptance/Rejection Online Problem
Assume a carrier has a fleet assignment technology & and a static cost

function ¢' . Assume also a demand arrival rate that exceeds carrier capacity (i.e. the

carrier cannot satisfy all the arriving shipments without violating time windows
constraints). As in the general problem, the carrier does not know the timing or
characteristics of future shipment arrivals. However, when a shipment arrives, the

carrier is told the shipment reservation price, denoted P. No auction is held. The

shipper fixes a price and the carrier has to either accept or reject it.

It istrivial to show that accepting aload is equivalent to bidding lessthan P
and reglecting a load is equivalent to bidding more than P. Then, there are two
possible decisions: accept or reject the shipment. The problem can be formulated as:

b'eargmax{ (P—c'(s,,Z))I| b+, (s || =D+, (s [1}=0)}
beR

while the other formulas (4.2), (4.3), (4.4), and (4.5) remain unchanged. Then,

shipment s; is accepted if:
P—C(s.2)+ ., (5 11| =D27, (s 11)=0) (411)
Shipment s; is rejected otherwise. Thisis the best acceptance/rejection policy

given carrier's assignment technology a8 and static cost function ¢', under the

assumed arrival and shipment probability space (Q,F,”)and estimated price

function for future arrivals b~ (&) = &£ .
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4.5.2. Average Case Analysis of DVR Technologies

Assuming a situation similar to the acceptance/rgjection problem but now
assuming that (a) the reservation price P is constant (b) the cost of serving a
shipment never exceeds the reservation price (¢) the arrival rate is such that the carrier

can serve al the arriving shipments. Then, equation (4.4) becomes:

Euln'(67(8).¢, 5. 2)]=P-C(s.2)

Equation (4.2) becomes:

k=j+1 k=j+1

Since all shipments can be served and the prices are always greater than the

costs, no shipment is ever rejected. Therefore | ; =1 aways holds, while | '1 =0 never

takes place. Then, the expected profit function for shipments S;  given a current

status z‘j becomes:

Eo{ P-C(s.Z)+ (N=))P-E, ., > C(s.2)=

jr4i/) T U T T Hajpg,e
k=j+1

i i ; SR i
=P-c'(s,2)* (N=)P-E,,. o) 2. C(S02)

k=j+1

= (N-j+D) P-C(s,2)-E,, .0 2, C(S02)
k

=j+1
This expected profit is afunction of a carrier’s assignment technology a and

static cost function ¢'. Since bidding is trivial under the conditions assumed (all
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shipments must be accepted), a carrier maximizes profits when has the best

assignment function:

i : i i SR i
a' eargmax{ (N-j+1) P-c'(s,2)-Eu.. o0 > d(s.2)} (412

..... k=j+1
subjectto: z =a(t;,h, ;.7 ;)

acA

Takingout (N—-j+1) P, sinceitisaconstant, and multiplying by -1:

i - i i S i
a' eargmin{ c(5,2)+E, . o > d(s.2)}

.... k=j+1
subjectto: z =a(t;,h, ;.7 ;)

aeA
Under the current assumptions, profit is maximized choosing the assignment
function a' which minimizes expected operating costs (present and future expected
operating costs). For any assignment function & , the average cost for the assumed

arrival and shipment probability space (2, F, 7) is.

k=j+1
Therefore, average case competitive ratio ¢ for the assignment function and

shipment probability space (Q2, F, 7) isequd to:

c=

When the demand surpasses the capacity of the carrier the problem becomes
an acceptance/regection problem. With high demand, the optimal assignment policy is

the one that maximizes profits using equation (4.11) to accept or reject shipments.
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4.6. Comparing Competitive and Auction Analysis of Algorithms

Competitive and auction anaysis are both suitable methodologies to anayze
the performance of online algorithms, however the similarities among them stop
there. Competitive analysisis aform of worst case scenario; auction analysisis closer
in spirit to average case analysis (as it was shown in section 4.5).

Competitive analysis is fundamentally asymmetrical. A powerful adversary
has control (not just knowledge) over the yet unknown (to the agorithm under
analysis) future tasks. Auction analysis strives for symmetry, aiming at comparing
two different technologies ceteris paribus in a level playing field. No competitor
controls the future, and rewards and prices are a result of technological interaction;
not even the researcher has control over them. Prices are determined online; they do
not follow a preset function. In auction anaysis both competitors have the same
knowledge, however atechnological (algorithmic) attribute is precisely how well and
to what degree it takes advantage of that knowledge — ranging from ignoring the
future and past to completely accounting for it.

Competitive analysis is mainly an analytical approach. Auction analysisis a
simulation based approach; which has some pros and cons. Simulation allows the
anaysis of richer and complex environments that could never be fully addressed
anaytically. For example, the incorporation of real time limits to evaluate trade offs
between solution quality and technology complexity (execution speed). However,
with ssmulation is not possible to obtain close solutions or to prove general theorems

or results.
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Semantically, the name “ competitive” for the worst case competitive analysis
methodology was not wisdly chosen. The Merriam Webster Online dictionary

(www.m-w.com), defines competitive as “1. Relating to, characterized by, or based

on competition”. Competition, in turn is defined as “1 : the act or process of
competing as a : the effort of two or more parties acting independently to secure the
business of a third party by offering the most favorable terms b : active demand by
two or more organisms or kinds of organisms for some environmental resource in
short supply”.

Paraphrasing definition a, auction analysis wants to distinguish how the effort
(the cost determination) of two parties (technologies/algorithms) — acting
independently to secure the business of a third party by offering the most favorable
terms (bid) — affect the parties profits. Paraphrasing definition b, auction analysis
wants to replicate the active demand by two or more organisms (algorithms or
transportation companies) or kinds of organisms for some environmental resource
(tasks/shipments that is) in short supply.

Concluding, auction analysis aspires to construct an environment that rewards
low cost or more efficient technologies. In that environment, auction analysis
measures the relative performance of two technologies. Competitive analysis aso
measures the performance of technologies (algorithms), but, first comparing them to
some imaginary al powerful adversary, which are simply a technical aid to allow

absolute worst case comparisons.
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4.7. Applying the Proposed M ethodol ogy

It was mentioned in chapter 1 that carriers and shippers are increasingly using
private exchanges, where a company invites selected suppliers to interact in a real
time marketplace, compete, and provide the required services. Carriers have to keep
in mind the cost for each transaction, especially in a sequential auction that
implements a truth revealing mechanism. Even though carriers may compete in the
same market in a level playing field, they are “endowed” with inherently different
resources ranging from physical assets, such as fleets and facilities, to communication
and decision support systems. Furthermore, the adoption of communication
technology and expertise by carriers may vary greatly (Regan, 1999).The purpose of
auction analysis of algorithms is to evauate ceteris paribus the impact of a DVR

technology on carriers’ market performance.

4.7.1. Formulations and Solutions of the DVR Problem

A review of the main formulations and solutions, proposed up to date, for the
DVR problem is presented in this section. The DVR problem is a relaxation of the
static vehicle routing problem, where information about the demand or shipments to
be served unfolds over time. Stochastic arrival times and shipment characteristics
differentiate the DVR problem from the vehicle routing problem. Stochasticity
transforms a NP hard combinatorial optimization problem (with complete
information) into a decision making problem under uncertainty (partia information),
while preserving al the intricacies associated with the original NP hard problem.

Powell et al. (1995) present an extensive discussion of dynamic network modeling
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problems that arise in logistics and distribution systems, including apriori
optimization and on-line decision policies for stochastic routing problems.

Regan et al. (19963 1996b, and 1998) anayze the opportunities and
challenges of using real time information for fleet management. They also formulate
and evaluate (using simulations) various heuristics for the dynamic assignment of
vehicles to loads under real-time information. Subsequent work by Yang et a. (1999
and 2002) introduces a static optimization-based approach and tests it against the
previously developed heuristic rules. Their approach solves static snapshots of the
DVR problem with time windows using an exact mathematica programming
formulation (which is the basis for two of the technologies studied in this paper). As
new input occurs, static snapshot problems are solved repeatedly, allowing for a
complete reassignment of trucks to loads at each arrival instance. Mahmassani et a.
(2000) and Kim et a. (2002) study DVR strategies for fleet size operations, where
computational and response times are important constraints. They aso study
strategies for DVR under high arrival rates and “priority” loads.

A growing body of work focuses on the solution of the stochastic DVR
problem. Powell proposes a formulation based on a Markov decision process and
several formulations using stochastic programming (1986a, 1986b, 1987, and 2000).
Gendreau et a. (1999) and Ichoua et. a. (2000) use tabu search to solve a DVR
problem with soft time windows. Gendreau et a. (1999) suggest the use of
information about future requests to solve the DVR problem. This paper delves
further into this idea, presenting a methodology that uses information about future

requests to estimate the cost of servicing a new load. More recently, Larsen et a.
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(2002) study the DVR problem with different degrees of dynamism (defined as the

percentage of demands that carrierstypically do not know in advance).

4.7.2. Static Cost of Serving a Shipment

Chapter 3 defines how a carrier’s performance is evaluated. These definitions
can be applied after the market has closed and the whole sequence of shipments has
been auctioned and served. Additional notation is necessary to describe the costing of
shipments while the market is operating. This notation is also going to prove helpful

to describe carrier technologies and analyze results.

As before, let I} be the indicator variable for carrier i for shipment s, such
that |} =1 if carrier i won the auction for shipment s, and 1} =0 otherwise. The
set of acquired shipments up to time t, by carrieri is S,. Let the set of acquired
shipments up to time t, by carrier i which are not yet served be 5; and the set of
the set of acquired shipments up to time t, by carrier i which have been already
servedbe S, then S, +S =S = S, = S, . A shipment is considered to be served if it

has been already delivered at its destination point; a shipment is considered to be yet

to be served otherwise.
Lets,s €S and let X, {0, be a binary varisble. Let X, =1 if a
carrier i's vehicle has already picked up and served shipment s, immediately after

serving shipment s;, X =0 otherwise. Similarly, let s;, 5 é; and let x;, €{0,3

be a binary variable. Let )“(}k =1 if acarrieri's vehicle is going to deliver shipment
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S, (not yet delivered) immediately after serving shipment s, X‘jk =0 otherwise.
However, while X isaconstant, X;, (z)isabinary variable that is dependent on the
carrier’ s status z at time't . The carrier’s status can be in turn obtained as a function
of the carrier’s assignment function, history of play, and time z, =a'(t,,h,_,,Z _,).

To clearly distinguish the different statuses whether the auction is won or not, the

following notation is used:

@ z|(,=0)=4d({t,h|l,=01z)=2a(t,h_,z_) toindicate the status
immediately before the auction for shipment s, or the status immediately after the
auction for shipment s, if the auction islost.

(b) Z |(I,=1 =4a(t.,h |, =1,z) toindicate the status immediately after
the auction for shipment s if the auction iswon.

Any set of binary variables {X (z)} that constitute a complete fleet schedule

is assumed to satisfy all the time windows and flow constraints of a Mixed Integer
Programming (MIP) formulation of the corresponding vehicle routing problem. The
base MIP formulation used in this research is based on the work of Yang et al. (2002).

Let ed(s,,s,) be the function that returns the distance between the
destination of shipment s, and the origin of shipment s, . When a new shipment s,

is posted (the next auction after shipment s; has been auctioned) the total estimated

distance needed to serve S, at time t, , is:
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Y. ed(s,s)x.+ > lds) + >, ed(s;,s) X (z |1 =0)+

SJ"Si'ESL SJ-ESL Sjvsj'ESL
+ > ed(ss)% (211, =0 (413)
s;eS.speS

The first term represents the empty distance already traveled by the fleet; the
second term represents the sum of the acquired shipments loaded distance; and the
third and fourth term represents the empty distance that is going to be traveled by the

fleet according to the current schedule at timet,. This schedule changes if
shipment s, is acquired; otherwise it remains the same if s, is not acquired since the

status of the carrier has not changed. The second term includes the loaded distance of
both already served and going to be served shipments since a shipment loaded
distance does not change over time.

If carrier i wins the auction for shipment s, , the estimated distance needed to

serve the acquired shipments so far (including s, ) is:

z_} ed(s;, ;) X + > ld(s) + > ed(s;,s) X (& | =)+ (4.14)

sj.57€S s;eS s;.51eS

by eds,s)% (2 11 =D

sjeS.speS

+Hd(s)+ Y ed(s,s) X(Z |1, =D+ X ed(s.s) % (Z 1 =D)
s e s e

The first two terms are the same as in equation (4.13). The third and fourth

represent the empty distance that is going to be traveled by the fleet to serve S,
given the new schedule; the fourth term is the loaded distance of s, ; the fifth term
represents the empty distance that is going to be traveled to pick up s, ; and the sixth

term represents the empty distance that is going to be traveled (if any) after

serving s, to pick up ashipment that belongsto S, .
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The cost of serving shipment s, (at the time of its auction and as if s, is the
last shipment to arrive) is the difference between equation (4.14) and equation (4.13).

Let ¢' (s, 2 ) bethe cost of shipment s, for carrier i when his statusis z,, then:

Ci(SuZL)Z Z w(sjlsj') )v(}k(Z“IIi(:]_)— Z ed(Sj,Sj.))v(}k(ZL|||i(=O)+

sj.sp€S sj.5p€S

PY el s)RGENLE)- Y eds.s)X 1 =0)
s;eS s e SESEORS

bY ed(s,s) (2 1L =D+ Y eds,s) X (2111 =D +1d(s,)
s e sieS

(4.15)
The first two terms in equation (4.14) and equation (4.13) cancel each other
out. The conditions 1, =1 and |, =0 indicate the current schedule with and without

S, respectively. The sum of the two differences represents the change in empty

distance for the shipments in S, that are not yet serviced. The cost of serving a

shipment according to equation (4.15) does not depend on the cost of the already
served shipments, which have aready been “sunk”.

The previous formulation assumes that vehicles are always located at the
destination of some shipment, which is compatible with assumptions taken for the
technologies studied in this chapter. However, if real time diversion and repositioning

is used, equation (4.15) is still valid if, for each vehicle a dummy shipment is added

toS,.
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4.7.3. Technologies

In the rich spectrum of DVR technologies, three inherently distinct and
archetypical approaches are evauated. These three technologies require different
levels of sophistication in communication capabilities, static optimization, and the
evaluation of opportunity costs. In rea time situations, cost evaluation is a difficult
task when optimal decision-making involves the solution of larger NP hard problems
and the necessity of taking into account the stochastic nature of future demands. The
three technologies are presented in an order that shows an increasing and distinct

level of sophistication.

4.7.4. Base or Naive Technology
This type of carrier ssimply serves shipments in the order they arrive. If the

carrier has just one truck, it estimates the margina cost of an arriving shipment s,

simply as the additional empty distance incurred when appending s; to the end of the

current route. If the carrier has more than one truck, the marginal cost is the cost of
the truck with the lowest appending cost. This technology does not take into account
the stochastic or combinatorial aspect of the cost estimation problem and is
considered one of the simplest possible. Each vehicle acts as if it were an independent
carrier; in fact, the auction and fleet assignment results are not altered if each vehicle
submits its own bid. Communication and coordination overheads are reduced to a
minimum. Nonetheless, this technology provides a useful benchmark against which to
compare the performance of more complex and computationally demanding

technologies.
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The first technology is such that the schedule for the yet not served shipments
in S; does not change. The first four terms of equation (4.3) cancel each other out

since the schedule for the “old shipments’ is not changed. The last term of equation
(4.3) is zero since the “new shipment” is appended at the end of a carrier’s vehicle

route. Then:

c'(s,2)=d(s) + D ed(s;,s) X (Z |1 =)
seS

For eachv|veV,,,, let denote by Is(v)the last shipment in vehicle v current

route if any or vehicle v current location otherwise. If the auction is won, shipment

S..; isallocated to the vehicle v’ that:

v eargmin[ed (Is(v),s)]
veV,

Therefore, the marginal cost of serving shipment s,,, is:
c'(s,z)~ ed(Is(v),s) +ld(s,) (4.16)

Finaly, in terms of equation (4.10), it is clear that equation (4.16) is simply a

heuristic that approximates the optimal static cost.

4.7.5. Static Fleet Optimal (SFO)
This carrier optimizes the static vehicle routing problem at the fleet level. The

marginal cost is the increment in empty distance that results from adding s; to the

total pool of trucks and loads yet to be serviced. Communication and coordination
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capabilities are needed to feed the central dispatcher with real time data and to
communicate altered schedules to vehicle drivers.

If the problem were static, this technology would provide the optimal cost.
Like the previous technology, it does not take into account the stochastic nature of the
problem. This technology roughly stands for “the best” a myopic (as ignoring the
future but with rea time information) fleet dispatcher can achieve. A detailed
mathematical statement of the MIP formulation used by SFO is given in Yang et al.
(2002).

Using this technology, the set of X, (z |1, =1) must be such that they

minimize equation (4.15) given the current status of the fleet and the current

schedule. If Id(s) and X, (7 |I, =0)are constant expressions, the set of
X, (Z, |1, =1) that minimize (4.15) must also minimize:

min{ > eds,s) X (Z =D+ > eds,s)%(z 1, =)

sj.57€S sjeSs €S
£ Y ed(s,s) K211 =D+ Y eds.s) K(Z 112D} (417)
sie& seS

Using this technology, the marginal cost of serving shipment s, isequal to the
empty distance needed for best possible schedule including load s, minus the
previous schedule (which does not include s, and that is still “optimal” if it was the
best schedule at time t, and travel times are deterministic).

Finally, in terms of equation (4.10), it is clear that equation (4.17)

approximates the real cost of serving a shipment as c'~ c'(s;,zZ) - the

opportunity costs are completely ignored.
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4.7.6. 1- step-look-ahead Fleet Optimal Opportunity Cost (1IFOOC)
As the previous carrier, this carrier optimizes the static vehicle routing

problem at the fleet level. This provides the static cost for adding s; . However, this

carrier aso knows the distribution of load arrivals over time and their spatial
distribution (it is not discussed in this research how the carrier has acquired this
information). This type of carrier also has an estimation of the endogenously
generated prices or payments. Hence, the carrier can assess whether and how much

winning s; affects his future profits. This is the opportunity cost of serving s; .

Unlike previous types, this carrier takes into account the stochasticity of the problem

to estimate the opportunity costs of serving s; as if there is just one more auction
after the auction for s; (one step look ahead). Limiting the “foresight” to just one

step into the future has two advantages. (@) it considerable eases the estimation and
(b) it provides afirst approximation (as in the first term of a Taylor series) about the
importance of opportunity costsin a given competitive environment.

Unlike the previous technologies, this one is not function or parameter free.
Estimation opportunity cost requires the knowledge of arrival, shipment, and price
distributions. In addition, there is the computational burden of estimating the
opportunity costs. On the other hand, this type of carrier can adapt to changing
conditions in the marketplace — his price is truly “dynamic” and “flexible’, in the
sense that future consequences are evaluated and that the shipment and price

distribution can be estimated online. In the present research, this type of carrier
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estimates the price function as a normal function, whose mean and standard deviation

are obtained from the whole sample of previous prices.

4.7.7. One Step L ook-ahead

The previous formulation implicitly assumes that acquiring shipment s, does
not affect the marginal cost of futureloads (i.e. S,,;, Scsz s --» Sy )- HOwever thisis not
entirely correct since acquiring a new load (a) temporarily reduces carriers capacity
(capacity defined as the ability to serve additional shipments at a point in time) and
(b) changes the current schedule and therefore possibly changes fleet deployment at
the time of the next shipment auction. The only exception to this takes place in the
final auction (shipment s, ) and there are no repositioning costs (trucks do not return
to depot).

As stated in Chapter 3, in general, arrival times and shipments will not be

known in advance. The arriva instants {t,,t,,...,t,} will follow some genera arrival

process. Furthermore, arrival times and shipments are assumed to come from a

probability space (€2, 7, 7), with outcomes{ w,, @, ...,y } . Any arriving shipment s;
represents a redlization at timet; from the aforementioned probability space,

unknown before bidding for s, starts.
The carier is aso assumed to know the parameters of the function

b” =f (£) --reservation price or competition function. It has aready been
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discussed the complexity of estimating the value of the bid that maximizes equation

(4.1). However, the estimation of the cost of serving s, is greatly simplified if it is

assumed that snipment s, ,, isthe last shipment to ever arrive at the marketplace.
Using backward induction, the cost of serving s,,, has to be estimated first.

This cost would be simply ¢'(s.,,,Z.,) ; however s, and z,, are still unknown at

time t, . Equation (4.2) for this special case becomes:
T (8 117 =D = B [Epln'(07(8),¢5. 2 |1} =D]] =
= Bl E[(07 (&) =B 1 =) 111 = B, [ E[(€ ~ €' (S Zea 1] =D) 1]]
Similarly, equation (4.3) becomes:
(5 117 =0) = B, [Eylr'(07(8),C,5,2 |1 =0)]]=
= B [E[(07 (&) - b1 =0) L1 = By, [ E [(E— € (Senr Zena |1 = 0) 1]
In this report = (s |li=1) and =,(s |lI;=0)are estimated using
simulation. Then the optimal bid valueis:
c'~ c(s,z)-7 (s 1}=D +x (5|I;=0) (418
This result coincides with the theoretical analysis of auctions surveyed in
chapter 2. In the presence of synergies or economies of scale the first bid is increased
(decreased in reverse auctions); conversely, in the presence of negative synergies or

diseconomies of scale thefirst bid is decreased (increased in reverse auctions).

4.7.8. Assumptions
Response or solution time is a key consideration in real time applications.

However, given that the objective of this paper is to analyze how much can be gained
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using different technologies, it is assumed that carriers have enough computational
power to submit a bid before another request comesin.
In al casesit is assumed that a carrier bids only if afeasible solution has been

found. If serving s; unavoidably violates the time window of a previously won

shipment, the carrier simply abstains from bidding or submits a high bid that exceeds

the reservation price of s;. Simulation experiments are conducted to evaluate the

performance of these strategies under alternative specifications and parameter values.
The loaded distance is not included in the final cost because it is assumed that
al carriers have the same cost per mile, therefore adding/subtracting a constant
to/from all the bids (e.g. the loaded distance of an arriving shipment) does not ater
the ranking of bids. Besides, if all carriers include the loaded distance in their bids,
that term cancels out when computing profits (the payment, in this case the second
bid, and the winner’s cost include the same constant: the shipment loaded distance).
Shippers reservation prices do not include the loaded distance either. However,
loaded distance of all shipments is included when estimating the opportunity costs in
(4.18), since loaded distance is akey factor that can affect acarrier’ s capacity.
Another assumption is that once a vehicle is loaded with a shipment (i.e.
at its origin), it travels directly to the shipment destination before picking up another
demand. Therefore, the possibility of shipment consolidation at a termina or load
exchanges among vehicles (in-route load swap) is precluded. It is also assumed that a
vehicle that is moving empty to pick up a shipment cannot be rerouted before
completing the service of that shipment. It is further assumed that, a vehicle does not

move empty unless they are going to pick up aload (no repositioning).
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The simulations settings are as described in chapter 3 unless stated otherwise.
Auction analysis of technologies was applied to compare naive vs. static fleet optimal
(SFO) and to compare static fleet optimal vs. 1-step-look-ahead fleet optimal
opportunity costs (1IFOOP). All the figures presented and analyzed in this chapter

were obtained with acarriers fleet size of two vehicles.

4.7.9. Analysis of Results

Figures 3, 4, 5, and 6 compare the performance of the SFO vs. naive
technology. Figures 3 and 5 are absolute changes in profits and shipments served
respectively; while Figures 4 and 6 are percentage changes in profits and shipments
served respectively.

The results obtained for the less sophisticated carrier (naive carrier in Figures
3,4, 5, and 6) are used as the base line. Therefore, any positive difference (indicated
in red) in the first four graphics demonstrates that the more sophisticated carrier (SFO
carrier in Figures 3, 4, 5, and 6) has either obtained more profits or served more
shipments than the less sophisticated carrier; a native difference (indicated in blue)
would demonstrate the opposite.

As expected, a more sophisticated technology outperforms the naive one.
However, relative performance criticaly depends on the arrival rate and time
windows. Figures 3 and 4 show how SFO outperforms naive in profit levels, for the
most part with wider time windows and medium arrival rates. A similar behavior can

be observed in Figures 5 and 6 with respect to the number of shipments served.
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To understand why the SFO technology outperforms the naive one, it is useful
to look at how they estimate the cost of serving a shipment. Assuming for a moment
any carrier i with a fleet status z, bidding for shipment's, , the marginal cost
obtained with equation (4.16) is bigger or equal than the marginal cost obtained with
equation (4.17) since the former is specia case of equation (4.15) — search over a
subset of feasible solutions set — and the latter is the result of minimizing equation
(4.15) — search over the whole feasible solution set. Comparing both marginal costs

and simplifying the constant |oaded distance:

ed(Isv),5)2 Y eds.s) % (Z (1=~ Y ed(s;s)%(z]1,=0)+

sj.8pe& sj.s; €S
+ 3 edss)X (@l =)- X eds.s) % (&1L =0)+
SiGSL,Si\GSL Sieslwsj'eq
+ 2 ed(s8) XA =D+ D ed(sos) X (z 11 =D)
SjES'( SiESL

Any schedule that assigns the new shipment to the end of a vehicle route

resultsin astrict equality. Thisis:

ed(s(v),5) = 2, ed(s.s) X (21, =] (419
seS

Any “optimal static” schedule that does not assign the new shipment to the
end of avehicle route results would generally result in a strict inequality (though ties

are theoretically possible they are not very likely). Thisis:

ed(Is(v),5) > D, ed(s;.s.) X (Z |1 =) — D ed(s;,s) % (Z |1, =0+

5,5 s;,5;€S

+ 3 edss)X(E =)~ X eds.s) % (&1 =0)+
SjGSLYSj‘GSL SiGS'(,Si-GS'(

+ Y ed(s,s) X (Z (1 =D+ Y ed(s,s) X (Z[1,=)  (420)
s e sjeS
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Let denote the former type of schedule (4.19) as “appending” and the latter

(4.20) as“inserting”. Formally, inserting takes place any time:

Y eds,s) X (Z 11, =1>0,
seS

while appending takes placewhen > ed(s,s;) X;(Z |1, =1)=0.
sjeS,

The “appending” technique has a most a polynomial number of solutions.
The two DVR techniques provide the same costs when they search over the same set
of feasible solutions. Intuitively, if time windows constraints are very tight, the only
feasible solutions may be to append the arriving shipment to the end of existing
routes. Theinitial status of the carrier (z |1, =0) does not provide “enough room” to
insert arriving shipments. A very low arrival rate would have a similar effect. If all
vehicles are idle, the two technologies would provide the same cost. The cardinality
of S'( must be equal or bigger than one for an insertion to be possible.

However, the greedy polynomial approach is in serious disadvantage when
“inserting” is possible, especidly if it results in near zero or even negative marginal

costs. Inserting it is facilitated when time windows are wide enough to accommodate
the service of several shipments. As the cardinality of 3'( and the time windows width

grow linearly, the set of feasible solutions can have an exponential growth.
While the cost of appending is always bigger or equal than zero, the cost of

inserting could be negative. The best case scenario is when the arriving shipment s,
“fits” perfectly on an existing route. In this case the margina cost is negative and

equal to —1d(s,) .
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Time-windows have a significant impact on the carriers ability to serve
shipments. All things equal, a SFO carrier’s capacity increases as the shipments
time-windows increase since the carrier (@) has more flexibility to “insert” a shipment
and (b) can hold more shipments in a queue (shipments waiting to be served) which
increases exponentially the number of possible schedules and therefore the number
of opportunities to insert loads and reduce average deadheading. On the other hand, a
naive carrier can only “append”’ shipments at the end of the route. Therefore, any
increase in gqueue length of shipments waiting to be served cannot be utilized to
improve the previous schedule.

Arrival rates also have a significant impact on the number of carriers
shipments waiting to be served (queue length). All things equal, a carrier’s queue
length tends to increase as the arrival rate increases -- up to a limit determined by the
average time windows length. At the arrival rate where that queue length limit is
reached, the advantage of the SFO carrier over the naive carrier is maximized. Under
very high arrival rates, al the carriers’ fleets are fully utilized irrespectively of their
intrinsic technology or efficiency. On the other hand, if the demand arrival rate is
low, such that the queue length is close to zero, a repositioning policy of moving idle
vehicles to geographic areas that are “sources’ (demand generating areas) may

provide a competitive edge (specially with short time windows).
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Figures 7, 8, 9, and 10 compare the performance of the 1IFOOC vs. SFO
technology. Figure 7 and 9 are absolute changes in profits and shipments served
respectively; while Figure 8 and 10 are percentage changes in profits and shipments
served respectively. The results obtained for the less sophisticated carrier (SFO
carrier in Figures 7, 8, 9, and 10) are used as the base line. The color convention
remains unchanged.

Unlike the previous results, the more sophisticated technology does not
outperform less sophisticated technology across the board. Profit-wise, the 1IFOOC
carrier obtains higher or equal profits than the SFO, yet no clear pattern emerges from
Figures 7 and 8.

Regarding shipments served, the 1FOOC carier tends to serve fewer
shipments when the time windows are short. However, 1IFOOC carrier tends to serve
more shipments for medium and long time windows. Arrival rates affect these
differences, because as arrival rates decrease the positive changes increase. However,
as arrival rates increase the negative changes decrease.

To understand why the 1FOOC technology outperforms the OFS, it is useful

to look at how they estimate the cost of serving a shipment. Assuming for a moment
any carrier i with a fleet status z, bidding for shipment s, , the margina cost

obtained with technology SFO differs from the result obtained with 1FOOC

technology by the term:
-, (s 11 =1 +x (s |1} =0)
As previously mentioned, this term measures the opportunity cost of winning

the current auction. The influence of the opportunity cost on carrier 1FOOC bids can
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be seen in Figures 11 and 12 which depict the percentage change in winning and
losing bids. The 1FOOC carrier sets bids values more aggressively (bids lower) when,
the time windows are not short, and the arrival rate is not too high. The 1FOOC
carrier bids less aggressively (bids higher) when the time windows are short and the
arrival rate is high. There are two distinct forces operating in the market: time
windows and arrival rates. An increase in arrival rates increases the bid values
(therefore the opportunity cost has increased). A decrease in time windows lengths
increases the bid values (therefore the opportunity cost has increased).

Short time windows affect the ability of carriers to “insert” new shipments,
therefore limiting carriers capacity, which increases the opportunity cost of serving a
shipment. The arrival rate effect on opportunity costs follows the universally accepted
economic laws of demand, supply, and prices. From the fleet management
perspective, it can be reinterpreted as a consequence of decreasing returns of scale,
where scale is measured by the number of shipments to be served or the length of the
queue. All things equal, having more having more shipments in the queue increases
exponentially the number of possible schedules and therefore the number of
opportunities to insert loads. Therefore, at low arrival rates and with a short queue
length, the opportunity cost may be negative. However, the number of possible and
feasible schedules starts to decrease if the queue keeps growing. Effectively, adding
an extra shipment (especidly if the static marginal cost is high) precludes servicing

other future more profitable shipments, which increases the opportunity cost.
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Another effect of adding opportunity costs can be seen in Figure 13 which
depicts the change in average loaded distance per shipment served. Carrier 1IFOOC
tends to serve shorter shipments when the time windows are short. This indicates that
the opportunity cost of a shipment increases with its loaded distance when time
windows are small, since inserting or even appending new shipments becomes more
difficult. Finally, Figure 14 points out what changes can be expected by shippers
when opportunity costs are incorporated. Shippers should expect prices to go up when
shipments have short time window and arrival rates are moderate to high. However,
prices should go down as time windows widen. Clearly, prices are adjusted to reflect

the difficulty or opportunity cost to serve them.

4.8. Private Fleets vs. Procurement Markets

It was mentioned in chapter 2 that in one-item auctions, truth revealing
auction mechanism like a second price auction, optimizes social welfare since the
item is acquired by the bidder with the highest value (lowest cost in a reverse
auction). In TLPM markets, a truth revealing auction mechanism, like the proposed
auction analysis, alocates each shipment to the carrier with the lowest expected cost.
Such mechanism cannot be guaranteed to optimize social welfare. However it is till
incentive compatible and guarantees that the shipment is handed to the carrier with
the lowest expected cost, therefore the mechanism is ex-ante efficient.

It was mentioned in chapter 1 that vertical integration takes place when each
shipper uses a private fleet. Equipment availability and service quality is guaranteed

but at the cost of excessive deadheading. Conversdly, in a market, shippers must
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search for and transact with carriers interested in providing the demanded services.
Auction analysis can be used to approximate what can be gained by “society”, in
terms of extra-generated wealth, when an ex-ante efficient marketplace is

implemented.

4.8.1. Assumptions and Results

Figures 15, 16, 17, 18, 19, and 20 show the changes in average empty
distance, total number of served shipments, and total wealth generated when a
marketplace is implemented. The original market consists of four shippers with
private fleets of two vehicles each. Shipments are assigned to each carrier asfollows:

carrier one serves shipments{s, s,,..., So7} »

carrier two serves shipments{s,, s, ..., Sy} »

carrier three serves shipments{s,, s, , ..., S0} , ad

carrier four serves shipments{s,, S, ..., S0} -

The TLPM consists also of four shippers and four carriers, however,
shipments are assigned to the carrier with the lowest cost. All carriers are
implementing the same SFO (static fleet optimal) fleet management strategy.

Figure 15 and 17 indicate that deadheading is reduced considerable across the
board, improvements range from 24% to amost as high as 50%. The number of
served shipments increased considerably with short time windows and at high arrival
rates. The increases indicate that in a competitive market, the cost of serving a

shipment provides a competent tool to allocate supply and demand.
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The market system clearly generates more wedth than a system of
independent shipper-carrier pairs. In absolute terms, the additiona wealth that is
generated by the marketplace increases with the arrival rate (see Figures 19 and 20).
However, percentage-wise, the major increases correspond to short time windows
and, in alesser degree, to high arrival rates. Results that reflect the influence of the

additional shipments served (see Figures 17 and 18).

4.8.2. Resale TLPM
The benefits of a TLPM can be reached even if each carrier has signed a
private contract with a shipper (dedicated carrier situation). The carriers can set up

their own private “resale’” marketplace. When a carrier, caled A for “assigned”
carrier, is handed a shipment s;, the carrier estimates his cost of servings,,

denoted cJ.A. Then, carrier A calls for a second price auction for shipment s; with

A

secret reservation price c;'. If the lowest bid, denoted c}l’ , Isless than the reservation

price ( c}l) < c].A ), the lowest cost carrier is handed shipment s; and is being paid an
amount equal to min(c?,c?).

The implementation of such aresale TLPM clearly benefits carriers and could
be the basis for cooperation and partnership agreements. The benefits to the carriers
are clearly independent of the level of the originally contracted payment in the
carrier-shipper agreement. Furthermore, the same alocations and payments are

obtained with a private marketplace and with private contracts plus resde
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marketplace, independently of marketplace carriers or demand characteristics. Market
forces are providing a decentralized matching of supply and demand — matching

which is ex-ante efficient — in an incentive compatible environment.

4.9. Summary

This chapter studiesa TLPM based on cost competition. In this environment a
genera framework to evaluate DVR technologies was introduced. The proposed
methodology to test DV R technologies seems more adequate to evaluate competitive
performance than traditional analysis of agorithms; especialy in logistics and
transportation problems embedded in dynamic stochastic environments and
supporting e-commerce marketplaces and activities.

The auction methodology was successfully applied to evauate the
competitiveness of three distinct DVR technologies. It was shown that under certain
demand condition auction analysis of algorithmsis similar to average cost analysis. It
was shown that the estimation of opportunity costs in an online marketplace provides
a competitive edge. However, an exact calculations of these opportunity cost can be
quite challenging. A simplified approach (1-step-look-ahead) to estimate opportunity
costs was developed and applied successfully. Cost competition was aso utilized to
demonstrate the advantages of a market structure over a set of independent fleets.

In this chapter it was assumed that carriers' best strategy was cost bidding.
Chapter 5 presents a framework to study carrier behavior in TL sequentia auctions.
Under that framework, cost bidding is considered a particular case that can arise

under determined auction and informational settings.
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Chapter 5: Boundedly Rational Behavior in a TLPM

This chapter lays out the basis for a conceptual framework that facilitates the
study of behavioral aspects of carriers participating in TLPM. The behavioral
assumptions used in chapter 3 and 4 are specia cases of this genera framework. An
important chapter objective is to link a carrier’s behavior to the auction and
competitive setting as well as the carrier knowledge and problem solving capabilities.

Section one introduces the concept of bounded rationality. Section 2 presents
a literature review of boundedly rational behavior in auctions and marketplaces (in
chapter 2 a game theoretic auction literature review was presented). Section 3 defines
bounded rationality in the TLPM context. Section 4 identifies and anayzes the
sources of bounded rationality. Two of the identified sources, knowledge acquisition
and problem solving capabilities are analyzed in sections 5 and 6 respectively.
Section 7 evaluates different bidding problems from a complexity point of view.
Similarly, section 8 compares the complexity of first and second price auctions in an
array of different bidding problems. Section 9 defines the factors that are used to

classify carriers’ behavior. Section 10 summarizes the chapter.

5.1. The Genesis of Boundedly Rational Behavior

Competition in a TLPM is an ongoing and sequential process, and thus
naturally represented as an extensive-form game. The standard notion of rationality
(for economists at least) requires that agents automatically solve problems that may

in fact lay beyond the capabilities of any agent (Colinsk, 1996). Chapter 3 presented
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the game theoretical formulation of the sequentia auction TLPM problem.
Unfortunately, the problem is intractable and well beyond the conceptua and
computational abilities of ordinary humans or decision support systems. In addition,
response time limitations, framing effects, and cognitive limitations of the human
mind impede bidders' ability to strictly adhere to precepts of economic rationality.
The framing and cognitive limitations of human judgment and decision making have
been widely studied and reported (Camerer, 1995; Kagel, 1995), mainly in the
psychology and behavioral economics literature. Therefore, the basic motivation for
studying models of bounded rationality in TLPM environments stems from the need
to inject adimension of behavioral realism in situations where perfect rationality may
be implausible.

When the complexity of the auction problem precludes bidders from
implementing optimal solution strategies, computational agents (or human beings
with the help of decision support systems) need to simplify or modify the origina
decision problem. Boundedly rational behavior, as studied in this research, is born out
of these simplifications or aterations to the original intractable problem. This chapter
provides a behavioral framework to represent how carriers might tackle the
overwhelming complexity of the problems they face in a TLPM (complex detailed
histories, numerous current options, future infinite contingent options, and the
potential consequences).

Boundedly rational bidders solve a less complex problem than fully rational
bidders. The type of problem they solve is directly influenced by available response

time, existing computational/material resources, and their own cognitive/decision-
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making process. Although the result of boundedly rational deliberation would not
necessarily be an equilibrium solution, the boundedly rational response would likely
have greater relevance to how ordinary carriers would act in sequentia auction
TLPM. The introduction of boundedly rational decision makers radicaly aters the
notion of equilibrium and decision making. The next section reviews the bounded

rationality literature in auctions, marketplaces, and freight transportation.

5.2. Relevant Background Review and Concepts

This section reviews the large body of research that deals with boundedly
rational behavior in auctions, with special emphasis on those contributions that are
relevant to sequential auctions and TLPM’s. Contributions are mainly classified
according to the disciplinary approach taken or the academic background of the

authors.

5.2.1. Operations Resear ch and Computer Science

The first contribution of operations research to auction theory is attributed to
Friedman (1956), who presented a method to determine optimal bids in afirst price-
sealed bid auction. Actually, the first Ph. D. in Operations Research (OR) was granted
to Friedman for his work on auctions (Rothkopf, 2001). Friedman’s idea was to
estimate the probability distribution of the best competitive bid on the basis of
previous bidding data/records. The distribution of competitors bids could then be

used to estimate the bid that maximizes expected profitsin afirst price sealed auction.
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In a reverse auction, calling B the set of feasible bids, ¢ the cost of

producing or serving the auction item, and p(b) the probability that bid be B isthe
lowest bid, the optimal bid b, according to Friedman’s modd is:

b eargmax (b—c) p(b)
beB

Friedman's approach did not seek equilibrium among rational bidders. It
presented the best response of a bidder that model competition as a probability
distribution.

Extensive literature in OR and technical journals took Friedman’'s approach
and tailored it to practical bidding applications in the construction, timber, and
petroleum industries. Stark and Rothkopf’s (1979) comprehensive bibliographical
review contains hundreds of references to the aforementioned literature. Friedman’s
approach is appealing for a boundedly rational bidder seeking a good bidding strategy
rather than a presumed equilibrium.

The description, evolution, and usage of a red-life bidding system is
presented by Keefer et a. (1991). The purpose of the bidding system was to provide
decision support and insight to Gulf Oil Corporation managers. The bidding system
combined techniques from decision analysis, statistics, and nonlinear optimization.
The system was used in the early 1980’ s to bid for U.S. offshore oil and gas leases, an
auction environment characterized by considerable uncertainty from multiple sources
and many interrelated decisions. The system was used as a decision tool in Gulf's
bids that totaled over $1.5 billion. Equilibrium was not analyzed nor considered in the

model; rather the emphasis was on estimating the probability of winning (based on
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past data), allocating the limited budget to the most promising oil exploration blocks,
and on forecasting and performance models for oil production and future oil prices.

The emergence of electronic commerce and auction marketplaces in the
mid/late 1990’ s stimulated boundedly rational auction research. Larson and Sandholm
(2002) study optimal strategies for computationally bounded agents. The agents face
uncertainty in their valuations, however the accuracy of the vauations can be
improved by spending more computational resources. Agents are free to compute on
any valuation problem including their opponents'. Larson and Sandholm distinguish
two types of computation (deliberation): (a) strong, if an agent uses part of its
deliberation resources to compute another agent’s valuation problems, and (b) weak,
if an agent does not use part of its deliberation resources to compute on another
agent’s valuation problems. If the computational power is bounded and free, agents
only estimate their own va uation in second price auctions (weak). However, this does
not hold in first price auctions where agents have an incentive to use resources to
estimate competitors valuations (strong); therefore not obtaining their own best
achievable valuation. These results cannot be generalized to multiple objects (Larson,
2002) or when computations are costly (Sandholm, 2000).

Part of the computer science community retook the OR auction tradition but
incorporated a multi-agent system perspective, agent learning, and simulation flavor
to it. Richter (1998) uses genetic algorithms to improve bidding strategies in an
environment where electric companies buy and sell power via double auctions.
Boutilier et al. (1999) provides a Markov Decision Process (MDP) formulation of the

bidder's problem in sequential auction of objects with complementarities as an
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aternative to combinatorial auctions. The MDP model does not alow for strategic
interaction, the bidding agent takes the expected prices as given and does not compute
the impact of his bids on his competitors behavior. Agents update its bidding policies
based on past price observations. Kephart et al. (2000) use simulation to study search
and pricing by computational agents (shop-bots). Walsh et a. (2002) propose a model
for analyzing complex games with repeated interactions, for which a full game-
theoretic analysis is intractable, using simulation and evolutionary selection of
strategies, and finally perturbation analysis to determine the most plausible equilibria.

Zhu and Wurman (2002) simulates the market interaction of boundedly
rational bidders in a first price sequential auction, with severa identica items for
auction, where bidders are interested in just one item and have independent private
values. They assume that players use fictitious play to model opponents bidding
behavior. It is assumed that after each auction, a bidder gets to see all competitors
bids. Tesauro and Bredin (2002) develop a dynamic programming formulation that
can be used to formulate agent bidding strategies in double auctions with sequential
bidding, continuous clearing, and buyer/seller agents. States are represented by an
agent’s holding, and transition probabilities are estimated from the market event
history. The model uses a belief function (about price formation), combined with a
forecast of how it changes over time, as an approximate state transition model in the
DP formulation. With a similar approach, Hattori et a. (2001), develop a DP
formulation for agents with quasi-linear utilities and budget constraintsin afirst price

auction.
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A common theme in the reviewed papers is a predominantly non-strategic
approach to auctions and market interactions, following Friedman’s model. Despite
the non-strategic approach, simplifications are still necessary in order to obtain
tractable problems (for example, sufficiently compact state-spaces for DP
formulations); the auction problems have to be solvable. In repeated auctions learning
IS an issue that it is mostly ignored, except for the simple updates of the state

transition function as the game is played or auctions are resolved.

5.2.2. Economics-L earning and Experimental Game Theory

The concept of bounded rationality economic agents was first fully articulated
by Simon (1955 and 1956). There are two main sources of objections to the
traditional rational model of the economic man. First, many researchers are uneasy
about the fundamental assumptions of rationaity and game theory that are
inconsistent with evidence about human decision-making. Secondly, there is
widespread documentation of anomalies observed in the outcome of laboratory
experiments (i.e. rationality does a poor job explaining the outcomes). A survey of
those objections can be found in Camerer (1995) and Kagel and Roth (1995)
respectively.

These incompatibilities between theory and experiments led empirical
economics researchers (econometricians) to search for models that better fit their
observations. A family of models that has close ties to discrete choice modes of

behavior arises when the perfect rationality assumption of game theory is relaxed
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(introducing some noise into rational behavior, mostly via alogit probabilistic choice
functions).

In a seminal work, McKelvey and Pafrey (1995) proposea model of
stochastic choice in finite games. McKelvey and Palfrey interpret the agent or player
underlying decision processes and knowledge of the game as rational with the
addition of noise (an error term). A logit formulation can be used. One of the most
appealing features of this formulation is that it is parameterized in a way that
isintuitive for interpretation from a bounded rationality perspective. As one
parameter varies from zero to infinity, the choice behavior of the agent varies from
being random to rational. Further, different players can exhibit different degrees of
rationality. The logit equilibrium is a generalization of the Nash equilibrium, which
incorporates decision error and links the likelihood of a deviation from a best
response to the cost of such a deviation.

Chen et al. (1998) add conditions that in repeated games lead to a convergence
to equilibrium. They explicitly introduce learning in their model structure, assuming a
population of players who repeatedly play the same game, and model the dynamic
learning through fictitious play (Brown, 1951). Under fictitious play, players beliefs
concerning the other players choice probabilities are given by the frequency of
observed past behavior. Anderson et al. (1999), extend the use of the logit equilibrium
to a continuous set of actions. Rather than limiting the game to a discrete set of
actions, the action set is an interval of the real line. This type of gameis easily found

in economic situations anytime prices or bids are assumed to be continuous. Since

147



there is a continuous set of possible actions (decisions) the equilibria are
characterized by a probability density function over the space of actions.

Other learning models are based on reinforcement. Archetypal examples of
this type of models include Arthur (1993) and Erev and Roth (1996) models of
learning. The agent keeps track of a cumulative utility index and chooses an action
with a proportional probability, where ratios of choice probabilities for two decisions
depend on ratios of the cumulated payoffs for those decisions.

Fictitious play (Brown, 1951), has already been mentioned. With fictitious
play, the agent chooses at each period the best response to his present conjecture on
others' strategies. But he acts more or less myopically, since he re-optimizes at each
step, not only on a limited horizon, but without considering that his beliefs or
conjunctures will change. The standard fictitious play assumes that the probability of
an opponent’s next action equals its frequency in the past. A weighted sum giving
more importance to the last actions can aso be employed.

Fudenberg and Levine (1998) thoroughly detail the convergence properties of
fictitious play. An application of this type of learning to auction is done by Hon-Snir
and Monderer (1998). They study repeated first price auctions, where bidders have a
discrete distribution of private values. Bidders are boundedly rational, they use
learning with bounded recall and fictitious play, and each player's private value is
determined before the first auction and does not vary with time. Hon-Snir and
Monderer find that after a sufficient amount of time the players play the one shot
auction equilibrium in which players types are common knowledge, i.e. the player

with the highest valuation wins the object and pays the second-highest valuation. In
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the long run a repeated first price auction yields the outcome of a one-shot second-
price auction. The results are sensitive to the tie-breaking rule used, a caveat of
discrete models.

McCabe et a. (1999) argue for the simultaneous use of game theory and
laboratory experimentation to guide auction design. Olson et al. (1999) document a
series of controlled experiments in the trading of wholesale electricity using cash
motivated students. The experiments aim to compare the performance of two systems:
a day-ahead sealed bid trading and a simultaneous continuous double auction (up to

the hour of delivery).

5.2.3. Economics - Agent based Computational Economics

Agent based Computational Economics (ACE), studies the economics of the
self-organization of boundedly rational agents (Tesfatsion, 2001). The approach relies
heavily on simulating the interaction of heterogeneous agents among each other and
with the environment on the basis of their behavior and experience. Agents
continually adapt and experiment new rules of behavior. Usually, once initial
conditions are set, all subsequent events can be initiated and driven by agent-agent
and agent-environment interactions without further outside intervention.

Work done in ACE that closely relates to this research includes the simulation
of auctions in the electric power marketplace (Bower, 2001). Andreoni and Miller
(1995) use bidders represented by genetic algorithms in first and second price
auctions. The authors suggest that such a simple adaptive learning process provides a

lower bound on the potential impact of learning in auction systems. Among their
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main findings, Andreoni and Miller report that auctions are very problematical
environment for genetic based learning. Independent values and first price auctions
tend to make learning even harder.

The approach of ACE is somewhat similar to the one used later in this
research. After defining and anayzing different types of carrier bounded rationality,
simulation is used to study the interaction of carriers among each other and with the

environment on the basis of their behavior and experience.

5.2.4. Automata M odels and Machine Learning

Another more theoretical path of research about boundedly rational agents is
found in the area of automata and machine learning models. From the strategic point
of view these models tend to be more sophisticated than the previously mentioned.
These machines believe that other machines are also learning or speculating and may
try to anticipate how these other machines are going to change before deciding what
to do.

Binmore (1987, 1988) proposes the replacement of perfectly rationa players
by machines. These machines can be represented in games as Turing machines. Each
machine has in itself some approximate idea of what the other players (machines)
may look like. When these machines play a repeated game they are limited to using
mixtures of pure strategies, each of which can be programmed on a finite automaton
with an exogenously fixed number of states.

Stahl and Wilson's “players models of other players’ (1995) where players

truncate an internal simulation of the model of the other playersis an example of this
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type of cognitive process. Stahl uses this model to explain how people play games (in
controlled experiments). This model admits players with different types or levels of
rationality, from a zero level (no modeling of the opponents) to the n-level player
(can compute the expectations and play of the competitors up to n-1 levels of best or
optimal responses).

When the game players' reasoning becomes limited to n-common knowledge
(crossed probabilistic expectations truncated at finite level n), and all the agents are of
this type they give origin to a “rationalizable equilibrium,” a weaker equilibrium
notion than Nash Equilibrium (Walliser, 1998). In this equilibrium, each player
chooses a best response to their competitors expected strategies estimated in a
recursive loop up to some common level.

Modeling players model of other players in the machine learning context is
done by Vida and Durfee (1995). Wellman and Hu (1998) study the equilibrium of
multiagent learning, when all agents (machines) are simultaneously optimizing and
learning in a double auction. Vidal and Durfee (2003) try to predict the expected
behavior of agents that learn about other agents; however the task is highly complex

unless extreme simplifying assumptions are taken.

5.2.5. Bounded Rationality in Freight Transportation

Unfortunately, empirical or theoretical work dealing with carriers cognitive
process or bounded rationality is practically nonexistent. Even in the travel behavior
research community the behavioral dimensions of freight demand has received

limited attention (Mahmassani, 2001). Part of the vehicle routing literature deals with
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the implementation of online computerized routing and scheduling optimizers, for
example Bell et al. (1983), Powell et a. (1988). More relevant work from the
boundedly rational point of view is presented by Gelfand et al. (1998) and Powell et
al. (2002).

Gelfand et al. (1998) describe pattern learning in a motor carrier scheduling
system. The scheduling system is based on a dynamic programming formulation;
however the formulation does not include al possible states of the system. Human
dispatchers experience and patter recognition abilities are used to improve the
performance of dynamic programming based scheduling system. Basically, human
dispatchers can recognize states that computational decision support system can't. It
is the first reported contribution of systematic human-computer system learning in
freight transportation scheduling.

Powell e a. (2002) discusses the challenges faced over a two years
implementation of a dispatching decision support system. From a boundedly rational
perspective, their work is noteworthy in that it compares the decision making process
followed by humans and mathematical programs. Powell € a pointed out that a
major difficulty for implementing effective computerized dispatching systems is the
information transmission process among different agents: drivers, dispatchers, and the

decision support system.

Summarizing, this section has presented a survey of relevant literature in

bounded rationality with applications to auctions, bidding, and freight transportation.

Given the breadth of topics covered, the survey does not intend to be exhaustive;
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rather it aims at highlighting important references. Different research approaches are

pointed out to better frame this research in the existing body of research.

5.3. Modeling Bounded Rationality

The literature review revealed the variety of approaches that could be used to
model boundedly rational bidders. Bounded rationality is borne out of simplifying a
(complex) problem or the cognitive/material limitations of the decision maker (or
decision support system). Therefore, bounded rationality is always associated with the
notion of deficiency or insufficiency of a positive quality (of a rationa player).
Though bounded rationality as a research topic is not new, it was first proposed by
Simon (1955), many modeling issues surrounding boundedly rational decision
making have not yet been fully addressed.

Bounded rationality and learning in games are currently very active areas of
research; however general and comprehensive models that integrate how agents (or
humans) acquire, process, evaluate, search for information, and make decisions are
still mostly open. As expressed by highly respected game theorist Robert Aumman,
“there is no unified theory of bounded rationality, and probably never will be.”
(Aumman, 1997, page 4).

Rationality assumptions are very convenient from a modeling point of view.
The self-referential nature of rationality (coupled with common knowledge in games)
imposes astringent limitations on how arational agent (player in a game) foresees his
competitors behavior and how the competitors foresee other players behavior.

Bounded rationality come with an embarrassment of riches in terms of the number of
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possible deviations from a fully “rational” model. When boundedly rational behavior
appears, it may take on many different forms. Boundedly rational decision makers do
not necessarily choose equaly, even when having the same knowledge or
information. Furthermore, there may be many “plausible” boundedly rational models
that can explain a given social or economic phenomenon. Correspondingly, the many
possible ways a boundedly rational bidder can model his competition, and vice versa,
adds a class of uncertainty not found were players are perfectly rational.

Determining the bounded rationality of a carrier is crucia since it is
equivaent to determining how the carrier bids (i.e. his bidding function) in a TLPM.
Similarly, determining that al carriers are rational is equivalent to determining how
the carriers bid (i.e. their bidding function) in a SIPV setting. A bidding function, as
understood in this research, is a process, whose inputs are a carrier's private
information and his knowledge about the auction and competitors, and whose output
isabid.

Given the plethora of games and decision problems, boundedly rational
behavior is hard to define, classify, and model in general terms. When the restrictions
of rationality are lifted, any general assumption about the behavior of the bidders that
is not properly justified, introduces a strong sense of arbitrariness. In order to avoid
thiskind of arbitrariness, the discussion of bounded rationality is limited to the TLPM
context. Furthermore, departures from the rationaity model are analyzed and

connected to carriers cognitive and problem solving processes.
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5.4. Sources of Bounded Rationalityin a TLPM

Bounded rationality can stem from different cognitive and
computational/physical limitations, in the TLPM context, the following classification

of sourcesis proposed:

0 Bounded Recal and Memory: a carrier has limited memory (physica
capacity) to:
0 record and keep past data/information
0 simulate and record data of all future possible paths in the decision
tree

0 Processing Speed: time is vauable in a dynamic setting. Most practical
problems have a limited response time that may limit the solution quality or
decrease the effectiveness of a delayed response.

o Data Acquisition and Transmission: data acquisition and processing is usually
costly. Furthermore, the transmission of data among agents can be noisy. In a
world with bounded resources (budget/memory/attention), deciding how, how
much, and what type of information should be acquired, kept, transmitted, or
anayzed can lead to complex decision problems.

o Knowledge Acquisition: in a dynamic strategic situation, as data is being
revealed or obtained, carriers have the potential to acquire knowledge (truths
about competitors or the environment) from logical and sound inferences. In

particular, the decision maker may have limited ability to discover
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competitors' behavior, which may involve modeling and solving complex
logical and econometrics problems.

0 Problem Solving: as a carrier participates in a TLPM market, it is required to
make decisions (bidding or fleet management decisions). These decisions
may lead the carrier to formulate and solve complex optimization problems. In
particular, the decision maker may have limited ability to predict or model the
impact of his own actions on future fleet operational costs or on his

competitors behavior.

Although the five aspects of bounded rationality are somewhat interrelated,
this research focuses on the knowledge acquisition and problem solving aspects.
Memory and processing speed are physical limitations. It is assumed carriers have
enough material resources and response time/speed to implement bidding and fleet
management strategies with different degrees of sophistication. Carriers have
limitations to formulate and elucidate knowledge acquisition problems. Similarly,
carriers have limitations to formulate and solve complex optimization problems. The
data available to carriers is only limited to data publicly and freely disclosed after
each auction, which renders the data acquisition problem trivial. No transmission
losses or aterations are considered.

The focus of this research is on the knowledge acquisition and problem
solving aspects, as they capture how carriers can frame and solve TLPM problems.

Therefore, the emphasis is on the more “mental” processes that determine behavior
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rather than on the “physical” limitations. Knowledge acquisition and problem solving

inaTLPM are analyzed in the next two sections.

5.5. Knowledge Acquisition in a TLPM

InaTLPM, each carrier is aware that his actions have significant impact upon
his rival’s profits, and vice-versa. In the perfect rational model, common knowledge
and logical inferences allow the estimation of the impact of a carrier’s actions on
competitors' profits and vice-versa. It is implicit that a rational bidder bids as a
rational bidder. In a boundedly rational model, a carrier faces two basic types of
uncertainties regarding the competition: (a) an uncertainty relative to the private
information of his opponents, and (b) a strategic uncertainty relative to bounded
rationality type of the others players.

The first type of uncertainty, using the notation developed in chapter 3, is
about 6;'={z',a’,c'} for a carrier ieJ at timet,, the private information
regarding competitors' fleet status, assignment, and cost functions. This type of

uncertainty is also present in most game theoretic auction models (games of

incomplete information). The second type of uncertainty is about the bidding
strategies that the competitors use, b ={b',...,b'™", b™,...,b"} the set of bidding
functions of al carriers but carrier i. It is implicit that a boundedly rational bidder

bids accordingly, i.e. as a boundedly rational bidder. However, it is not evident for the
competition to determine what “type” of bounded rationality a carrier has. This type

of uncertainty is not present in game theoretic auction models.
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Depending on a carrier’s ability to elucidate uncertainties (a) and (b), two
extreme cases may take place:

1. No knowledge acquisition. The carrier cannot form a useful model of
competitors' behavior that links their private information and their
bids. In this situation, the “best” a carrier can do is to observe market
prices and estimate them as the result of a random process. In the
notation introduced in chapter 4, this is similar to assuming that
competitors are playing b™ (£) =f (&) or simply b (&) =¢&
where £ is a random process that is not linked in any way to
carrier 1'S bidding, capacity/deployment, and history of play or to the
competitors private information 6,' ={z,',a”',c'}.

2. Full knowledge acquisition. The carrier knows 6,' ={z,',a",c"} and
asob™ ={b',..., b b™",...,b"}, therefore carrier 1 isableto precisely
foresee what the competition is going to bid for shipment S;.

However, carrier | still has uncertainties about the future bids, simply
because carrier | does not know the future realizations of the demand.
Nevertheless, carrier i can estimate future prices not just as a

stationary random process but as a function of shipment arrival
distribution, shipment characteristics distribution, competitors

behavior, and  competitors private  information.  This

is £=1(Q,0,",b™).
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In game theoretic terms the former case is not possible since there is no game
if players cannot speculate about the competitors actions. The latter case corresponds
to a game of perfect and complete information if all the players are rational and the
private information is common knowledge. Knowledge states in between the two
extreme cases correspond to games of imperfect information, if all the players are

rational and there is uncertainty about the players' private information (as in chapter
3, the uncertainty can be expressed as p(6;" |6, ,h.,)).

The two extreme cases have aready been analyzed in chapter 4. The no-
knowledge case corresponds to the general competitive situation described under
auction anaysis while the asymmetric full-knowledge case (one carrier has complete
knowledge and the others have no-knowledge) corresponds to an acceptance/rejection
problem. Therefore, the value of full knowledge acquisition in a TLPM or any other
competitive situation, for a given player can be defined as the difference in profits
between the full-knowledge and no-knowledge cases. A definition that is fairly
similar (at least in spirit) to the definition used in stochastic programming for the
value of the stochastic solution.

Acquiring knowledge about the competitors' private information and bounded
rationality type poses a potentially highly complicated econometric/logical problem.
A carrier’s behavior is likely to be affected by his own history and how the carrier
perceives and models the strategic situation. From the public information (revealed
after each auction) and its own private information a carrier needs to build a model of

the private information and bounded rationality type of his competitors.
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Even in smple auctions, the econometric models can quickly become
extremely complex and data are usually not rich enough to successfully estimate
those structurally complex models (Laffont, 1997). Furthermore, the complexity of
the underlying DVRP adds hurdles to the problem. However, the most challenging
obstacle may come from the competitors, which may be *sophisticated” enough to
realize that they are bidding against other bidders who are aso learning and may
adjust their behavior accordingly, in order to obstruct the process of knowledge
acquisition. This type of sophistication is particularly important when the fact that the
same carriers interact repeatedly is common knowledge.

In most game theoretic models, a simple private value probability distribution,
symmetry, rationality, and common knowledge assumptions permit a closed
analytical solution. In equilibrium bidders know the competitors’ bidding function,
however, they do not know the realization of the competitors private value, therefore
they do not know the competitors' actual bid. Conversely, in a TLPM, private values

are not random but correlated, the status of a carrier at time t; provide useful

information to estimate the status of the carrier at timet;,,. A bidder may potentially

obtain information about competitors private values and bidding functions if the
bidder invests resources to infer them. Market settings, such as auction data disclosed
and number of competitors, strongly affect the difficulty of the inference process.
Summarizing, repeated interaction can lead to learning and knowledge
acquisition. This research distinguishes among the two. Learning takes place in the
no-knowledge case; the carrier does not get to know the competitors behavioral

processes just the price function as a random process. Learning is superficid, it is
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merely phenomenological. In the full knowledge case, the carrier acquires knowledge
about the competitors behavioral processes. Knowledge acquisition is deeper; it is

causal.

5.6. Problem Solvingin a TLPM

The previous section focused on “what can be learnt or known” about the
competition. This section specifically contemplates “how carriers come up” with a
bid or decision given what has been learnt or what knowledge has been acquired
about a problem. Usually, models in which decision makers are assumed rational do
not explain the procedures by which decisions are taken, rational procedures are
implicitly embedded in the answer or approach. Furthermore, economic models pay
no or little attention to how hard it is to make decisions. Conversdly, boundedly
rational decison maker models detail the procedural aspects of decision making.
Those detail procedures are the essence of a boundedly rational decision making
model. The degree of intricacy of the decision making procedure is used in the last
part of this chapter to classify boundedly rational behaviors.

Asacarrier participatesin a TLPM market, it is required to make decisions, to
choose among alternative future paths. Each decision poses a problem that the carrier
has to solve (not necessarily optimally). The rest of this section analyzes, in this
order, the type of decision acarrier facesin a TLPM and how bounded rationality can

appear in the steps of a decision making process.
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5.6.1. CarriersDecisonsina TLPM

From the carriers point of view, the choice problems that take place in a
TLPM are either bidding or operational (fleet management) decisions. Bidding
decisions may carry a strategic value since they directly affect competitors' profits.
Bidding decisions are also the result of a boundedly rational decision process, a
carrier’s choice and therefore can reveal or transmit information about a carrier’s
decision making process or intentions.

Operational (fleet management) decisions mostly affect a carriers own fleet
status (private information). Therefore, operationa decisions are considered non-
strategic and take place as new information arrives. auctions are won or shipments are
served. This type of decision, for example, includes the estimation of a shipment
value or service cost, the rerouting of the fleet after a successful bid, the reaction to
unexpected increase in travel times, etc.

In this research, a strategic decision is defined as the investment of resources,
for the purpose of learning about or influencing competitors. The ultimate goa of a
strategic decision is to improve future profits but somehow linked to future the
behavior or reaction of the competitors. In an environment where bidders know that
competitors are also learning about the marketplace environment, strategic decisions
can be sub-classified as identifying or manipulative.

Identifying decisions are characterized by attempts to identify or discover a
competitor’s behavior — the second type of uncertainty dealt with in the knowledge

acquisition section. Those labeled manipulative are decisions that aim to control

162



competitors future behavior —i.e. use the behavioral knowledge acquired to improve
future profits.

Whether a carrier can bid strategically or not it is an important characteristic
that is used to classify bounded rationality behavior in section 7. The anaysis of the
decision making process from a bounded rationality perspective will be discussed

next.

5.6.2. Bounded Rationality and Decision M aking

Given a decision maker and a decision problem, arational decision maker, as
assumed in economic theory, chooses an aternative after inquiring (Rubinstein, 1997)
what can be done, how to evaluate, and what to choose given aternatives and values.
This procedural description is expanded in order to fully dissect the relevant steps of
decision making in a TLPM. In this research a rational decision maker chooses an

alternative after inquiring and answering correctly:

0. What isthe decision/problem?

1. What are the feasible alternatives?

2. What isdesirable in an alternative?

3. How desirable is each feasible alternative?

4. What is the best alternative given the answers to questions 0,1, 2, and

3?
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Boundedly rational problem-solving arises if any of the previous questions are
not answered completely and flawlessly given the available data and knowledge
about the problem. Defining the problem or decision correctly is essential, hence
numbered as zero — needless to say that generally an optimal answer for the wrong
problem is not useful unless it is used to dyly misguide competitors. Problem
definitions can be quite challenging in real life decision making (as well as in
research projects).

The first question is associated to a search problem. Applying the concept to
the DVR technologies analyzed in chapter 4, it is clear that the naive technology is
boundedly rational since the search for alternatives is incomplete. Even the MIP
based SFO is boundedly rational because it does not include repositioning of idle
vehicles. In more general terms, the search problem may involve what and where to
search under time or budget constraints.

The second question is associated to defining the objective function. In the
case of the DVR technologies analyzed in chapter 4, the aternatives are ssimply
evaluated as a function of their profitability. If there were more than one objective
(i.e. profits and market share), the comparison of alternatives is not trivial as the
decision maker has to define a preference relation function for each possible pair (i.e.
{profit, market share}).

The third question is associated to the evaluation of each objective. In the case
of the DVR technologies analyzed in chapter 4, from a fleet management perspective,
the alternatives selected by the technologies SFO and 1FOOC are the same (the best

static assignment). However, the difference among the two technologies resides in the
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evaluation of the scheduling change cost or value. In the DVR ream, a technology
like IFOOC can be improved in two ways. (a) evaluating more aternatives — the
problem is how to select good candidates, and (b) improving the evaluation itself, for
example increasing the foresight to two, three, or more stepsin the future.

The fourth question is associated with putting it all together, in the vein of a
mathematical program or algorithm. The same type of analysis can be applied to

bidding decisions, which is done in the next section.

5.7. Bidding Problem Complexity

There are severa factors that contribute to the complexity of biding in a TLPM.
These factors are: competitors bounded rationality, knowledge about the competitors,
look-ahead depth, and the type of auction utilized. This section analyzes the first three
factors while the next section analyzes the | atter.

It was mentioned in the literature review that sophisticated boundedly rational
players have a “model” of the other players. In the work of Stahl and Wilson (1995)
and Vida and Durfee (1995), players model other players cognitive process and
decision rules up to a finite number of steps of iterated thinking. The number of
iterations that a player can perform is a measure of the sophistication of a player. A
zero level player does not model his opponents, it simply ignores the fact that other
agents exit. Reinforcement learning is an example of this type of agent
sophistication. A one level agent models only the frequency or another statistic that
represents other players’ actions. Fictitious play is an example of this type of agent

sophistication. A two level agent can simulate the other agents' interna reasoning
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process (i.e. a model of level zero or level one agents) and take an action by taking
into account how the other players (of level zero or one) are going to play. A level
three agent can build models, simulate them, and act in response to the behavior of
players up to level two. Recursively, alevel four agent can model the actions of level
three agents and so on. Perfectly rational agents can follow the recursion to an infinite
level. Then, if the level of rationality of aplayer is denoted by L', then that player can
model the most sophisticated of his competitorsuptoalevel L' =L —1.

Section 5.6 dealt with the level of knowledge about the competition. A player
with no-knowledge about the competition can only implement a level zero or level
one type of player since it cannot link his actions (bids) to the consequences that his
actions have. A player with full knowledge could possibly foresee (if it could only
solve the corresponding problems) the behavior of any player type. However, the
complexity increases as the level type to be implemented increases, i.e. as the

competitors bounded rationality sophistication increases.

The carrier with full-knowledge knows 6.' ={z',.a",c'} about the
competition and asob™ ={b',...,b"™*,b"™,...,b"} . Therefore, carrier | can compute
precisely what the competition is going to bid for shipment S; . However, carrier i

still has uncertainties about the future bids, simply because carrier 1 does not know
the future redizations of the demand. Nevertheless, carrier i can estimate future

prices, not just as a random process but as a function of shipment arrival and
characteristics distribution, competitors behavior and competitors private

information.
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When the knowledge is imperfect, complexity further increases since there is
a probability distribution over the competitors private information space.
Furthermore, the probability distribution is a function of the history of play and the

competitors' fleet management strategies. In mathematical notation, the probability
distribution of competitors’ future private informationis p(éy' |hy).

The third factor is the look-ahead depth. In a sequential auction setting like a
TLPM, bids affect future auctions profits. The look-ahead depth is the number of
future auctions that are taken into account when estimating how a bid may affect
future auctions profits. A zero step look-ahead (or myopic) analysis does not consider
future auction profits, just the profit for the current auction. A one-step look-ahead
analysis considers one future auction, current plus the following auction profits.

Similarly, a m-step look-ahead analysis considers m future auctions, current plus the
following m auction profits.

When the analysis is myopic, shipment s; is known and the uncertainties are
reduced to a minimum. Projecting one step into the future, the arrival time (t;,,) and
characteristics of shipments,,, are uncertain. Furthermore, if the link between
bidding and future prices ¢&,,, isincorporated, the optimal bid for shipment s; takes

into account its impact on competitors' bids (prices) in the next auction. Then, for

shipment s,,, the price function at timet;,; is afunction of the previous bids and the

i+
- - *i
unknown previous arrival &;,,(s;,b;') .

In the one-step problem, the arrival and characteristics of s;,; are uncertain,

but the future history h;,, isafunction of the already known s, . Projecting two steps
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into the future, the estimation of the future price function ¢, becomes more
complex. The price function &, for shipments,, is a function of the yet
unknown s;,, and the two previous bids{b}“,b}”+l |h;,,) . Moving one extra step into

the future increases the problem complexity significantly. For shipment s, the price

j+2

function at timet.

i+» Is afunction of the previous bids and the unknown previous

arrival &,,(s,,s,,,(t;,Q),b/' b/, |h,,). Calculation of future price functions is

increasingly difficult as uncertainties and dependencies on earlier (but not yet

realized) bids and shipments accumulate. When the look ahead is up to shipment s,

the number of decision variables B" ={b,..., b, | h,} to be estimated is

SN

k=0 b

When the number of players (bidders) isn, after each auction there aren
possible outcomes and future histories. If backward induction is used, for each
possible history it is necessary to estimate an optimal bid, the total number of

decision variables increases exponentially with the number of future look-ahead
steps. Let denote by = ={s,s,(t;,Q)...s,(ty,,Q)} the set of shipments to be
anayzed. Then, the future price function when earlier bids affect future prices and the
carrier hasimperfect information isafunction of & =f(b!',...,by_,=,p(6y' |hy)) -
Table 2 puts the three factors together. The table is set up in such a way that
the complexity of the price function & increases, moving downward or rightward.

With higher levels of competitors' bounded rationality, the complexity of the problem

increases exponentially with the number of iterations and playersto be simulated. The
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symbol (-)“”i is used to denote the number of iterations as a function of the number of

players and the highest level of iterations that the competition can sustain. Table 2, is
very general and accommodates al bidding and pricing problems seen so far.
Auction analysis of chapter 4 is a special case of the no-knowledge case (with second
price auctions). The acceptance rejection problems of chapter 4 are special cases of
the full-knowledge case.

The equilibrium formulation of chapter 3, is a special case of the imperfect

knowledge case when all players are rational and L' — oo. In the game theoretic

case, it is common knowledge that all the bidders are simultaneously foreseeing and
simulating each others bids and decisions at infinitum. Each cell of Table 2 is a
different decision theory problem that can potentially be expressed as a mathematical
program or agorithm. It was mentioned that the complexity increases moving
downward or rightward.

The problem solving capabilities of the carrier determines the type of problem
the carrier solves. For example, a carrier may have imperfect information about the
competitors; however, problem solving limitation may force him to solve a myopic
problem assuming no-knowledge about the competition. When cost or time
limitations are added to the problems, carriers can choose to ignore part of his
knowledge in order to get a reasonable answer in areasonable time, in the spirit of the
“satisfying” rule, originaly proposed by Simon (1982). According to Simon,
economic agents do not always optimize fully, they optimize up to a satisfying level.

Level that depends on personal characteristics and circumstances.
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Table 2 Bidding Complexity asa function of price function ( &) complexity
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Simplifying (downgrading complexity) the problem due to boundedly rational
limitations is always possible. In terms of the problem solving steps of section 5.6 the
bidding limitations stem mainly from step number three. It can be interpreted that
each problem type (each cell) of Table 2 is a different way of measuring how
desirable each possible bid is, for a given DVR technology. Step number one
(feasible aternatives) is determined partly by the DVR technology. Step number two
istrivial, since profits are the only objective.

In section 5 the value of knowledge was defined as the profit difference that a
carrier can obtain going from the no to full knowledge assumption. That definition
can be complemented by the value of computational power. The vaue of
computational power is the profit difference that a carrier can obtain from solving a
more complex problem due to the increased performance of his computational
resources.

Summarizing, based on their knowledge level and problem solving
capabilities, agents differ in the type of problem they can solve. Next section analyzes

the complexity of first and second price auctions.

5.8. Auction Mechanisms and Complexity

This section compares the complexity of first and second price auctions for
boundedly rational agents in TLPM bidding problems. Chapter 4 developed the
optimal bidding formulae for second price auctions and stationary price function.

This section develops a similar bidding function for first price auctions, compares the
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complexity of both types of auctions, and finally points out problems where both

auctions have similar complexity.

In a sequential first price auction, the best bid for serving shipment s; for

carrier i isequal to b)', where:

bj' e argmax B {[(b— (5, 2)1} + 7, (5 11} =D 1+, (5 11} =0 @-1)])

beR (5.9

i i § Rt A i
7TI,-+1,AA,N(S] ||; =1 = E(wj+1 ..... (uN)[ z E(g)[nl(bk 1CH S 4 |Ij =D 1]
K

=j+l

Tan(§ 1120 = Byl 2 Eolr'(B.C 8024 11 =0)]]

Eyln' (0.5, Z2)=E,[(B —Cc'(s.2) 1] (5.4)
I, =1 if &>k’ and I, =0 if &<b’ (5.5

Zli< =a (t, h, Zli<—1) (5.6)

(5.2)

(5.3)

In the first price formulation, the profit at each period is the difference

between the optimal bid and the cost of serving the corresponding shipment.

Accordingly, either b or b, has to be added in equations (5.1), (5.2), (5.3), and (5.4)

— replacing & by the bid value is the only difference between the first and second

price auctions formul ations.
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5.8.1. One Step L ook-ahead for First Price Auctions
If acquiring shipment s; does affect the marginal cost of serving future loads
(I8 Siiy» Sjsar -+ Sy), this must be taken into account. In afirst price auction, it still

holds that a new load (@) temporarily reduces carriers capacity (capacity defined as
the ability to serve additional shipments at a point in time) and (b) changes the current
schedule and therefore possibly changes fleet deployment at the time of the next
shipment auction. The only exception to this takes place in the final auction

(shipment s, ) if there are no repositioning costs (for example, trucks do not return to
acentra depot).

The estimation of the best bid for shipment s, is greatly simplified if it is
assumed that shipment s, ., is the last shipment to ever arrive at the marketplace. The

solution of the one step problem for the second price auction isin chapter 4, section 7.

This section presents the equivalent analysis for the first price auction.
Using backward induction, the optimal bid, b, for shipment s,,, has to be

estimated first. This bid would be ssmply:
blscagmax Ey[(b - C'(Ser Zea [lilea]l  (B7)
beR
l,,=1 if &>b', and 1,,,=0 if &<b,
Since there are two possible values for |, , two optimal bids must be estimated
for shipment s.,,. One bid is for the case where the auction for shipment s is

won(l, =1)), the other bid is for the case where the auction for shipment s, is
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lost (I, =0). The last equation (5.7) assumed that the value of the shipment s,,, is

known. The expected profits obtained with the optimal bids are respectively:

nik+1($< |||I< :1) = E(wm)[E(g)[ni(h:iﬂ’Ci’S<+1’ Zti<+1 | Ili< :1)]]:
= B [En (B = € (Sen Zea [ 1 =) 1al]

E(wk+1)[E(§)[n i(h:iﬂ’ci 1 St Zli<+1 | ILI< = O)]] =
= B [Eo [0 = €' (Sea Zea 1= 0) 1]

T (Sc [ =0)

Then, the optimal bid for shipment s, isthe bid that maximizes this function:
b e argmax Eg, [ (b— ¢ (5, Z2)i + Mo (S 11 =D 1 + (s 11, =0 (A-1,)]
beR (5.8)

I, =1 if &>h' and I, =0 if ¢&<b

Using backward induction, the values of b |1, =1, b, |l =0,
T, (S =1, 7m..(s|l, =0), and b'areto be estimated in that order. In general,
solving equation (5.8) or even equation (5.5) can lead to a nonlinear optimization
problem (even assuming that the random process & corresponds to a simple

distribution such as the uniform distribution). In order to estimate (5.8) three

optimizations are needed, one for each possible bid. In genera, for N -k stepsinto

the future, the number of nonlinear optimizations to be performed is:

N-k
2'+1
1=

In comparison, the second price auction requires solving equation (4.18)

instead.
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*i

¢ = C(82)-mu(s |l =1 +m, (5|1, =0) (4.18)
Tea(S 1 =D = B, J[En[(E = € (Searr Zear [ 1 = D) 14yl

Tea(Sc 11 =0) = By y[E[(€ = C'(Seurs Zea [ 1k =O) 1]

In order to estimate (4.18) two expected profits have to be estimated. In

genera, for N -k steps into the future, the number of expected profits to be

estimated is;

N-—

=

2|

E

Paralleling the results obtained in chapter 2 for the SIPV model, the
complexity of the first price auction is higher than the complexity of the second price
auction. For each possible decision node, the corresponding first price auction
optimal bid isthe result of an optimization over the expected profits given the level of

competition &. This adds an exponential number of nonlinear optimizations to be

number of additiona nonlinear optimizations to be performed in the first price

auction is of order o(2"%).

5.8.2. Minimum and M aximum Complexity Gap -- First vs. Second Price

Auctions
As in the SIPV model, the complexity gap stems from the fact that in second
price auctions the best bid is just the value/cost of the item regardless of the

competitors' bid distribution functions. With complete information (no uncertainty),
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one item auction, a first price auction bidder does not need to optimize since he
knows the highest (lowest) value that the competitors are going to bid.

In the Table 2, there is no uncertainty about competitors bids only in the
myopic case with full knowledge. In this case, a first price auction bidder does not
need to optimize since he knows the lowest value that the competitors are going to
bid. It is ssimply an acceptance rejection problem.

Looking ahead into the future introduces uncertainty about the competitors
bids ssimply because the carrier (even with full-knowledge) cannot control when and
what shipments are going to arrive next. Bidding using reinforcement learning
ignores the existence of competitors; in this case also the bidding complexity is
similar for first and second price auctions. In the problems where the complexity gap
is zero, the complexity stems only from estimating the cost of serving the shipment,
i.e. the complexity of the DVR technology.

The complexity gap between first and second price auctions is expected to
grow with the number and intricacy of the non-linear optimizations to be performed
in each decision node. More uncertainty is found with imperfect information and
multi-steps. Furthermore, the number of optimizations grows exponentialy with the
number of steps, the level of bounded rationality, and the number of players. In Table
2 this corresponds to the problems found at the bottom rightmost cells.

The implications of this complexity anaysis are important. With constrained
and similar computational resources and similar setting, a second price bidder may
look further into the future since it is solving a simpler problem. Similarly, there are

cases where full knowledge about the competition is less significant for second price
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bidder (for example the myopic case). This analysis presents some similarities to the
findings of Larson and Sandholm (2002), where the second price bidders use more

resources to estimate their true costs than first price bidders.

5.9. Determinants of Carrier Behavior

Carrier behavior is defined as a sequence of bids taken by a carrier. This
section looks into the elements or factors that determine carrier behavior. These
factors are: carrier technology, bounded rationality, information availability, and
strategic setting. Though all the factors are somewhat related, the first two are
prominently intrinsic to the carriers own characteristics, while the last two are
predominantly linked to environmental or somewhat extrinsic factors. Some of the
factors have been adready extensively analyzed, for these factors the discussion is

limited to highlight the link between them and carrier behavior.

5.9.1. Carrier Technology

Carrier technology or DVR technologies, as defined and explained in chapter
4, has an important role in bidding. In the bidding decision making process the carrier
technology determines the number of feasible schedules to be evaluated. Therefore,
unsophisticated DVR technologies serious limit the quality and quantity of

alternatives that could be evaluated.
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5.9.2. Auction Rules- Information Revelation

It has aready been illustrated in the previous section that different auction
payment rules lead to different bidding functions. Information revelation rules can
also play asignificant role.

The information that is revealed (before bidding begins or after each auction)
can influence how, how much, and how fast carriers can learn or acquire knowledge
about the strategic setting and competitors' behaviors. The information that could be
avalable after auctions are resolved includes: bids placed, number of carriers
participating, links (names) between carriers and bids, and payoffs. The information
that could be available before bidding begins includes. some carriers’ individual
characteristics (e.g. fleet size or previous performance/profits from public financia
reports), information about who knows what, information asymmetries, or common
knowledge about previous items. Private information (as defined in chapter 3) is not
included since it involves proprietary information that usualy is to the best interest of
the carrier to keep private.

Two extreme information scenarios can be defined: maximum and minimum.
A maximum information environment is defined as an environment where all the
information, mentioned in the previous paragraph, is revealed. On the other hand, an
environment where no information is revealed is caled a minimum information
environment.

These two extreme scenarios can approximate two readlistic situations:
maximum information would correspond to a real time internet auction where all

auction information is equally accessed by participants; minimum information would
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correspond to a shipper telephoning carriers for a quote. The shipper calls back just

the selected carrier (if any is selected).

5.9.3. Strategic Setting

In this chapter, it has been tacitly assumed that a carrier operates in an
environment determined by the other carriers behaviors; a carrier uses a model of the
behavior of the other carriers as an input to his decision problem. Under this
interpretation a carrier’ s bidding function suits a carrier’s best interest, assuming that
competitors bidding functions pursues competitors best interests. Thisis defined as a
competitive strategic environment.

A diametrically different environment is a collusive or collaborative
environment. One danger of auctions is the possibility that buyers/sellers who
repeatedly participate in the same auctions could engage in collusive behavior. This
topic is of primordia importance in the field of Industrial Organization — general
references to this area include the work of Tirole (1989) and Martin (1993). As a
generd rule, the more information is revealed, the easier collusion becomes.

Even in minimum information settings collusion is possible. Blume and
Heldhues (2003) study collusion in repeated first-price auctions under the condition
of minimal information release by the auctioneer. In each auction a bidder only learns
whether or not he won the object. Bidders do not observe other bidder’s bid, who
participates or who wins in cases in which they are not the winner. Even under these
restrictive assumptions, for large enough discount factors, collusion can nevertheless

be supported in the infinitely repeated game. Nevertheless, it may entail complicated
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inferences and full monitoring among them. Marshal and Marx (2002) analyze bidder
collusion in first and second price auctions and SIPV assumptions.

The two environments, competitive and collusive, are nonetheless connected
since underlying every negotiation or agreement there is a game-like component
(Raiffa, 2002). From each carrier’ sindividua perspective, the incentives (and legal or
market risks) of collaborating with competitors has to prevail over the profits that can

be obtained when each party acts separately (competitive environment).

5.9.4. Bounded Rationality

Bounded rationality limitations affect a) the knowledge that a carrier is ableto
acquire, and b) the bidding problem that the carrier can solve. Given the carrier’s
rationa limitations, fleet technology, information available, and a competitive
strategic setting the carrier ends up solving a bidding problem that best represent his

interestsin Table 2

5.9.5. Framework for Carrier Behavior

After analyzing carriers decisions, learning, knowledge acquisition, problem
solving processes, and bounded rationality we possess al the necessary elements to
present a framework for studying carriers’ behavior. Figure 21 presents a schematic

overview of the process that brings about carriers' behavior.
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Figure 21 Carrier behavior in a sequential auction marketplace
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A shipper’s decision to post a shipment in the auction market initiates an
auction. Carriers respond to auctions postings. Carriers attempt to maximize profits
by adjusting their behaviors in response to interactions with other carriers and their
environment. Bounded rationality limitations and pervasive and affect how a carrier
models, evaluates, and optimizes his action as indicated by the arrows in Figure 21.
Carriers d'so must abide by the constraints and the physical feasibility specified by
their assignment strategies and pool of awarded shipments.

In this framework, carriers learning and knowledge about other competitors
behavior types evolve jointly over time and their strategies at a given moment are
contingent on interactions that have occurred or will occur in a path-dependent time
line. Past decisions are binding and limit the future actions of carriers, therefore
behavioral rules are state-conditioned and the carriers co-adapt their behavior as the
marketplace evolves over time.

Carriers’ internal events are the assignment, pickup, and delivery of loads,
mostly operational decisions. Carriers repeatedly engage in bidding interactions
modeled as noncooperative games. However these repeated bidding interactions are
also the only means of communication for a carrier to “identify” or “manipulate’

other competitors.

5.10. Summary

This chapter dealt with bounded rationality in a competitive TLPM setting.
After reviewing the relevant literature, bounded rationality was approached analyzing

its likely sources in the context of carriers decision making process. Given the
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complexity of the bidding/fleet management problem, carriers can tackle it with
different levels of sophistication. Carriers decision making processes and bounded
rationality were analyzed. The complexity of the different bidding problems that a
boundedly rationa carrier can be faced with was anayzed and classified. A
framework to study carrier behavior in TL sequential auctions was presented.

The provided framework is general enough to accommodate problems aready
seen in previous chapters such as the game theoretic formulation of chapter 3 and the
auction analysis of chapter 4. In the framework presented in this chapter, sequential
auctions can be used to model an ongoing transportation market, where the effect of
carrier competition, knowledge and information availability, dynamic vehicle routing
technologies, computational power, and decision making processes can be studied.

Auction type influences the complexity of TLPM bidding. It was shown that
second price auctions can be equally or less demanding computationaly than first
price auctions. It was also shown that bidding problems are less demanding
computationaly if no-knowledge conditions are assumed. Chapter 6 studies learning

and behavior of carriersin acompetitive TLPM under no-knowledge conditions.
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Chapter 6: Non-Strategic Boundedly Rational Competition

Chapter 6 studies the bidding behavior of carriers in a competitive setting
where carriers are unable to use causa models of competitors behaviors. This
competitive setting corresponds to the no-knowledge assumption and non-strategic
environments (defined in chapter 5 sections 5.5 and 5.6 respectively). Chapter 4
assumed that cost truth telling strategy was a dominant strategy, therefore carriers
were limited to bid their marginal cost. In this chapter that assumption is relaxed;
carriers bid trying to maximize their profits but limited by their boundedly rational
[imitations.

In this competitive setting (no-knowledge assumption, non-strategic
environment, and no cost truth telling limitations) three different auction formats are
compared using computational experiments. These auction formats are second price
auctions, first price auction with minimum information disclosure, and first price
auctions with maximum information disclosure.

Section 1 describes the properties and behavioral assumptions of carriers
competing in the no-knowledge and non-strategic environment. Section 2 describes
learning in a no-knowledge environment. Two widely used forms of learning that do
not attempt to model competitors behavior directly are discussed in section 3 and 4;
these learning methods are reinforcement learning and fictitious play, respectively.
Section 5 compares a carrier’s behavior with the behavior of a machine.
Reinforcement learning and fictitious play can be seen as either human or machine

behavior. Sections 6 to 8 present different computational experiments aimed at
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studying the properties of different auction settings and learning methodologies.

Section 9 presents a chapter summary.

6.1. Competition in a Non-Strategic Environment

The high complexity of acquiring and using knowledge about competitors
behaviors was discussed in chapter 5, even in a TLPM market that has been
streamlined to its very basic elements. Knowledge acquisition and its use can be
considerably more complex in a more complete model where other critical constraints
and variables are added (for example, getting drivers home, variation in travel times,
delays incurred while unloading the truck, etc). Furthermore, noisy information
transmission, as reported by Powell et a. (2002), even among agents that respond to
the same carrier (i.e. drivers, dispatchers, decisions support systems), seem to sustain
the notion that perfect knowledge about competitors private information and
behavior could only be possible in aflight of the imagination. Imperfect knowledge is
possible, but at the cost of even higher complexity.

Given the high level of complexity of full or imperfect knowledge
assumptions, it is methodologically sensible to first focus on behaviors and settings
which are more plausible for implementation in real-life TLPM marketplaces. The
first tool that bounded-rational agents use to cope with insurmountable complexity is
simplification. In this chapter it is assumed that acquiring or using knowledge about
the competitors behavior causality (bounded rationality) is so complex that carriers

make no attempt to acquire this knowledge about competitors. Rather, carriers learn
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about the distribution of past market prices or the relationships between realized

profits and bids.

6.1.1. Behavioral Assumptions

In a TL transportation company, scheduling decisions can be made by a
human being, a computerized decision support system, or a hybrid human/machine
dispatcher. Powell et a. (2002) indicates that most carriers still rely heavily on human
dispatchers, though large carriers have aready implemented or are in the process of
implementing more computerized decision support systems.

It is assumed that humans, as well as computerized systems, follow a set of
rules or programs whose ultimate goal is to maximize carrier’s profits. Therefore,
boundedly rational behavior, as understood in this research, is not chaotic or absurd.
Carriers try to evaluate the possible consequences of their actions; carriers prefer
outcomes that yield higher expected profits. Furthermore, carriers' decisions must be
related to the deployment of the carrier’s assets or fleet status. It is also assumed that
decisions are based on the possible consequences of the choices made.

The previous set of behavioral assumptions are needed to ensure that the steps
of rational decision making, described in section 5.6, are at least followed. Though
the steps of rational decision maker are followed different boundedly rationa
imperfections can arise when implementing any given step. The objective of the
mentioned assumptions is to screen out carriers' behaviors that could not be expected

from any thriving carrier ina TLPM.
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The goal of this chapter is not to find the “optimal” rules or procedure that
lead to the best possible boundedly rational reasoning or machine (with the no-
knowledge assumption), a la Descartes (i.e. setting out to conjecturally discover
genera rules for proper reasoning). Rather, the idea is to define plausible boundedly
rational procedures that carriers can implement in a TLPM. These carriers are then
engaged in competition in simulated TLPM markets. The next section discusses

plausible learning and behavioral models.

6.2. Learning

The learning literature mainly takes an experience based learning approach. In
an auction context, learning methods look for good bidding strategies by
approximating the behavior of competitors. Most learning methods assume that
competitors bidding behavior is stable. This assumed bidding stability is like
believing that all competitors are in a strategic equilibrium.

Learning in this environment is based on the belief that experience is
important and can improve carriers profits. Such past experience can not only help
players to avoid dominated (poor) strategies but it can also lead them to play the most
successful strategies. Given that learning is phenomenological rather than causal,
learning can be based on false backward-looking procedures that: a) make forecasts
about other players’ behaviors and b) select a response to these forecasts. Therefore,
since learning can be fundamentally based on false premises, learning does not
guaranty good performances. Nevertheless, this may not be a problem in an

environment where al players share the same level of sophistication (i.e. al players
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are type zero or type one level). In other words, no other competitor can exploit their
boundedly rational weaknesses. Still, poor performance may take place if carriers
bids get attracted to an undesirable “equilibrium” or attractor point.

Walliser (1998) distinguishes four distinct dynamic processes to play games.
In adecreasing order of cognitive capacities they are: eductive processes, epistematic
learning (fictitious play), behaviora learning (reinforcement learning), and
evolutionary process. An eductive process requires knowledge about competitors
behavior, such as the n-level player theory where players simulate each others
behavior. Epistemic and behavioral learning are similar to fictitious play and
reinforcement learning, they are studied in this chapter in sections 3 and 4. In the
evolutionary process, a player has (is born with) a given strategy, after playing that
strategy the player dies and reproduces in proportion to the utilities obtained (usually
in agame where it has been randomly matched to another player).

This chapter studies the two intermediate types of learning. It was aready
discussed in the first section that eductive-like type of play requires players (carriers)
that are assumed too smart (to be possible). On the other hand, evolutionary model
players seem too simplistic: they have no memory, and simply just react in response
to the last result. Furthermore, the notion that a company is born, dies, and reproduces
with each auction does not fit well behavioraly in the defined TLPM. Ultimately,
neither extreme approach is practically or theoreticaly compelling in the TLPM
context. Carriers that survive competition in a competitive market like TL
procurement cannot be inefficient or simply dumb. They are just limited in the

strategies they can implement. Carriers would like to implement the strategy
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(regardless of its complexity) that ensured higher profits, but they are restricted by

their boundedly rational limitations.

6.2.1. Learning Initial Assumptions

In practical and theoretical applications, the process of setting learning initial
beliefs has always been a thorny issue. Implemented learning models must specify
what agents initially know. Ideally, how or why these initials assumptions were built
should always be reasonable justified or explained. In this aspect, solely restricting
the research to the TLPM context has clear advantages.

It was mentioned in chapter 4 that normal operating ratios in the TL industry
range from 0.90 to 0.95. It is expected that operating ratios in a TLPM do not
radically differ from those in the mentioned range. If prices are too high shippers can
always opt out, abandon the marketplace and find an external carrier. Prices cannot be
substantially lower because carriers would run continuously in the red, which does
not lead to a self-sustainable marketplace. Obviously, operating ratios fluctuations in
a competitive market are expected, which reflects natural changes in demand and
supply. However, these fluctuations should be in the neighborhood of historical long
term operating ratios unless the market structure is substantially changed.

Another practical consideration is the usage of ratios or factors in the trucking
industry. Traditionaly, the trucking industry has used numerous factors and
indicators to analyze a carrier’s performance, costs, and profits. It seems natura that
some carriers would obtain a bid after multiplying the estimated cost by a bidding

coefficient or factor. Actually, experimental data show that the use of multiplicative
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bidding factors may be quite common in bidding as (Paarsch, 1991). Learning
coupled with the usage of bidding factors is studied in section 7. In chapter 5 it was
mentioned that there are two distinct information levels. The next two sections

describe a suitable learning method for each level.

6.3. Rainforcement Learning

In this learning method the required knowledge about the game payoff
structure and competitors behavior is extremely limited or null. From a single
carrier’ s perspective the situation is modeled as a game against nature; each action
(bid) has some random payoff about which the carrier has no prior knowledge.

Learning in this situation is the process of moving (in the action space) in a
direction of higher profit. Experimentation (trial and error) is necessary to identify

good and bad directions.

6.3.1. Stimulus Response M odel with Reinforcement Learning

Let M be the ordered set of rea numbers that are multiplicative
coefficients M ={mgc,,...,mc,}, such tha if mceM andmc,eM,
then mc, <mc,,,. Using multiplicative coefficients the profit obtained for any
shipment s; , when using the multiplicative coefficient mc, isequal to:

7, (mg) =(mg, ¢ - ¢l =c 1j(mg, -1)  (6.1a)

7(me) =(b? - )l (6.1b)
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The first equation (6.1a) applies to first price auctions while the second

eguation (6.1b) applies to second price auctions. Adapting the reinforcement model to

TLPM bidding, the probability gp} (mc, ) of carrier i using a multiplicative coefficient

mc, in the auction for shipment s; isequal to:

(Dij (me,) = (1_177;71(mck))(0i171(nnk) +1 Ll(rnck)ﬂ“ﬂ.;—l(rnck) (6.2)
To use equation (6.2), each bidder only needs information about his bids and

the result of the auction. To use this model the profits ﬂijfl(mck) must be normalized

to lie between zero and one so that they may be interpreted as probabilities. The

indicator variable I}(mck) is equa to one if carrier i used the multiplicative
coefficient mc, when bidding for shipments,, the indicator is equal to zero

otherwise. The parameter 4 is called the reinforcement learning parameter, it usually
vary between 0< 4 <1.

The stimulus response model with reinforcement had its origin in the
psychological literature and has been widely used to try to explain human and even
animal behavior. Some computer science literature calls this model the learning
automaton. Narenda and Tatcher (1974) showed that a players time average utility,
when confronting an opponent playing a random but stationary strategy, converges to
the maximum payoff level obtainable against the distribution of opponents play. The

convergence is obtained as the reinforcement parameter 4 goesto zero.

The reinforcement is proportional to the realized payoff, which is aways
positive by assumption. Any action played with these assumptions, even those with

low performance, receives positive reinforcement as long as it is played (Fudenberg,
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1998). Furthermore, in an auction context there is no learning when the auction is lost
since z;, (M) =0 vmg eM if I, =0
Borgers and Sarin (1996) propose a model that deals with the aforementioned

problems. In this model the stimulus can be positive or negative depending on

whether the realized profit is greater or less than the agent’s “aspiration level”. If the

agent's aspiration level for shipment s; is denoted ,o‘j and the effective profit is
denoted 7, ,(mc,) =7, ,(mc)—p; (6.3), then
9 (me) = -2 7, (mc,))e|,(me) + 1}, (me) A7), (mg,) (6.4)
When p} =0, the equation (6.4) provides the same probability updating

eguation as (6.2). Borgers and Sarin explore the implications of different policies to
set the level of the aspiration level. These implications are clearly game dependent. A
genera observation applies for aspiration levels that are unreachable. In this case
eguation (6.3) is always negative; therefore the learning algorithm can never settle on
agiven strategy, even if the opponent plays a stationary strategy.

These learning mechanisms were originally designed for games with a finite
number of actions and without private values (or at least for players with a constant
private value). In the TLPM context, the cost of serving shipments may vary
significantly. Furthermore, even the “best” or optima multiplier coefficient can get a
negative reinforcement when an auction is lost simply because the cost of serving a
shipment is too high. This negative reinforcement for the “good” coefficient creates

instability and tends to equalize the attractiveness of the different multiplicative
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coefficients. This problem worsens as the number of competitors is increased,
causing a higher proportion of lost auctions, i.e. negative reinforcement.
This research proposes a modified version of the stimulus response model

with reinforcement learning that better adapts to TLPM bidding. Each multiplicative

coefficient m, has an associated average profit value 77} (m,) that isequal to:

> m(s) l{(m)

The aspiration level is defined as the average profit over al past auctions:

PIEACHAL

Therefore the average effective profit is defined as 7, ,(mc,) = 7, (mc, ) — p; -
Probabilities are therefore updated using equation (6.5).
9, (Me) = 1-27,(M6))p; 1 (M) + 11, (M6 ) A7, (me) (6.5
With the latter formulation (6.5), a “good” multiplicative coefficient does not

get a negative reinforcement unless its average profit falls below the general profit

average. At the same time, thereislearning even if the auction is lost.

6.3.2. Observations of the Reinfor cement L ear ning M odel
Stimulus-response learning requires the least information (a minimum
information setting as described in chapter 5 section 5.9) and can be applied to both

first and second price auctions. The probability updating equations (6.2), (6.4), and
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(6.5) are the same for first and second price auctions. Therefore the application of the
reinforcement learning model does not change with the auction format that is being
utilized in the TLPM. Using this learning method, a carrier does not need to model
neither the behavior nor the actions of competitors. The learning method is essentially
myopic since it does not attempt to measure the effect of the current auction on future
auctions. The method clearly fits in the category of no-knowledge/myopic carrier
bounded rationality.

Since the method is myopic, for the first price auction the multiplicative

coefficients must be equal or bigger than one, i.e. mc, >1. A coefficient smaller than

one, generates only zero or negative profits. In a second price auction the
multiplicative coefficients can be smaller than one and still generate positive profits
since the payment is dependent on the competitors' bids.

In both types of auctions it is necessary to specify not just the set of
multiplicative coefficients but the initial probabilities. If equation (6.4) is used it is
also necessary to set the aspiration level. If equation (6.5) is used it is necessary to set
the level of the initial profits but not the aspiration level. A uniform probability
distribution is the classical assumption and indicates a complete lack of knowledge
about the competitive environment.

Summarizing, in reinforcement learning, the agent does not consider strategic
interaction. The agent is unable to model an agent play or behavior but his own. This
agent is informed only by their past experiences and is content with observing the
sequence of their own past actions and the corresponding payoffs. Using only his

action-reward experience, he reinforces strategies which succeeded and inhibit
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strategies which failed. He does not maximize but moves in a utility-increasing
direction, by choosing a strategy or by switching to a strategy with a probability

positively related to the utility index.

6.4. Fictitious Play

Fictitious play came about as an algorithm to look for Nash equilibrium in
finite games of complete information (Brown, 1951). It is assumed that the carrier
observes the whole sequence of competitors actions and draws a probabilistic
behaviora model of the opponents’ actions. The agent does not try to revea hisor her
opponents’ bounded rationality from their actions athough the agent may eventually
know that opponents learn and modified their strategies too. The agent models not
behavior but simply a distribution of opponents actions. Players do not try to
influence the future play of their opponents. Players behave as if they think they are
facing a stationary, but unknown, distribution of the opponents’ strategies. Players
ignore any dynamic links between their play today and their opponents play
tomorrow. These assumptions are similar to the ones applied in chapter 4.

A player that uses a generalized fictitious play learning scheme assumes that his
opponents next bid vector is distributed according to a weighted empirica
distribution of their past bid vectors. The method cannot be straightforwardly adapted
to games with an infinite set of strategies (for example the rea numbers in an
auction). Two ways of tackling this problem are: a) the player divides the set of red
numbers into a finite number of subsets, which are then associated with a strategy or

b) the player uses a probability distribution, defined over the set of rea number to
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approximate the probabilities of competitors play. In either case, the carrier must
come up with a estimated stationary price function &£. If a second price auction

format isused in the TLPM, equation (4.1) from chapter 4 is used.

b’ e argmax E,{[(&~¢'(s, 21} + m (S 11} =D 1)+, (s 11 =0)A-17) I}

beR (4.2)

If afirst price auction format is used in the TLPM, equation (5.1) from chapter

5isused.

bi' e argmax E,{[(b—C' (s, Z)) 1] + ., (S 11 =D 1 +7, (s 1] =0 A-1)]}

]

beR (5.1)

The look-ahead depth is limited by the problem solving capabilities of the
carrier. When the look-ahead depth is zero (myopic case) the fictitious play model of
learning is sSimilar to a repeated version of Friedman’s model of bidding (described in

chapter 5 section 5.2).

6.5. Automaton | nterpretation

The two previous sections have described reinforcement learning and
fictitious play models of learning. In section 2 it was mentioned that in a TL
company, scheduling decisions can be made by a human being, a computerized
decision support system, or a hybrid human/machine dispatcher. Reinforcement

learning and fictitious play were originally conceived as human methods of learning.
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However, they can also be used by machines or computerized systems. This section
triesto link both views.

An automaton is a self operating machine or mechanism. In a game context,
an automaton is meant to be an abstraction of the process by which a player
implements a given bounded rationality behavior. Rubenstein (1998) replaces the
notion of a strategy with the notion of a machine called finite automaton. In

Rubenstein’s model a finite automaton that represents player i is a four-
tuple (Z',2,,b',a), where Z' isafinite set of machine states (from this constraint the
adjective “finite’), z is the initia state for carrieri, b':Z' - A is an output
function that produces an action (given the state of the automaton),
anda :Z'x A" — Z' is atransition function that updates the state of the automaton

(given the actions taken by the competitors in the previous period). The set of

possible actionsis denoted by A.

Adapting these concepts to this research, a TLPM automaton can be defined
as an abstraction of the process by which a carrier implements a given boundedly

rational behavior in a TLPM. A TLPM automaton can be defined by the eight-
tuple (Z',z,2,&,,S,b',u',a) comprised by:

Z' the set of possible states (private information states) ;

z, theinitial statefor carrier i;
= the set of possible price functions;

& theinitial price function for carrier i;

s, €S the stimulus sent by marketplace;
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b': Z' xZxS — R the bidding (output) function;
u' :hx 2 — = the update function (updates the price function £ € Z) ; and

a :Z'x S— Z' the assignment function (assignment if an auction iswon).

A TLPM automaton would work in the following way: the initial state and

price function arez and & respectively, the automaton chooses a
bid b'(z,,£,,s) when the first shipment arrives. If carrier i wins, the assignment
function updates the carrier’s status a'(z,,s,) . The price function is updated based on

the information revealed after the auction u'(h,&;). When the second shipment
arrives the same process is repeated but starting with the new state and price function
z and & respectively. Once the initial conditions are set, the transitions, bidding,
and updating are set by the arrival of shipments. A TLPM automata game takes place
when a player cannot change the working of his machine during the course of the
game.

The two learning approaches described in this chapter, reinforcement learning
and fictitious play, can be interpreted as the work of an automaton (which is valid in
general for any learning strategy that seeks or uses no knowledge about the
competitors’ behavior). Therefore, the simulation results presented in this or previous
chapters can also be interpreted as the interaction or competition of TLPM automata
(which may represent the behavior of human, computerized, or hybrid dispatchers).

A boundedly rational behavior connects the status of the carrier and the

system with the action or decision that the carrier takes. It is assumed in this research
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that for a given status, price function, and stimulus, an action has the same probability
of being played; as if the decision process is wired-up and cannot change (data and
information can change over time, but not the decision-making process). This is

consistent (in the short-medium term) with the industry experience (Powell, 2002).

6.6. Bidding Factors and Marginal Cost Pricing in Second Price Auctions

In chapter 4, it was assumed (in auction analysis of algorithms) that carriers
bid their best cost estimation. In chapter 2, it was shown that a significant
characteristic of one-item second price auction is also vaue/cost bidding. That
characteristic cannot be necessarily maintained in multiunit sequential auctions
setting such as the TLPM marketplace. Actually, it was shown in chapter 4 that the
static margina cost is not an optimal strategy (adding or subtracting the opportunity
costs using the IFOOC technology provides better results).

This chapter deals with boundedly rational learning in competitive no-
knowledge settings. Of the two learning methods proposed, only reinforcement
learning can be applied to second price auctions”. In the TLPM context, the objective
of reinforcement learning is to “learn” what the best bidding coefficient is; the
bidding coefficient that maximizes a carrier’ s profits.

The reminder of this section addresses the following question: in a TLPM

second price auction environment can carriers be better off by using bidding factors?

2 Fictitious play in a second price auction coincides with marginal cost bidding. Regardless of the price

distribution, the expected profit is always optimized with marginal cost bidding.
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This question is answered using computational experiments. The auction settings
utilized herein are similar to those described in chapter 3 and used in chapter 4. For
consistency, all the simulations results shown in this chapter are obtained for
shipments with medium time window width.

In order to answer the question put forward earlier, the following simulation
experiment is carried out. Two carriers using the same type of technology compete
against each other using the same simulation setting used in chapter 4. However,
while one carrier bids the marginal cost (called MC carrier) the other bids the
marginal cost multiplied by a bidding factor (called BF carrier). Eleven different
bidding factors are utilized, ranging from 0.5 to 1.5. The impact of these factors on
carrier BF s profits are depicted in FigureFigure 22. The profit levels of a BF carrier
when the bidding factor is equal to 1.0 are used as the reference or base level — they
correspond to 100% level. Both carriers are using the SFO technology (defined in
chapter 4, section 4.7).

The results depicted in Figure Figure 22 show that for low arrival rates the
best bidding factor is 1.0, corresponding to ssimply bidding the marginal cost. For
medium arrival rates the best bidding factor is 1.1. For high arriva rates the best
bidding factor is 1.3. Regardless of the arrival rate level, the “curve’ is quite flat
around the “optimal”. Furthermore, if the profits are connected the resulting curve is

concave-shaped.
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Figure 22 Profit Level for aBF Carrier
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Figure 23 Shipments Served by BF carrier

A possible explanation to the results of Figure 22 may be obtained by
analyzing how profits are generated. Total profits can be expressed as the average
profit obtained per shipment multiplied by the number of shipments served. Figures
23 and 24 show the impact of bidding factors on number of shipments served and

average shipment served profit respectively. Again, the number of shipments served

201



and average profit used as reference are those of a BF carrier when the bidding factor

isequal to 1.0.
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Figure 24 Average Profit per Shipment Won for a BF Carrier

It is clear from Figures 23 and 24 that, as expected, higher bidding factors
increase the average profit per shipment won but decreases the number of shipments
won. Vice versa, lower bidding factors decrease the average profit per shipment won
but increases the number of shipments won. There are clearly two opposing forces at
work when the bidding factor changes; this fact helps to explain the concave shape of
the profit curvein Figure 22.

At this point, it has not yet been explained why the low arrival rate “optimal”
bidding factor is around 1.0 (marginal cost case), while the “optimal” bidding factors
are shifted to the right for higher arrival rates. The answer to this matter lies in the
relation between profit elasticity and shipment served volume elasticity. To

understand why profit elasticity and shipment served volume elasticity changes with
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the arrival rate is necessary to introduce Figures 25 and 26. Figure 25 and 26 illustrate
the different fleet utilization rates of carriers MC and BF respectively. Fleet
utilization rate is defined as the average vehicle utilization. Vehicle utilization is

defined as the percentage of the time avehicleis moving (i.e. not idle).
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Figure 25 Fleet Utilization (M C Carrier)

With low arrival rates the utilization of the MC carrier is low (around 35% if
the BF carrier uses a bidding factor equa to 1.0 - see Figure 25). Therefore when
carrier BF increases his prices (utilizing higher bidding factors) carrier MC gains a
significant percentage of the demand. This explains why in Figure 26 there is such an
abrupt drop in demand (from 100 to 80%) when carrier BF moves from a bidding
factor of 1.0 to 1.1. With higher arrival rates the fleet utilization of carrier MC is
higher (at or over 70% - see Figure 25) and at very high utilization rates it is more
difficult to accommodate or to inexpensively add new shipments. As fleet utilization
grows the capacity to serve new shipments decreases, therefore on average the

opportunity costs of serving additional shipments starts to be significant. Figure 26 is
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the reverse mirror image of Figure 25. With high arrival rates carrier BF can rise
prices substantialy and still have a high fleet utilization; the increase in profits

prevails over the decrease in shipments served.
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Figure 26 Fleet Utilization (BF Carrier)

The explanation provided is plausible but not definitive. However, similar
phenomena as the ones observed in Figures 22, 23, 24, 25, and 26 have been widely
recognized in the economics-industrial organization literature. The incentives to
increase prices as remaining market capacity decreases are contemplated in price-
capacity oligopoly models. For example, in the Edgeworth-Bertrand model of
competition, pricing is at marginal cost levels when demand is low, however prices
increase after a critical capacity utilization threshold is surpassed (Martin, 1993).
Similar intuition was obtained from Benoit and Krishna (2001) model of capacity
constrained auctions, with limited capacity it is advantageous to speculate (this model
was analyzed in chapter 2 section 2.6). Even in fleet management, the idea of filtering

out shipments or similarly increasing the “admission” price of shipments under very
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high arrival rate conditions has been previously used (though not in a competitive
environment). The Kim, Mahmassani, and Jaillet (2002) study indicates that a fleet
dispatcher under very high arrival rates (over capacity) is better off filtering out some
demands (not being too close to capacity).

Similar results are al'so found when carriers use other technologies such as the
naive or 1FOOC. Figure 27 shows the profit changes when both carriers use naive
technologies. Even when carriers have different technologies, similar results can be
expected. Figure 28 shows the profit changes for the BF carrier using naive

technology against aMC carrier using SFO technology.
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Figure 27 Profit Level for a BF Carrier (both carrier use naive technology)

The question that motivated these simulations was: in a TLPM second price
auction environment can carriers be better off by using bidding factors? The answer is
yes, but only at high arrival rates. This answer provides additiona insights into the
applicability of auction analysis to online agorithms/technologies. The results
confirm the notion that DVR technologica leadership can be better exploited under

low to moderate arrival rate conditions, where there is no incentive to adopt bidding
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factors that are not one. If thereis an incentive to adopt bidding factors that are higher
than one, there is an incentive to restrain capacity or to increase prices (profits are
increased without increasing fleet management efficiency). As reflected by the results
of chapter 4, asthe arrival rate grows the advantage of being more efficient decreases;

in general, scarcity exposes the incompetent while abundance hides inefficiencies.
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Figure 28 Profit Level for a BF Carrier (SFO vs. naive technology)

6.7. Learning Methods Performance

This section addresses the issue of learning performance of the two learning
methods presented in this chapter. The previous section shows that bidding factors
can be used to increase carriers profits in TLPM second price auctions with high
arrival rates. Reinforcement learning could be used to “learn” which bidding factors
produce a higher profits on average; as the auction results accumulates the most

profitable bidding factors continuously increase their probability of being used. With

206



low arrival rates, there is nothing to learn but the fact that marginal cost bidding
(bidding factor 1.0) isthe best alternative.

Learning can be expensive though. For example, in a second price auction the
longer it takes a bidder to learn that underbidding (bidding below his marginal costs)
IS not a good strategy, the more the bidder loses potential profits. The importance of

the right learning coefficient then becomes evident. If the learning coefficient 4 is
too small learning istoo slow; if 4 istoo big it may lock the learning algorithm in an

undesirable bidding factor too quickly. Another important element is the number of
alternatives that the learning algorithm must choose from; as a genera rule, the more
the alternatives the smaller the 4 .

The speed of reinforcement learning can be quite slow in an auction setting
like TLPM. The “optimal” bidding factor can be used and there is still roughly a 50%
chance of losing (assuming two bidders with equal fleets and technologies). If the
“optimal” bidding factor loses two or three times its chances of being played again
may reduce considerably which hinders convergence to the “optimal” or even
convergence at al. As discussed in section 6.3, this issue can be avoided using
“averages’ (ARL method).

Figure 29 illustrates the relative performance of Average Reinforcement
Learning (ARL) and Reinforcement Learning (RL) in a first price auction. Both
learning methods select a bidding factor among 11 different possibilities, ranging

from 1.0 to 2.0 in intervals of 0.1. The learning factor is A =0.10. Figure 29 shows

the relative performance of ARL and RL after 500 auctions.
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Figure29 ARL vs. RL (RL performance base of comparison)

It is clear that RLA obtains higher profits as the arrival rate increases. RL has
a poorer performance because it cannot converge steadily to the “optimal” coefficient
due to the reasons mentioned in the previous paragraph. The carrier RL tends to price
lower (it keeps probing low bidding coefficients longer) and therefore serves a higher
number of shipments. As shown in the previous section, as arrival rates increase after
acritical point, a carrier can charge higher prices regardless of what the competitor is
doing.

In first price auctions reinforcement learning and fictitious play can be used.
The latter uses more information than the former. Therefore, it is expected that a
carrier using fictitious play must outperform a carrier using reinforcement learning.
Figure 30 shows the relative performance of Fictitious Play (FP) and ARL after 500
auctions. The ARL player is the same as in Figure 29. The FP carrier divides the
possible competitors' bids in 15 intervals (from 0.0 to 1.5 in intervals of width 0.1)

and start with a uniform probability distribution over them.
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Figure30 ARL vs. FP (RL performance base of comparison)

Clearly the FP carrier obtains higher profits across the board. The usage of a
competitor past bidding data to obtain the bid that maximizes expected profits clearly
pays off. In this case carrier ARL tends to bid less and serve more shipments, again,
the difference diminished as the arrival rate increase. In the TLPM context even a
simple static optimization provides better results than a search based on
reinforcement learning. Not surprisingly, more information and optimization lead to
better results. Therefore, if there is maximum information disclosure, carriers will
choose to play fictitious play or a similar bidding strategy, especialy since the

complexity of FP (myopic) and ARL are not too different.

6.8. Comparing Auction Settings

This section describes computational results obtained from TLPM competition
with different sequential auction settings. Within the competitive no-knowledge

assumptions stated at the beginning of the chapter, three basic auction settings are
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compared: second price auction with marginal cost bidding, first price auction with
reinforcement learning, and first price auction with fictitious play.

Four different measures are used to compare the auction environments:
carriers  profits, consumer surplus, number of shipments served, and total wealth
generated. To facilitate comparisons in all the four graphs that are presented
subsequently, second price auctions with margina cost bidding are used as the
standard to measure up the two types of first price auction. All two carriers use SFO
technologies.

Figure 31 illustrates the profits obtained by carriers. After the results of the
previous section, it is not surprising that FP carriers obtain higher profits than ARL
carriers. FP carriers use the obtained price information to their advantage. The highest
carrier profit levels takes place with the second price auctions. These results do not
alter or contradict theoretical results. With asymmetric cost distribution functions,
Maskin and Riley (2002) show that there is not revenue ordering between
independent value first and second price auctions.

Figure 32 illustrates the consumer surplus obtained with the three auction
types. Clearly, first price auction with reinforcement learning (minimum information
disclosed) benefit shippers. Unsurprisingly, Figure 32 is amost the reverse image of

Figure 31.
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Figure 32 Consumer Surpluslevel (Second Price Auction M C as base)

Figure 33 shows the number of shipments served with each auction setting. As
expected, with second price auctions more shipments get served. Even in asymmetric
auctions, it is still aweakly dominant strategy for a bidder to bid his value in a second

price auction — recall that this property of one-item second price auction is
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independent of the competitors’ valuations. Therefore, in the second price auction the
shipment goes to the carrier with the lowest cost.

In contrast, with ARL there is a positive probability that there are inefficient
assignments since a higher cost competitor can use a bidding coefficient that results
in alower bid. Similarly with FP carriers, if the price functions are different (whichis
very likely since each carrier models the competitors’ prices), alower cost carrier can
be underbid by a higher cost carrier with a positive probability. The results of Figures
32 and 33 are similar to the insights provided by the reverse auction model with
elastic demand (chapter 2, section 4.6), where introducing higher price uncertainty
decreases prices (carriers' profits) but aso decreases the probability of completing a

potentially feasible transaction (number of shipments served).
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Figure 33 Number of Shipments Served (Second Price Auction M C as base)

Figure 34 shows the wealth generated with each auction setting. Predictably,
with second price auctions more wealth is generated. It was aready mentioned in

chapter 3 that marginal cost bidding is a “price efficient” mechanism. As the arrival
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rate increases the gap in total weath generated tends to close up (Figure 34).
Consistently, the lowest wealth generated corresponds to the case with FP bidders.
Summarizing, under the current TLPM setting, carriers, shippers, and a social
planner would each select a different auction setting. Carriers would like to choose a
second price auction. If first price auction are used, carriers would like to have
maximum information disclosure. More information alows players to maximize
profits, though total wealth generated is the lowest. Shippers would like to choose a
first price auction with minimum information disclosure; more uncertainty about
winning leads carriers to offer lower prices. However, the uncertainty leads to a
reduction in the number of shipments served. Finally, from society viewpoint the
most efficient system is the second price auction. More shipments are served and

more wealth is generated.
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6.8.1. Auction Settings and DVR Technology Benefits

The final set of experiments looks a how auction settings impact the
competitive edge that a more sophisticated DVR can provide. Figure 35 illustrates the
profit improvement of a carrier using a SFO technology over a carrier using the naive
technology. As expected, the second price auction better rewards a lower cost carrier.
Again, this can be attributed to the lack of speculation about prices, which removes
unnecessary speculation about competitors. This type of result also validates
experimentally the second price auction as the best methodology (chosen in chapter

4) for auction analysis of algorithms.
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Figure 35 Impact of Auction Type and Technology upgrading on Profits

6.9. Summary
Chapter 6 studied the bidding behavior of carriers in a competitive setting
where carriers are unable to use causa models of competitors behaviors.
Reinforcement learning and fictitious play, two learning methodologies for this type

auction setting and assumptions are introduced and analyzed, as well as carrier
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learning and behaviora assumptions. Simulation of different bidding and fleet
management strategies was utilized to evaluate the performance of different auction
Settings.

Computational experiments indicate that auction setting and information
disclosure matters. Maximum information disclosure alows carriers to maximize
profits at the expense of shippers’ consumer surplus; minimum information disclosure
allows shippers to maximize consumer surplus but at the expense of lowering the
number of shipments served. Margina bidding in second price auctions remains the
most efficient incentive compatible auction mechanism, producing more wealth and
more shipments served than first price auctions. It is demonstrated that under critical
arrival rate there is no incentive to use bidding factors (no deviations from static
marginal cost bidding). Furthermore, second price auction TLPM is the mechanism

that provides the highest reward to carriers with more sophisticated DVR technology.
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Chapter 7: Contributions, Extensions, and Future Research

In this concluding chapter, the first section summarizes the main findings and
contributions. The second section articulates the limitations and opportunities for
future research.

This research establishes a new type of problem environment in the area of
Transportation Science and Operations Research, the TLPM (truckload procurement
market), within which several specific problems are defined and formulated.
Throughout the chapters, effort is made to properly position this new problem
environment relative to the existing body of research. One salient characteristic of
this research is that it uses sequential auctions to model an ongoing transportation
market; therefore the problem is characterized as essentialy dynamic. Market
competition is used to study carriers technologies and decision making processes. In
a broad sense, this research is about the decision making complexity that carriers face
in a competitive market, where decisions involve not only the management of the

fleet but aso the pricing of provided services

7.1. Contributions

The origina contributions of this research are intertwined and distributed
throughout the chapters. For clearer understanding and exposition, the contributions
are grouped into three areas of research. In decreasing order of generality, the areas

are: auctions, transportation marketplaces, and dynamic vehicle routing and pricing.
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7.1.1. Auctions

This research uses sequential auctions in a novel environment with a
novel commodity (TL services). Previous work in auctions is limited to homogenous
or heterogeneous objects which are characterized by cost or value (and arrival timein
some on-line auctions). The TLPM object traded in that market is characterized along
multiple dimensions, such as arrival time, time windows, origin, destination, etc.
Furthermore, bidders (carriers) do not know the rea cost of servicing them.
Calculating the optimal bid (or even the service cost) involves complex optimization
problems that are beyond the usua capability of ordinary carriers. The
characterization and comparison of the TLPM model in relation to standard auction
modelsis performed in chapter 2.

The TLPM problem is formulated as an incomplete multi-stage game under
imperfect information in chapter 3. The complexity of solution assuming rational
bidders is discussed. Furthermore, chapter 5 analyzes the complexity of TLPM
bidding for first and second price auctions. It is concluded that second price auctions
are not only equal or less computationally burdensome but also that in second price
auction environments carriers have less incentive to utilize their scarce computational
resources in estimating their competitors bids. In addition, it is shown in chapter 6
that a second price auction TLPM is the mechanism that provides the highest reward
to carriers with more sophisticated DVR technology. It is also the most efficient
mechanism.

The contribution to the characterization of auctions is two-fold. First, a

considerably richer environment and auction object is considered. Second, the usual
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assumptions of the archetypical rational bidder are relaxed, resulting in more realistic
assumptions that help bridge theory-practice gaps in complex environments; auction
theory must not be just about idealized models but should aso be useful for practice

and policy making.

7.1.2. Transportation Marketplaces

Dynamic aspects are explicitly included in the TLPM problem environment,
which fundamentally distinguishes this work from contributions in the area of
combinatorial auctions for transportation (limited to a static approach). At the same
time, fleet management operational aspects are fully incorporated, which sets this
research apart relative to general procurement studies or to the analysis of shipper-
carrier relationships. Therefore, characterizing activities of the TLPM as a bi-level
alocation problem, using prices/bids to alocate shipments among carriers and costs
to alocate shipments to trucks, constitutes a contribution to the study of
transportation marketplaces.

Chapter 5 characterizes the competitive behavior of carriers as the result of
carriers technology and their bounded rationality (intrinsic elements), auction rules,
and the strategic setting (extrinsic elements). Chapter 6 circumscribes competition to
a setting in which carriers are unable to discover or use competitors private
information. The emphasisis on “learning” good bidding strategies based on previous
experience and market prices.

The contribution of chapters 5 and 6 is to provide an aternative framework to

traditional models of behavior, equilibrium, decision-making, and analysis for
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transportation carriers. Decision making and behavior are defined as an expression of
the goals, and bounded rationality of the carrier as the type of pricing/bidding/fleet
management problem that the carrier is able to tackle. Table 2 coupled with the
appropriate learning mechanisms (for example reinforcement learning and fictitious
play when aplicable) embody the approach to carrier behavior proposed in this
research.

The computational results of chapter 6 indicate the importance of market and
auction design in the performance of the TL market. Computational experiments
indicate that auction setting and information disclosure affect the performance of the
marketplace. Maximum information disclosure allows carriers to maximize profit at
the expense of shippers consumer surplus; minimum information disclosure allows
shippers to maximize consumer surplus but at the expense of lowering the number of
shipments served. Chapter 6 aso studies the influence of learning (fictitious play and
reinforcement learning) on market performance and technological asymmetries.

Finally, asignificant contribution is the quantification of the potential gainsto
carriers and shippers of service procurement through real time transportation markets.
The economies of density, volume, and scope of transportation have long been
articulated, though largely based on static settings. Computational experiments
performed in chapter 4 show that the proposed usage of sequential second price
auctions could provide a new tool to quantify the advantages of real-time competitive
markets (as in wealth creation). The flexibility of the method allows the incorporation
of new elements such as the effect of time windows, which were not considered in

previous economic static analysis of transportation systems.
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It is also shown in chapter 4 that economics of market integration are also
incentive compatible, which may lead to resale markets for carrier companies that
handle only private contracts. The advent and diffusion of information and
communication technologies give rise to rea opportunities for wealth generation in
real time exchange. Economies of integration aso have the benefit of keeping
carriers decision problem complexity bounded to the same original level and (as

already mentioned) incentive compatibility — assuming the market is truth revealing.

7.1.3. Dynamic Vehicle Routing and Pricing

The performance evaluation of dynamic vehicle routing technologies is
problematic. The existing evauation paradigm (competitive analysis) does not
possess al the desired characteristics of an evaluation tool, especiadly in a
marketplace, as discussed in chapter 4. This research proposes a new methodology,
auction analysis, to evaluate dynamic vehicle routing technologies. The methodology
is particularly suitable when the technology is applied in a marketplace. Moreover,
the methodology has adequate theoretical properties. Acceptance/rejection and
minimal cost routing problems are special cases of auction analysis. In addition, the
methodology fits nicely in the bounded rationality framework presented in chapter 5.
In light of the experimental results of chapter 6, the values obtained with auction
analysis can be considered adequate for sequential second price auctions and an upper
bound for first price auctions (under no-knowledge assumptions)

The steps of a rational decision making process are applied to fleet

management technologies and pricing problems in chapter 5. These steps can be
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applied to dissect the sophistication of dynamic vehicle routing technologies. A new
technology that better evaluates the consequences of current fleet and bidding
decisions on future auctions is presented in chapter 4 (1IFOOC technology). This
technology outperforms static approaches and uses simulation to determine the profit
impact of serving a shipment in the next auctions; these impacts can be interpreted as
the opportunity costs (positive or negative) of serving a shipment.

Chapter 5 links carriers technology, decision making, computational
resources, bounded rationality, and problem selection to a family of pricing/fleet
management problems. Furthermore, by assuming no-knowledge about the
competition’s private values or bounded rationality, a TLPM automaton can represent
the behavior, learning, and problem solving abilities of a carrier. As expressed in
chapter 6, behavior with this level of sophistication can be expected in transportation
marketplaces, though levels of sophistication may vary with the resources of the
company. However, complexity levels the competitive playing field since it grows

exponentially with problem size (number of trucks, shipments, competitors)

7.2. Limitations, Extensions, and Future Research Directions

This research presents a comprehensive study of the TLPM problem
environment. However, as in any new problem, many important research avenues
remain open. Balancing the breadth and depth of the topics covered in this research,
the TLPM model considered is streamlined to its essentia features and the treatment
of TLPM issues are limited to the associated fundamental questions. Selected

suggestions for future research are presented herein. First, suggestions that expand the
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scope of the studied TLPM are presented; second, suggestions that deepen our
knowledge in some selected topics are presented. Last, some reflections about general

directions for future research are presented.

7.2.1. Limitations
A key assumption made in the TLPM study was the sequential treatment of

one-item auctions. It is clear that the complementary effects of two or more shipments
are explicitly ignored in the auction design, even though the effects of complementary
shipments may be indirectly present in some strategies (i.e. the 1FOOC strategy). If
two or more shipments are bundled together, the new marketplace leads to the
appealing concept of online-combinatorial auctions. This new type of sequential
auction may present a new array of incentive compatibility issues for carriers and
shippers, pricing issues, and trade-offs among bundle size, complexity, and the real
time information arrival rate.

The role of shippersis fairly limited. In this research, shippers do not use the
information revealed by the sequential auctions to set reservation prices, nor do they
try to maximize their profits (no learning or attempt to manipulate the market). What
could the impact of shipper speculation on the transportation marketplace be?

Even though carriers and shippers are aways assumed to be profit
maximizers, the impact of explicitly gaming (cheating) the system is not analyzed
(e.g.. shilling, the use of fake players by the carriers or shippers). How vulnerable are

the presented sequential auction mechanisms to cheating or collusion?
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7.2.2. Extensions

A possible extension is the development of more sophisticated dynamic
vehicle routing technologies. It was aready mentioned that the 1FOOC technology
might be improved by extending the look-ahead depth (two or more auctions ahead)
or evauating a larger set of fleet deployments. Both approaches would be
challenging. Extending the look-ahead increases the complexity of the problem
considerably. The development of efficient heuristics or approximate approaches, and
the evaluation of deeper look-ahead advantages are natural extensions. On the other
hand, it is equally chalenging to develop methodologies that select alternative fleet
deployments which favorably position the carrier for the upcoming auctions.

The learning mechanisms proposed in chapter 6 are standard and well
accepted. Reinforcement learning was adapted to the TLPM environment; a new
method using average profit data improved the carrier’s performance. It is still an
open chalenge to improve on those learning mechanisms without substantially
increasing the complexity of the learning problem. Knowledge acquisition about
competitors appears to substantially increase the complexity of the problem. It may
be worth exploring straightforward methods of knowledge acquisition and usage
problems, as well as the trade-offs between knowledge acquisition and market
performance. Pattern recognition techniques may provide an effective learning tool
without compromising too many computational resources.

The properties and characteristics of the proposed auction analysis of agorithms

could be further evaluated and analyzed, possibly extending the concept to other
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online problems. From the technological standpoint, what is the impact of
information availability, competition, and market settings on encouraging

technological development and adoption in a competitive marketplace?

7.2.3. Futur e Resear ch Directions

Previous research ideas dealt with applications, limitations, and extensions of
the core TLPM framework and associated problems. In an increasingly changing
technological world, exploring issues that are likely to impact society and the
economy is valuable. The next paragraphs deal with the general direction of future
research, which are loosely based on this research work as well as on
contemporaneous trends.

As information and communication technologies become ubiquitous, the low
cost of up-to-date information may enable economic agents (both human and
automaton agents) to be better informed about their environment. As the number of
connections and agents in the system increases, it is expected that the rate of
information arrival, events, and complexity will increase. At the same time, the
concepts of static conditions and “full” optimization become less relevant. On the
other hand, avoiding information overload and dealing effectively with complexity
seem more relevant than ever before.

An increasingly interconnected world, where decision makers deal with
information overload and scarce resources (time, attention, and knowledge), requires
the systematic incorporation of behavioral constraints in optimization problems. The

application of operations research techniques and methods to complex transportation
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problems will have to deal increasingly with agents limitations and behavioral
aspects.

As behaviora constraints are incorporated in optimization problems, the type
of problem to solve (i.e. problem types as in Table 2) may itself become a decision
dimension. Closer collaboration between operations research and behavioral sciences

seems inevitable.
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Appendix A: Online Matching Services

List of online matching services (March 2001). Source:

www.landlinemag.com/Archives/2001/Mar2001/Y our_Money/load boards.html

www.expeditel oads.com
www.dat.com
www.cargolinx.com

www.L oadScout.com
www.efrel ghtservices.com
www.getloaded.com
www.truckwebusa.com
www.besttransport.com
www.truckit.com
www.freightlist.com
www.|oadlinkonline.com
www.truckl oadfreight.com
www.transportation.com
www.directfreight.com
www.internettruckstop.com
www.itruckers.com
www.drivernet.com
WwWWw.carrierpoint.com
www.nettrans.com
www.BeBrokerFree.com
www.loglink.net
www.americasl oadsonline.com
www.backhaul .net
www.cargofinder.com

www.dventerprises.com
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www.eFl atbed.com
www.freightmarket.com
www.ifs.net
www.internetlog.com
www.freight-terminal.com
WWW.i-t-n.com
www.truckstop.com
www.linklogi.com
www.loadline.net
www.|oadmatch.com
www.| oadsource.com
www.loadxchange.com
WWW.moversconnect.com
www.nte.net
www.routelink.com
www.|oaddock.com
www.|oadingzone.com
www.theroad.com
www.transerv.com

WWW.Cargox.com
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Appendix B: Acronyms

The format used in the alphabetical ordered list of acronymsis the following:

acronym, description, page where first used, chapter.

1FOOC: one (1) Fleet Optima Opportunity Cost, page 115, chapter 4
3PL: Third Party Logistics, page 4, chapter 1

ARL: Average Reinforcement Learning, page 207, chapter 6

BF: Bidding Factor carrier, page 200, chapter 6

DVR: Dynamic Vehicle Routing, page 82, chapter 4

EDI: Electronic Data Interchange, page 7, chapter 1

MC: Marginal Cost carrier, page 200, chapter 6

FP: Fictitious Play, page 208, chapter 6

ICT: Information and Communication Technologies, page 1, chapter 1
JIT: Just In Time, page 6, chapter 1

RL: Reinforcement Learning, page 207, chapter 6

SFO: Static Fleet Optimal, page 114, chapter 4

SIPV: Symmetric Independent Private Values, page 27, chapter 2

TL: Truck Load, page 3, chapter 1.

TLPM: Truck Load Procurement Market, page 3, chapter 1

TSP: Traveling Salesman Problem, page 89, chapter 4
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