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Chapter 1: Introduction

1.1. Motivation

Information and communication technologies (ICT) are transforming key 

market processes and the very architecture of the markets.  The Internet and 

especially auctions have emerged as an effective catalyst to sell/buy through 

electronic marketplaces. Transaction time, cost and effort can be dramatically 

reduced, creating new markets and connecting buyers and sellers in ways that were 

not previously possible (Lucking-Reily, 2001). Inexpensive, ubiquitous, and reliable 

communication networks are allowing a physical decentralization of the decision 

making process while connecting market agents in real time. 

 Network business to business transactions have reached $2.4 trillion,

fulfilling early growth forecasts (Mullaney, 2003). This growth is partly supported by 

the increasing use of private exchanges, where a company invites selected suppliers 

to interact in a real time marketplace, compete, and provide the required services. A 

report published in mid 2002 estimated that by June 2003, 15 percent of all Fortune 

2000 companies would have set up private exchanges (Hoffman, 2002). Furthermore, 

the same source indicated that an additional 28 percent of all Fortune 2000 companies 

planned to implement a private exchange by the end of 2003. At the moment of 

writing (March 2004) these figures have not yet been confirmed, however the 

dominance of business to business transaction in United States (over 93%) has been 

recognized (UNCTD, 2003). 
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The changes that ICT could bring to companies’ strategies and market 

structures have been examined from a broad perspective. As early as 1987, Malone et 

al. (1987) predicted that reducing coordination costs (while holding other factors 

constant) should increase the proportion of economic activity coordinated by the 

markets. Factors that favor electronic market systems include the simplicity of the 

product description, the adoption of common standards, and access to multiple 

potential suppliers in the marketplace.

Other authors suggest the opposite, namely that widespread availability of 

ICT will reduce the number of suppliers and foster long-term cooperative 

partnerships (Clemmons, 1993). These two opposite views respectively lead to the 

market model or to the emergence of hierarchies. Compromising views have also 

been suggested (Holland, 1994), specifically that organizations gain the benefits of a 

controlled and known hierarchy, while also retaining an element of market 

competition to gain efficiency. 

The transportation and logistics sector has also been affected by the recent 

technological advances in ICT (Regan and Golob, 1999). Among many changes, it is 

only recently that ICT has started to modify the way contracts are negotiated, by 

enabling demand and supply to be matched dynamically through online market 

mechanisms. Important changes have been taking place in the structure of the 

transportation market, with the development of auction and load matching markets for 

transportation services, in the form of Internet sites that match shipments (shippers 

demand) and transportation capacity (carriers offer). The effect and impact of these 
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changes on a 585 billion dollar industry (American Trucking Association, 2003) are 

still unraveling. 

Transportation auctions are still a relatively recent phenomenon, characterized 

by rapid change and fast development. There is a large number and variety of online 

markets as detailed by Tankersley (2001) and Huff (2002). This type of market has

not yet reached maturity as indicated by the significant number of start-ups, mergers, 

consolidations, and constant evolution and changes in the services offered to shippers 

and carriers.  Appendix A contains a list of freight-matching services. 

This dissertation explores how carriers compete in a transportation 

marketplace and studies the performance of a marketplace under different 

supply/demand conditions, auction formats, and carriers’ behavioral assumptions. In 

this dissertation the type of marketplace where carriers compete is a spot truck-load 

(TL) procurement market using sequential auctions. Herein, for the sake of brevity 

this type of marketplace is referred as the TL procurement market (TLPM) problem 

or simply TLPM. 

This chapter is organized as follows: section 2 positions the TLPM problem 

under study in the context of shipper-carrier procurement relations. It also surveys 

relevant literature. Section 3 provides a general definition of a TLPM. Section 4 

presents the research context and general approach to tackle the TLPM problem. 

Section 5 details the research objectives and contributions. Section 6 explains the 

rational behind the dissertation organization. It also presents the outline of the 

dissertation. Section 7 delves into the notation convention to be used throughout this 

research. 
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1.2. Shipper-Carrier Procurement Structures

Online markets are just one way to organize trading and resource allocation 

among carriers and shippers. In the continuum from markets to vertical hierarchies (in 

which all activities are performed internally), shippers and carriers can meet under a 

wide array of relational structures. All these structures share a basic functionality: 

shippers can procure transportation services. The cost and characteristics of the 

provided services are dependent on the shipper procurement strategy and needs, how 

prices are negotiated, and the efficiency of the fleet operation. 

The span of shipper/carrier relationships is depicted in Figure 1. The different 

structures range from vertical integration (on the left) to spot markets or public 

exchanges (on the right). Long term contracts and private exchanges are located 

between vertical and spot markets. While plethora of procurement arrangements 

between shippers, carriers, third party logistic (3PL) companies, and brokers are 

possible, the discussion is limited to the main four structures depicted in Figure 1. 

Vertical integration takes place when the shipper uses a private fleet. 

Ownership’s main advantage is total control over the fleet operation, therefore 

guarantying direct influence over equipment availability and service quality.

However, ownership distracts resources from core activities and may result in high 

transportation costs due to excessive deadheading. Conversely, in a market, shippers 

must search for and transact with carriers interested in providing the demanded 

services.
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Figure 1 Spectrum of Shipper-Carrier procurement structures

Long term contracts with a carrier or a 3PL guarantee service while releasing 

the shipper from owing/managing the fleet. Less resources are distracted from the 

core company activities but control is somewhat relinquished. Service characteristics, 

prices, and payment mechanisms are usually detailed in a binding contract. 

Private exchanges are usually owned and maintained by a single owner.  It is a 

one-to-many environment, among a shipper and a small number of selected carriers 

or 3PLs. Negotiations are no longer bilateral, they take place in the private exchange, 

a private forum where carriers compete. Shipper and carriers participate in each 

transaction, which may range from a single shipment to a long term contract over a 

network lane/s. If several shipments or lanes are transacted simultaneously they are 

generally assigned using combinatorial auctions. Competition is increased but at the 

price of owning and maintaining the private exchange. 

Vertical
Integration

Long Term
Contracts

3PL Services

Private 
Exchanges

Spot Market
Brokers/Public

Exchange

+ Control, Collaboration, Reliability

Number of Participants +

Private Fleet Core Carriers Any Carrier/Shipper
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Public exchanges or markets connect many shippers and many carriers. They 

are usually owned by a trusted third party, acting as a connecting hub. Market reach is 

expanded, maintenance costs are spread out among many parties, but parties also 

relinquish control over operations and transaction formats. 

Along the procurement spectrum, the number of self-interested agents 

involved in the market increases from one (integrated shipper-carrier) to many 

shippers/carriers buying/selling services in a market (public exchange). In a similar 

way, the lengths of the relationships shorten while the services provided are 

increasingly becoming a commodity. 

The commoditization of services provided as well as the utilization of 

meaningful service standards are key factors in the development of public markets.  

Search and transaction time and cost are reduced while guarantying specified levels 

of service. Furthermore, bringing together many shippers and carriers creates a 

positive synergy as it allows for economies of scale and scope while keeping 

transaction costs low. Alternatively, if a shipper’s product/service requirements are 

such that they cannot be met with standard equipment/operations, the shipper must

negotiate with a carrier or manage its own fleet in order to customize services to meet 

his own special needs.

The changes and trends in shipper-carrier procurement strategies have 

received a great deal of attention in the transportation and logistics academic 

literature. This type of study specially flourished after legislation regarding motor 

carrier deregulation was passed by the United States Congress in the late 1970s and 

early 1980s. Crum and Allen (1990) report how Just In Time (JIT) inventory and 
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production systems and economic deregulation have impacted carrier-shipper 

relations.  These authors use survey data to show trends towards a reduction in the 

number of motor carriers utilized by individual shippers and towards long term 

contracting. A slightly different trend is reported by Lieb and Randall (1996). These 

authors report a trend, mainly among big companies, towards outsourcing 

transportation and logistics responsibilities to 3PLs. Crum and Allen (1997), after 

comparing survey data taken in 1990 and 1996, conclude that the trend in carrier-

shipper relationships continues to move away from a transactional framework to a 

relational one (from a cost based procurement to a collaboration based procurement)

Technology has also spurred changes and transformation of transportation-

logistics procurement structures. Shortly after deregulation legislation was passed, 

Electronic Data Interchange (EDI) started to become available. Williams (1994) 

studies and reports how EDI facilitates and fosters a seamless integration between a 

shipper and group of core carriers. The internet has been widely reported as a catalyst 

to foster integration of business processes in the supply chain, collaboration, and the 

usage of market mechanisms (e.g. auctions) (Garcia-Dastungue, 2003).  

A survey study about the adoption and usage of Internet procurement tools by 

shippers was conducted by Lin et al. (2002). That survey indicated that 60% of the 

shippers use the internet to procure transportation services (phone usage was tallied at 

90%). Load matching and transportation auctions were used by 15% of the shippers 

that used some transportation online service (2001 data). Another survey cited by 

Huff (2002) includes results from 373 for-hire-trucking companies. More than 90% of 

the respondents use phones to bid and accept loads, 40% use email, and 30% use 
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freight boards or exchanges (data from December 2001). Song and Regan (2001) 

examine the potential benefits and costs of shifting from traditional 3PLs to online 

procurement markets.  

Another line of work has focused on the study of new means of price 

discovery made possible by ICT advances and the advent of electronic marketplaces. 

A seminal work by Caplice (1996) studies combinatorial bidding over network lanes 

(long term contracts). Caplice’s comprehensive work focuses mainly on the design of 

combinatorial auctions to reduce carriers’ repositioning costs. Song and Reagan 

(2003) propose a fast and optimization-based bid construction strategy that carriers 

can use to evaluate transportation costs. Abrache et al. (2003) propose a bidding 

framework that seeks to simplify bidding complexities in combinatorial auctions 

while allowing bidders to express their preferences over sets of items. Sheffi (2004) 

reports on the benefits and practical applications of combinatorial auctions in the TL 

industry. 

Most of the oldest and major online transportation marketplaces offer a 

combination of services that encompass a large portion of the procurement continuum 

(e.g. NTE (www.nte.com), BestTransport (www.BestTransport.com), and 

LeanLogistics (www.LeanLogistics.com)). As an example, the LeanLogistics 

Transportation Marketplace consists of three market formats: (1) ContracTender (1:1)

electronically tenders a load to a core carrier, based on specific rules, with a 

previously negotiated contract rate attached. (2) Private Spot Market (1: Many)

electronically tenders a load to the shipper's carrier base (or a subset) simultaneously. 

The shipper could use the contract rate as a base price and receive bids from core 
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carriers. The Private Spot Market has a dynamic set of rules that can vary by product, 

by region, by division, and over time. (3) Exchange (Many: Many) electronically 

tenders loads from many shippers to many carriers for improved access to the best 

load opportunities and capacity available (expanded search capabilities).

Work in the area of electronic transportation procurement has so far focused 

on contracting issues and trends in the design and solution of combinatorial auctions. 

Even though the items being auctioned can range from long term contract services 

(over network lanes) to a sequence of one-time shipment auctions, issues related to 

spot markets or the usage of sequential auctions in a transportation context have not 

yet been explored. Furthermore, there appears to be no published work of a 

fundamental, scholarly or methodological nature specifically dealing with 

procurement of truckload (TL) services using sequential auctions (spot market). 

In the context of the procurement spectrum (Figure 1) the range yet to be 

explored is the area between private exchanges and public marketplaces (especially 

with real time or sequential operation). This procurement range is characterized by 

short term and frequent transactions (spot market), two or more carriers offering 

transportation services, and one (private exchange) or several shippers (public 

exchange) requesting transportation services. Many types of procurement 

arrangements can be found in the described range. The next section will delineate the 

type of market to be studied herein.
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1.3. Spot Truck-load Procurement Market using Sequential Auctions

Many Internet-based transportation marketplaces have emerged to serve the 

transportation industry, each offering a wide variety of services. These services range 

from load posting boards, cargo matching, and auctions, to the procurement of 

transportation equipment, parts and systems for logistics and supply chain 

management (Wolfe, 1999). 

The transportation marketplace to be studied enables the sale of cargo 

capacity, based mainly on price yet still satisfying customer level of service 

requirements (e.g. shipment time window). 

A diversity of market timings may exist. In the cases where demand can be 

anticipated (days, weeks, or months ahead), forward markets are used. Forward 

markets allow for balancing of both power and storage equipment. This allows (a) 

shippers to hedge against demand/supply fluctuations and (b) carriers to increase fleet 

operational efficiency. 

Spot markets are useful to deal with unanticipated demand or supply shocks. 

Unanticipated demand may be originated by the increasing number of companies 

(especially manufacturing) adopting customer-responsive, made-to-order 

manufacturing systems (Dell Computers exemplifies this trend). Though a diversity 

of market timings may coexist (i.e. the aforementioned LeanLogistics marketplace), 

the type of market to be studied herein is solely restricted to spot markets. 

The market is comprised of a shipper (private exchange) or set of shippers 

(public exchange) that independently call for TL procurement auctions and the 

carriers that participate in them.  Without loss of generality, it is assumed herein that 
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shipments are generated independently by a set of shippers. Prices and allocations are 

determined using a reverse auction format (to be defined shortrly), where shippers 

post loads and carriers compete for them (bidding). A set of shippers generates a 

stream of shipments, with their corresponding attributes. Shipment attributes are 

defined as all the shipment characteristics that can affect the cost or likelihood of 

being serviced (e.g. arrival time, origin-destination, delivery time windows, 

reservation price, etc.).

Reverse auctions that comprise a buyer and several sellers are used in the 

TLPM. The term “auction” usually refers to the case that involves a seller and several 

buyers.  The term “reverse” is added because sellers (carriers) bid instead of buyers 

(shippers); prices are bid down instead of up. In “reverse auctions” sellers have a 

production or service costs, while in “auctions” buyers have a valuation of the 

object/service to be purchased. Fortunately, models and intuition derived for most 

“auctions” can be easily reversed and applied to “reverse auctions” and vice versa 

(Rothkopf, 1994a).  Throughout this dissertation, the words “value” or “valuation” 

imply the usage of an auction while the word “cost” imply the usage of a reverse 

auction. ).  Throughout this dissertation it is implicit the usage of reverse auctions 

when referring to or analyzing a TLPM. 

Auctions are performed one at a time as shipments arrive to the auction 

market. It is assumed that auctions take place in a private exchange. Furthermore, a 

stable set of pre-screened or selected core carriers participate in each and every 

auction. Therefore, each and every carrier participates in a sequence of one shipment 

auctions. When an auction is called, carriers do not know with certainty, neither when 
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the next auction will be called, nor the characteristics of the next shipment to be 

auctioned. 

The auctions are assumed to operate in real time: transaction volumes and 

prices reflect the status of demand and supply. Auction announcement, bidding, and 

resolution take place in real time, thereby precluding the option of bidding on two 

auctions simultaneously (the likelihood of two auctions being called at the same time 

is zero).

The items to be auctioned in the market are restricted to TL shipments. A 

characteristic of TL carrier operations is that trucks do not follow regular routes. 

Trucks travel from shipment origin to destination without any intermediate stops 

(there is no shipment consolidation). A significant proportion of a carrier’s costs is 

due to repositioning of empty vehicles (deadheading or empty distance) from the 

destination of one load to the origin of the next load to be served. Given that carriers 

operate in an uncertain and dynamic environment, deadheading costs are never 

known with certainty.  

This type of TL sequential market is suitable for shippers who are required to 

interact with multiple carriers over time. The sequential nature of the auctions mirrors 

in some degree the demand for transportation services, which is a derived demand. 

This derived demand originates over time as shippers fulfill new orders or replenish 

stock.

Shippers are assumed to be non-strategic agents.  This implies that they do not 

speculate on the arrival or reservation price of their market postings.  Shippers are 

assumed to know the exact value of the reservation price (the highest price a shipper 
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is willing to pay a carrier for serving a given shipment) of their shipment as a function 

of its attributes (origin-destination, commodity type, stock out costs, time window, 

etc.). Shippers achieve a profit (saving) when paying less than the reservation price. 

Shippers reject bids that exceed the reservation price.

The dynamic interaction among a stable set of carriers creates a public history 

and environment that enables learning, the evaluation of current actions’ future 

consequences, and the implementation of evolving strategies. There is a rich gamut of 

possible carrier behaviors in the proposed TLPM. Different levels of rationality and 

cognitive capabilities are employed in this dissertation, which are specified as needed.  

Section 6 (in this chapter) broadly illustrates how these levels of rationality are used.  

Chapters 5 and 6 study carriers’ behavior as a function of their cognitive and learning 

capabilities. 

This section has defined the general characteristics of the market to be 

studied. The next section presents the research approach. 

1.4. Research Context and General Approach

Markets, especially auctions, are a powerful social information-processing 

mechanism.  They are useful for the social construction of value; they provide a 

formidable set of tools for price discovery. McAffee and McMillan (1987) define 

auctions as market institutions with an explicit set of rules determining resource 

allocation and prices, based on the bids from the market participants. In a more 

general way, auctions can be defined as any well defined set of rules for determining 

the terms of exchange of some good or service for money (Wurman, 2002).  
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The design of an auction requires the precise specification of a set of rules. 

These rules determine an auction model, the system by which bidding is conducted, 

how information is revealed, how communications are structured between buyers and 

sellers, and how allocations and payments are settled. The outcome of the auction 

strongly depends on the set of rules used. This study will not deal with the design of 

an auction, the details regarding how the process is conducted, or how information is 

processed. Rather, it will use existing standard auctions mechanisms (e.g. second 

price auction) and analyze their performance in a TLPM context as a function of

information revealed. Considering a given set of rules (rules that include how 

information is revealed), this dissertation looks into how exogenous (to the TLPM) 

factors affect the performance of the system. The exogenous factors to be considered 

include supply/demand patterns, carriers’ fleet assignment technologies, and carriers’ 

behavior.

The decision problem that a carrier faces is strategic in nature due to the inter-

dependency among competitors’ bids, costs, and profits. Game theoretical analysis of 

auctions can be quite challenging and often intractable.  In the proposed TLPM 

carriers face a highly complicated decision problem. Furthermore, sequential auctions

with bidders with multiunit demand/supply curves, remains intractable (Krishna, 

2002). However, this is not the only source of complexity. In the TLPM context,

adequate fleet management and bidding entails estimating the shipment service cost 

and assigning shipments to vehicles.  These are NP hard problems (vehicle routing 

problems with time windows). Additionally, in a dynamic environment, the decision-
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maker has to consider future impact of current decisions, and update policies or 

strategies as new information becomes available. 

Closed analytical solutions for this complex carrier decision problem would 

require many simplifications that could compromise the validity of the results. 

Therefore, computational experiments and simulation are used as needed to enhance 

and extend simpler theoretical models. Furthermore, simulation is used to study the 

dynamics of carriers’ behaviors and interactions in controlled and replicable 

experiments. 

This dissertation deals with both the shippers and carriers’ perspective. 

Shippers are concerned about service levels and prices available in an auction market. 

Carriers focus on maximizing profits, which is hindered by competition and by 

requirements to provide a suitable level of service.  The two perspectives are strongly 

intertwined, and will be examined concurrently through the same conceptual 

framework.

This dissertation does not consider the market operator or auctioneer’s 

perspective; i.e. the profits of the entity running the auction site, the profitability of 

the web site, etc. Similarly, the organizational aspects of delivering the auction web 

site are not of primary concern. The latter might be an industry effort, a partnership, 

or a third party -- these issues are only relevant to the extent that they might affect the 

rules of the transactions and hence the resulting service levels and prices to shippers.
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1.5. Research Objectives and Contributions

The properties or performance of a spot TL transportation market are not 

evident a priori; nor are approaches to study them. A primary contribution of this 

dissertation is to initiate the study carriers’ behavior in an ongoing competitive 

environment. Sequential auctions are the framework chosen to model and study 

carrier competition. This research examines TLPM markets using sequential auctions 

under different demand/supply conditions, carriers’ fleet management technologies, 

and behavioral assumptions. 

The specific goals of this research are as follows:

1. Model a competitive spot market for TL procurement using sequential 

auctions;

2. Analyze characteristics and complexity of  sequential TL procurement 

auctions;

3. Formulate the bidding  problem  for TLPM using sequential auctions as  an 

equilibrium and decision theory problem;

4. Define a benchmark to compare the efficiency of sequential transportation 

marketplaces;

5. Provide a methodology to compare carriers’ fleet assignment asymmetries;

6. Evaluate the competitive performance of  vehicle routing technologies with 

different degrees of sophistication under different demand patterns;

7. Propose a framework for carrier behavior in sequential auctions for 

transportation procurement, where behavior is shaped by learning and 

cognitive capabilities;
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8. Develop a market simulation framework to get insights into complex dynamic 

aspect of the TL spot market using sequential auctions; and

9. Study the influence auction format and data disclosure on learning (fictitious 

play and reinforcement learning), market performance, and technological 

advantages.  

1.6. Dissertation Organization

In TLPM markets, it is possible to identify two layers of interdependent 

allocations. The first layer is a public allocation, the auction layer, which is an 

allocation from the set of carriers to the set of shipments (the set of shippers). There is 

an exchange of services and money (dynamic pricing through auctions) and a first 

allocation process. The second layer, a private allocation, constitutes allocation of 

shipments to vehicles as determined by the carriers’ fleet management technology.  

While the first layer (auctions) performance is best described by economic indicators 

(e.g. prices, efficiency of allocations, etc.), the second (fleet management) is best 

described by engineering indicators (empty distance, fleet utilization, etc.). 

From a carrier’s point of view, these layers represent two distinct problems: 

(1) profit maximization problem (choose best bidding policy) and (2) cost

minimization (best fleet assignment to serve acquired shipments). The set of skills 

and capabilities (i.e. problem solving skills, software, technology, human resources, 

etc.) that a carrier requires to excel in each layer are distinct, though both are 

indispensable for a successful operation. Given the complexity of the bidding/fleet 

management problem, carriers can formulate and solve the bidding/fleet management 
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problem using different approaches and levels of sophistication. Three distinct 

approaches are: game theoretical (several decision makers, strategic rationality), 

decision theory (one decision maker, non-strategic rationality), and bounded 

rationality (non-optimal decision maker, can be strategic or non-strategic).

These concepts (allocation layers and approaches) are used to provide the 

structural organization of this dissertation (see Figure 2). After introducing the topic, 

chapter 2 examines relevant auction theory, mainly considering strategic issues that 

arise in sequential auctions (game theoretic approaches). Chapter 3 formulates the 

entire bidding-fleet management problem still using a game theoretic approach. The 

complexity and characteristics of the problem are analyzed. Chapter 4 assumes the 

existence of an ideal market where bidding best policy equals marginal cost bidding. 

Under this assumption, fleet management technologies are the only source of 

competitive advantage. Chapter 5 relaxes the full rationality assumption of chapters 2 

and 3 and presents a framework for learning and boundedly rational behavior in the 

analyzed market. Chapter 6 looks at competition under different boundedly rational

behaviors.

 A more detailed outline of the chapters follows. Chapter 2 presents a review 

of auction theory and its relation to the present research.  The chapter begins 

presenting an archetypical (though highly idealized) auction model and comparing it 

to TL sequential auction. Relaxations of the archetypical model are discussed, 

specifically models dealing with sequential auctions. 

Chapter 3 formulates the complete decision problem as an equilibrium 

problem, using a game theoretical approach. The characteristics and complexity of 
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this approach are analyzed. Additionally, the validity of a full rationality assumption 

and market efficiency measures are proposed. The chapter ends with an introduction 

to the simulation framework and experiment design. 

Chapter 4 is dedicated to studying the effect of fleet management technology 

asymmetries in a competitive market. Algorithm analysis and vehicle routing 

technologies literature are surveyed and discussed. The bidding problem is 

formulated using non-strategic approach. A methodology to compare dynamic fleet 

management technologies is introduced. Simulation results are presented and 

analyzed. 

Chapter 5 presents a framework to study carrier behavior in TL sequential 

auctions. Carriers’ decision making processes and bounded rationality are analyzed. 

Behavior is also analyzed in relation to the auction information disclosed and decision 

making complexity. 

Chapter 6 analyzes the market performance under different carrier behavioral 

assumptions. Reinforcement learning and fictitious play implementations are 

discussed. The performance of different auction formats is studied. Simulated 

scenarios are presented and their results discussed.

The last chapter presents a summary of the main findings and results as well 

as suggested avenues for future research. 

1.7. Notation Convention

This section presents the notation convention that is used throughout this 

dissertation. Unless explicitly stated otherwise, this is the convention used: 
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� Superscripts are used for carriers (players). The letter “ i ”is preferably used to 

refer to any carrier; “ i− ”refers to the set of all carriers but carrier “ i ”, that is, the 

opponents of carrier “ i ”. 

� When the superscript is a number within parentheses, it is referring to the carrier 

that occupies that position in an ordered set (e.g. an ordered set of bids). For 

example arranging the bids from lowest to highest, ( )kb  is the kth lowest submitted 

bid, then (1) (2) ( )... nb b b≤ ≤ ≤ .

� Subscripts are used for shipments and time, j or k  are the letters preferably used 

to refer to any shipment/arrival time. 

� N and n are used to denote the number of objects for sale on a sequential auction 

(sequential auction length) and the number of participating bidders, respectively.

� Variables and constants are formatted in italics while functions are not. For 

example ib is the bid of carrier i  (a real number) while bi  is the bidding function 

of carrier i .

� The letter ℑ  is used for the set of carriers, then 1{ ,..., } { , }n i ib b b b bℑ −= = denotes 

the set of carriers’ bids, similarly bℑ denotes the set of carriers’ bidding 

functions. 
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Chapter 2: Game Theoretic Auction Literature Survey

This chapter reviews relevant game theoretic auction equilibrium models and 

presents characteristics of TLPM markets. Special attention is given to sequential 

auction models. This chapter focuses on literature and models that are fundamentally 

game theoretical, i.e. with strategic rational players. This chapter does not include 

boundedly rational models of auctions and bidding (chapter 5 deals with boundedly 

rational behavior; this chapter contains a survey of bounded rationality models). 

Section 1 describes auctions as pricing mechanisms. Section 2 reviews some 

basic auction terminology and notation that is used throughout this dissertation. 

Section 3 discusses the assumptions of an archetypical auction model. Section 4

presents solutions to the archetypical model. Section 5 discusses the characteristics of 

TL sequential auctions, characteristics that are also compared to the ones of the 

archetypical model.  Section 6 reviews relaxations of the archetypical model.  Section 

7 summarizes results and insights presented in the chapter. 

2.1. Auctions as a pricing mechanism

Economic markets can be defined as “a set of products, a set of buyers, a set 

of sellers, and a geographic area in which the buyers and sellers interact and 

determine prices for each product.” (Church, 2000, page 601) Typical means of price 

discovery are fixed pricing, haggling, and auctions. In traditional markets, where 

buyers and sellers physically meet, market participants can haggle with each other 
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directly (even over fixed prices) or use an auction to reach a price. In an electronic 

marketplace, participation is physically decentralized but linked through 

communications and computing processes. Auctions and fixed prices are the most 

ubiquitous transaction methods used in electronic marketplaces. Fixed pricing reduces 

transaction time cost but decreases flexibility and allocation efficiency when 

compared to auctions (Sashi, 2002).  

Auctions are specially useful and practical when there is uncertainty about an 

object (or service) value.  In such cases, an auction mechanism is used to “extract” 

buyers’ or sellers’ valuations. If there were no uncertainty, the seller/buyer would just 

transact with the buyer/seller that had the highest valuation. Speed and simplicity are 

two other auction advantages, which are clearly essential in a transportation spot 

market where transaction resolution time could be a significant constraint in real time 

markets. These advantages are increasingly important as the difference between the 

shipments’ delivery time deadline and their posting time decreases.  In the case of 

transportation auctions, where participating shippers and carriers are physically 

decentralized but linked through the market, auction simplicity facilitates 

communication and transaction completion. 

Non-cooperative game theory studies the behavior of agents in situations 

where each agent’s optimal choice may depend on his forecast of the choices of his 

opponents. From a modeling perspective, game theory formulations of auctions 

formally capture market competition and strategic interactions. These auction models 

recognize that individuals’/companies’ behaviors are affected by the presence of 

competition. Auction models try to replicate the behavior of real world companies 
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and decision makers (ideally successful ones), who formulate strategies with a keen 

awareness of their market competition, and react proactively to potential competitive 

responses. 

Game theory makes explicit and highly restrictive assumptions about the 

behavior of agents in a game (in this dissertation, bidders in an auction). These 

assumptions include the rationality of the players, common knowledge, and 

unbounded computational resources. Agents’ rationality (typically) follows the von 

Neumann-Morgenstern (1953) preference axioms. Something is common knowledge 

if all game players know this information; know that the other players are aware of 

this information; and so on ad infinitum. This “something” could be a bidding 

strategy, the structure of the game, agents’ characteristics, etc. Any strategy has to go 

through this process to reach equilibrium. Unbounded computational resources are 

necessary in games where a player perfectly needs to simulate his own behavior at the 

same time as he simulates that of his opponents, ad infinitum. 

Despite these limitations, game theoretical analysis provides insightful models 

in a wide variety of strategic situations, ranging from nuclear deterrence (international 

relations) and voting in Congress (political science), to labor-labor management 

relations and auctions (McMillan, 2001). 

2.2. Basic Auction Terminology and Concepts 

Different auctions produce different outcomes. There are two main 

quantitative performance measures used to evaluate auctions: (a) revenue and (b) 

efficiency. Revenue is the expected price or income that a seller would obtain or the 
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expected price that a buyer would pay (reverse auctions). Efficiency does not 

explicitly consider prices but rather how the object/service is allocated. An auction is 

efficient if it allocates the object/service to the buyer/seller with the highest/lowest 

valuation/cost.  While the first performance parameter takes into account the 

buyer/seller point of view, the second performance parameter takes into account 

society’s point of view. 

The relationship among buyers’ valuations (auctions) or among sellers’ costs 

(reverse auctions) has important strategic implications. This relationship is commonly 

used to classify auction models. Two extreme and opposite relationships among 

bidders’ valuations exist: these are usually called private values and common values 

assumptions, introduced in the auction literature by Friedman (1956) and Capen et al. 

(1971) respectively. 

Bidders have private values (costs) when each bidder knows its own value 

(cost) of the object at the time of bidding (other bidders’ valuations does not influence 

its value or cost). This value (cost) is the utility (disutility) that the bidder itself 

obtains from the consumption, use, possession or service of the auctioned item.

Bidders have common values (costs) when each bidder (by itself) does not know 

the value (cost) of the object at the time of bidding because other bidders’ valuations 

and quality assessments influence its own valuation. Furthermore, the object has a 

unique true value.  An archetypical common value example is the auction of 

underground oil property rights where (a) each bidder has an estimate of some sort 

(i.e. expert’s estimate or tests results); (b) the other bidders posses extra information 

(additional estimates or different test results) that affect the value that a bidder 
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attaches to the object; (c) the true value of the object is the same for all bidders (the 

amount of oil to be extracted is the same for all bidders). Another classic example is 

the auction of an object which is bought with the intention of reselling it shortly after 

the auction (i.e. stock in the stock market)

Intermediate cases between private and common values (costs) assumptions are 

called interdependent values (costs) assumption. The relationship among buyers’ 

valuations (or sellers’ costs) can be expressed in mathematical terms. Let 

{1,2,..., }nℑ =  be the set of bidders and iθ  denote the private information that buyer 

(seller) i  possesses about the value (cost) of the item being auctioned.  Then, the cost 

ic   for bidder i is a function of:

f( )i ic θ= (Private costs assumption)

1f( ,..., )i nc θ θ= (Interdependent cost assumption)

1f( ,..., ) , {1, 2,..., }i j nc c i j nθ θ= = ∀ ∈  (Common cost assumption)

2.2.1. Strategic Equivalence among Auctions

In the ascending English auction, the auctioneer raises the bids until all 

bidders but the winner are eliminated. The winner pays the price of the last bid. In the 

Dutch auction the auctioneer lowers the bids until a bidder claims the object. The 

winner pays the price of the last announced bid. 

In first and second price sealed bid auctions, all bidders submit a sealed bid. In 

both cases the highest bidder gets the object. However, in the first price auction the 
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winner pays the amount of his bid, while in the second price auction the winner pays 

the amount of the second highest bid. 

The strategic equivalence between the Dutch and first price auctions can be 

easily established. In both auctions the bidder decides how much to bid for or claim 

the object without receiving any signal from the other bidders. At the moment of 

bidding, the bidder does not know competitors’ already submitted/about to be 

submitted bids. If a bidder knows a competitor’s bid it implies that the auction is 

already over. If the strategy space as well as the information available to the bidders 

is the same in both auctions, the payoff functions and equilibrium outcomes are 

equivalent. 

The English auction and the second price auctions have in common the fact 

that the winner pays the second best bid. This is explicit in the second price sealed bid 

auction. In the English auction it is implicit. In this auction bidding stops at the price 

set by the second best bidder. Therefore, in either case the price paid by the winner is 

exclusively determined by rivals’ bids. However, prices paid in each auction are not 

always equivalent. In the interdependent or common value (cost) case the two 

auctions are not strategically equivalent. 

Two conditions must be met to have dissimilar outcomes: (a) bidders have 

interdependent or common values, and (b) in the English auction bidders can observe 

prices at which bidders drop out. Outcomes are dissimilar because competitors’ bids 

carry relevant information about the object valuation. However, in both cases, bidders 

have the (weakly) dominant strategy to bid up (down) to an amount equal to the 

current best estimation of their own true valuation (cost). The fact that there is 
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information revelation in English auctions may help to explain why they are so

widely used. Bidders have a chance to update their valuations as the auction evolves, 

which in turn may drive bids up (Krishna, 2002).

Outcomes and auctions are always equivalent in the private value case. 

English auctions with static proxy bidding are also strategically equivalent to second 

price sealed auctions. Proxy bidding occurs when an automated bidding agent bids on 

behalf of the bidder, as prices go up (down), up to the bidder’s reservation price. In 

static proxy bidding the bidder sets his reservation price before the auction starts 

(reservation prices cannot be updated during the auction). 

The auction formats used in this dissertation are limited to first price sealed 

bid auctions and second price sealed bid auctions. Given the strategic equivalence 

discussed in this chapter, the results obtained automatically extend to Dutch and 

English auctions with static proxy bidding respectively.  

2.3. The Symmetric Independent Private Values Model 

This section reviews the assumptions and solution of the symmetric 

independent private values (SIPV) model, which is one of the simplest and most

comprehensively studied auction models (Wolfstetter, 1999). This model is usually 

used as a benchmark in auction theory. In this dissertation this model is useful to 

illustrate the working of game theory in auctions and to serve as a starting point to 

characterize TL procurement sequential auctions. 
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2.3.1. Model Assumptions

The first six assumptions are exclusive to the SIPV model. The rest are

implicitly used or assumed in the subsequent game theoretic formulation and solution 

of the model. This is a list of the main assumptions of the SIVP model:

1. One indivisible object is being auctioned; 

2.  Several bidders (more than one) compete for the object; 

3. Complete symmetry among bidders (all bidders are identical);

4. A bidder’s valuation (cost) is only known to himself (private value);

5. Bidders’ valuation (costs) are identically independently distributed  (iid);

6. Bidders’ and seller are risk neutral;. 

7. There is a symmetric Nash equilibrium in increasing bidding functions;

8. Valuations (costs) are drawn from continuous and differentiable distributions;

The following items are all common knowledge:

9. Bidders are rational (rationality assumption);

10. The rules of the auction;  

11. Private information probability distribution functions; 

12. Fixed number of  bidders;

13. There is no uncertainty about bidders’ participation;

14. Seller’s reservation price is zero;

15. No fees or participation costs, losers do not pay anything;

16. No budget constraints;

17. Bidders have no uncertainties about their private values; and
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18. Time is not an issue (time at which the auction takes place or resolution time 

does not affect results or valuations).

2.3.2. Game Theoretic Solution to the SIPV Model 

Since valuations are private information and bidders are assumed to behave 

strategically, the SIPV model is formulated as a non-cooperative game under 

incomplete information. 

There are 1n >  potential buyers and an object for sale. Let {1,2,..., }nℑ =  be the 

set of bidders and iθ  denote the private information that buyer i  possesses about 

the value of the item being auctioned.  If bidders’ valuations 1{ ,..., }nθ θ  are 

identically independently distributed (iid) and uniformly distributed on the support 

[0,1] then there is a unique symmetric equilibrium bid functions *b :[0,1] R+→

* 1
b ( ) 1

n
θ θ = −   (Dutch and first price sealed bid auction)

*b ( )θ θ= (English and second price sealed bid auction)

2.3.2.1. First Price and Dutch Auctions

The solution to the first price auction presented here is adapted from 

Wolfstetter (1999). Suppose bidder i  bids the amount ib , and each and every 

competitor bidder bids according to the strictly monotonic increasing equilibrium 

strategy *b ( )θ . The inverse bidding function is denoted * * 1( ) (b ( )) (b ( ))bβ β θ θ −= = .
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Using the symmetry assumption, bidder i  wins the auction if and only if all 

rivals’ valuations are below ( )ibβ .Ties have zero probability (continuous valuation 

distributions and *b ( )θ  is strictly monotone increasing). 

The probability density function of the private value distribution is 

denoted f( )x , the cumulative density function is
[0, ]

F( ) f( )
x

x dx
θ

θ
∈

= ∫ . The probability 

of winning when bidding an amount b and competitors play bidding equilibrium 

function *b ( )θ  is * 1 1 1( ) F( (b ) ( ) ) F( ( ) )n np b b bβ− − −= =   (if the bidding function is 

reversible and  private values are iid).

In equilibrium, the bid ib  must maximize the expected utility:

( , ) p( ) ( )i i i i ib b bθ θπ = − . The first order condition (FOC) is:

( , ) p'( ) ( ) p'( ) 0i i i i i ib b b b
b

θ θ∂ π = − − =∂  (differentiability and concavity 

assumptions). Due to symmetry the superscript can be dropped. Replacing ( )bθ β=

(by definition) and (0) 0β =  (border condition):

( 1) f( ( ) )( ( ) ) '( ) F( ( ) ) 0n b b b b bβ β β β− − − =

In the uniform distribution is assumed for the private values:

F( ( ) ) ( )b bβ β= , then, 

( 1)( ( ) ) '( ) ( ) 0n b b b bβ β β− − − =

This differential equation has the solution ( ) [ /( 1)]b n n bβ = − , solving for the 

optimal bidding function:

* 1
b ( ) 1

n
θ θ = −  
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The equilibrium expected price can be easily obtained by introducing the 

highest order statistic of the entire sample of n valuations in the bidding function. 

Then,

( )

1
k k

n
θ =

+
(kth order statistic uniform distribution with support [0,1])

* ( ) 1
[b ( )]

1
n n

E
n

θ −=
+

2.3.2.2. Observations of First Price Auction Solution

The equilibrium bidding strategy and prices are dependent on the amount of 

competition in the market. As expected, when the number of bidders grows the 

expected price fetched in the auction also grows. Therefore, a  seller benefits while the 

buyers are worse off with competition. 

On the technical side, the derivation of a closed analytical equilibrium bidding 

formula has several essential requirements: a well behaved probability density 

function (continuity, differentiability, and easy to work with and few parameters), an 

increasing bidding function, and a solvable differential equation.  Game theoretic 

models of auctions are in general very difficult to solve mathematically. This 

mathematical complexity usually leads to the formulation of models that make 

extremely strong simplifying assumptions (Rothkopf, 2001).

On the behavioral side, the symmetry, rationality, and common knowledge 

assumptions made about the bidder are extremely restrictive. Symmetry implies that 

no bidder is known to have an advantage. Furthermore, no bidder believes that he is 

in an advantageous or disadvantageous position with respect to the other bidders. 
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Common knowledge implies that every bidder possesses exactly the same public 

information about the others. All bidders model other bidders’ private values (costs) 

in exactly the same way and analyze the strategic situation in the same rational way; 

rationality that leads to a Nash-Bayes equilibrium. 

2.3.2.3. Second Price and English Auctions

In a second price sealed bid or English auction with private values truthful 

bidding is a weakly dominant strategy. In mathematical terms: *b ( )θ θ=

This bidding strategy survives the elimination of weakly dominated strategies 

as shown first by Vickrey (1961). It is easy to show that a bid equal to the valuation 

of the object weakly dominates any other bid. As in the previous auction, let’s assume 

that a bidder has a valuation θ . The best of the competitors’ bid or value is denoted 

as " "s . Let " "b  denote any possible bidding value such that b θ≠ . Then

(a)  Assume  b θ>

Profit obtained from bidding
IF

b θ
s   < θ   < b ( ) 0sθ − > ( ) 0sθ − >

θ  < s < b ( ) 0bθ − < Zero

θ  < b    < s Zero Zero
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(b) Assume  b θ<

Profit obtained from bidding
IF

b θ
s   < θ   < b ( ) 0sθ − > ( ) 0sθ − >

θ  < s < b zero ( ) 0sθ − >

θ  < b    < s zero Zero

In the first case, overbidding may result in having a negative profit 

(underlined).  Bidding the value of the object profits cannot be negative. In the second 

case, underbidding may result in a profit of zero; bidding the value of the object 

results in a positive profit (underlined). There are cases where the profits are 

equivalent, either ( ) 0sθ − >  or zero. This is why bidding the true value weakly 

dominates other values.

The expected equilibrium price is equal to the 1n − order statistic of the given 

sample. This sample consists of n realizations from the uniform distribution with 

support on [0, 1]. The expected price is equal to the one obtained in the Dutch-first 

price auction:

* ( 1) ( 1) 1
[b ( )] [ ]

1
n n n

E E
n

θ θ− − −= =
+

However it is not the only equilibrium, there are a multiplicity of asymmetric 

equilibria (Wolfstetter, 1999). For example:
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b ( ) 1, b ( ) 0 , {1,2,..., }i k for k i and i k nθ θ= = ≠ ∈  

2.3.2.4. Observations of Second Price Auction Solution

As in the other auctions (Dutch and first price) the equilibrium bidding 

strategy and price are dependent on the amount of competition in the market. As 

expected, when the number of bidders grows the expected price fetched in the auction 

also grows. Therefore, the seller benefits while the buyers are worse off with 

competition.

In general, sealed second-price and English auction bidding functions are 

conditional expectations (i.e. interdependent values), which can yield closed-form 

expressions for sufficient simple underlying distributions (Rothkopf, 1994b). The 

SIPV model, with values being uniformly distributed, provides an unusually simple 

equilibrium bid function.

Behaviorally, the rationality requirements for this type of auctions are less 

restrictive than in the Dutch or first price auction. This is plainly evident in the private 

value (costs) case, where bidders are required to just estimate and bid their best 

estimation of their values (costs). Competitors’ beliefs or value (cost) distributions are 

not relevant in SIPV model. Unfortunately this characteristic does not apply in multi-

unit sequential auctions (Sandholm, 1996).  

It was shown that there exists an asymmetric equilibrium. In this case it is 

easy to rule out the “plausibility” of this type of asymmetric equilibrium. However, it 

is not so easy in more complex models. A strong criticism of game theory is directed 

specifically at its inability to reach a unique equilibrium. In many games where 



36

multiple equilibria may exist, how can theory convincingly explain how players 

would agree on playing just one out of the possible equilibria? This and other 

criticisms to game theory are revisited in chapter 5, as part of the motivation for 

proposing a bounded rationality approach.

A notable result is that the four auction types lead to the same level of 

expected revenue and efficiency. This is usually called the “revenue equivalence” 

principle, which does not usually hold outside the SIPV model. 

2.3.3. A Reverse Auction Model 

This section shows the results of a reverse auction model, with one buyer and 

several sellers. The notation and assumptions used are all the same as in the previous 

SIPV model but the reservation price of the buyer is known to be equal to one. In the 

Dutch-first price auction the equilibrium bidding function is:

* 1 1
b ( ) 1

n n
θ θ = − +    

The expected price reached is:

* (1) 2
[b ( )]

1
E

n
θ =

+

As expected, this is the reverse case of the analyzed SIPV model with one 

seller and several buyers. The sum of the expected prices in the first price auction and 

reverse auction models sums to one, for any number of bidders (i.e. with two bidders 

expected prices are respectively 1/ 3  and 2 / 3  respectively). More competition leads 

to more aggressive bidding which leads to lower bids. This simple model can be 

viewed as a link to oligopoly theory (Wolfstestter, 1999).  The structure of the model 
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is similar to an incomplete information Bertrand oligopoly game with inelastic 

demand and 2n ≥ identical firms. A Bertrand game where each firm has constant unit 

costs iθ  (which is private information) and unlimited capacity. If it is common 

knowledge that companies’ unit costs are iid uniformly distributed with support [0,1] , 

then the oligopoly game is similar to a Dutch auction (lowest price wins the market).

2.3.4. Extension to Price-elastic Demand

If the reservation price of the seller (denoted as r ) follows a uniform 

distribution with support [0,1] , then the equilibrium bidding in the Dutch-first price 

auction is as if there was an extra bidder:

* 1 1
b ( ) 1

1 1n n
θ θ = − + + +   

 Intuitively, pricing is more aggressive if demand responds to price. Of course 

if the auction were second price, bidding would not be affected, since *( )b θ θ=

independently of how many bidders there are. 

In this case first price auction leads to lower expected prices, however it also 

leads to inefficiency. With positive probability there are valuations where 

(1) rθ ≤ (where (1)θ  is the lowest of the cost realizations) and  

(1) (1)1 1
1

1 1
r

n n
θ θ ≤ < − + + +   

This is an inefficient outcome that would be avoided using a second price 

auction.  It is clear that maximum efficiency and lowest expected cost for the buyer 

cannot be obtained using the same auction type. This simple example shows that a 
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slight departure from the SIPV model leads to contradictory results. Unfortunately, 

this is a common characteristic in auction theory, where minor relaxations of a model 

can lead to unexpected or suspiciously dissimilar results (Rothkopf, 1994b).

2.4. Characteristics of  Spot TL Procurement Market using Sequential 

Auctions

The most influential (and obvious) characteristic is the “sequential” aspect, 

which introduces a new dimension (time). In general, the sequential aspect has four 

distinct impacts (a) bidding is affected by the auction data already disclosed (i.e. 

carriers form expectations (beliefs) based on past data, such as bids, allocations, etc.); 

(b) the current bid or action will affect the future evolution of the bidding process; (c) 

unlike a single object auction, in TL sequential auctions, the cost of serving one 

shipment is uncertain and in general this cost cannot be correctly estimated without 

considering the other shipments already auctioned or to be auctioned; and (d) carrier 

available capacity is neither static nor unlimited. Section 3.3 in chapter 3 deals with 

the complexity of the auction-fleet assignment problem; it further analyzes how the 

fact of being “sequential” aspect affects the complexity of the problem. 

Anther important characteristic of a TLPM is that carriers do not know the 

characteristics of the shipments to come. In this sense the problem can be defined as 

“sequential online”, where it is uncertain not only whether a carrier will serve future 

shipments but also what the characteristic of the yet unrealized future shipments will 

be. A “sequential offline” problem is one where all the shipments to be auctioned are 

known before the auction starts. 
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Other characteristic of a TLPM are listed below: 

1. Shipments being auctioned are usually heterogeneous objects (i.e. some 

shipment characteristics, such as origin-destination or the arrival-delivery time 

for example, always differ).

2. Transportation services are perishable, non-storable commodities. Therefore 

the timing and ordering of the auction is important. 

3. Transportation supply/capacity/infrastructure is limited and highly inelastic (at 

least in the short term). 

4. Demand and supply are not only geographically dispersed but also uncertain

over time and space.

5. Each shipment has no standard value; auctions facilitate the price discovery 

process.

6. Strong complementarities exist among the items auctioned (the value of an 

item is a function of the acquisition of other items). 

7. An item’s value (shipment) is not only strongly dependent upon the 

acquisition of other items (e.g. nearby shipments) but also highly dependent 

on current spatial and temporal deployments of the fleet.

8. Penalties/costs associated with late deliveries or no delivery might be several 

times higher than the cost of transportation per se.

It was already mentioned that the SIPV model is a widely studied model. TL 

procurement auctions dramatically differ from the SIPV model. A detailed 
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comparison of the two models, using the assumptions of the SIPV model as a base, is 

presented in Table 1. 

An important common element is that in both models the values and costs are 

private. Why does a carrier have private costs in a TLPM? The reasoning is simple: 

the cost of servicing a shipment is not dependent on competitors’ private information.  

A carrier’s private information encompasses all the information regarding its

assignment and cost functions, fleet status and deployment, as well as the shipments 

waiting to be fully serviced (this broad definition of  a carrier’s private information is 

used in chapter 3 to formulate the problem). Let  iθ  and ic  be the private 

information and the cost of serving a given load by carrier i  respectively, 

then 1f( ) f( ,..., )i i nc θ θ θ= = . 

Competitors’ fleet deployment and status do not affect 'i s  cost of servicing a 

load. They can certainly affect the profit or probability of winning that load (more or 

less competitive bids) but not the cost (the number of empty and loaded miles that 

carrier 'i s  fleet have to travel to serve that load). In other words, whether or not the 

carrier i  knows his competitors’ private information may affect his bid but not his 

cost.

Table 1 indicates many differences between the TLPM and SIPV model. 

Though models in the literature cannot cover them all, relevant relaxations of the 

SIPV model are described and analyzed in the next section with a twofold purpose: 

(a) describe the state of art in sequential auctions and (b) gain intuition about the TL 

auction problem.
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2.5. Extensions to the SIPV Model

The following extensions of the SIPV model are all sequential offline auction 

models. Therefore, the characteristics of all the objects being auctioned are known 

before the auction starts, and the auction timing does not affect bidders’ valuations.  

Another important distinction is between two period models and N >2 period models. 

The former type of models assumes bidders with a two-unit demand function, while 

the latter type of models assumes bidders with a unit-demand function. Models with 

three or more objects, bidders with multiunit demands, and incomplete information 

about competitors’ costs remain intractable (Krishna, 2002).

This section reviews game theoretic sequential auction literature. The 

literature is divided in two classes (a) papers that study expected revenue, efficiency, 

and equilibrium of a given model; and (b) papers that optimize either seller choice of 

auction mechanism or bidder strategies in a given auction environment. The formed 

are named “Economic Models” since they are mostly formulated by economists, 

while the later are called “Operations Research Models” (OR models) since they are 

studied primarily by operation research and computer science researchers. 
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ASSUMPTION SIPV Model
ASSUMPTION
TL Sequential Auctions

One object
NO. Many shipments in a sequence of 
auctions.

Several bidders Idem

Complete symmetry among bidders
NO. Carriers are inherently asymmetric 
(different fleet deployment and history)

A bidder’s valuation is only known to 
himself (private value)

Idem. A carrier’s private cost is a function 
of his own deployment only

Bidders’ valuation are identically 
independently distributed  

NO. Carriers may have different cost 
distributions (i.e. asymmetric fleet 
management technologies)

Bidders’ and seller are risk neutral. Idem

There is a symmetric Nash equilibrium 
in increasing bidding functions

NO. Asymmetries and binary variables 
impede it.

Valuations (costs) are drawn from 
continuous and differentiable 
distributions

NO. Asymmetries and binary variables 
impede it.

The following items are all common knowledge:

Bidders are rational (in game 
theoretical terms)

Assumption hard to support. If rationality 
is relaxed, how competitors should be 
modeled?

The rules of the auction Idem

Private information probability 
distribution functions

Assumption hard to support in a 
competitive environment. Companies’ 
proprietary information. 

Fixed number of  bidders Idem. A private market is assumed.

There is no uncertainty about bidders’ 
participation

Idem. A private market is assumed.

Seller’s reservation price is zero
Shippers’ reservation price may not be 
necessarily known

No fees or participation costs, losers do 
not pay anything

Idem. 

No budget constraints
NO. There are capacity constraints that 
affect strategic interactions among 
carriers and costs

Bidders have no uncertainties about 
their private values

NO. There are capacity constraints that 
affect strategic interactions among 
carriers and costs

Time is not an issue
NO. Timing of auctions affect carries 
costs and capacity.

Table 1 Comparing the SIPV and TLPM model 
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2.5.1. Economic Models

The first game theoretic model of sequential auctions to be published (Weber, 

1983 and Milgrom, 2000) analyzes a model of sequential identical “N” auctions with 

unit demand bidders. This model introduces just one relaxation to the SIPV model: 

more than one object is for sale. However, this model assumes that bidders have unit 

demands, therefore if they win one object they do not participate in the subsequent 

auctions. Equivalently, a bidder’s marginal value for the rest of the objects (after 

securing one) is zero or negative. It is shown that expected prices follow a martingale, 

i.e. bidders expected prices will remain constant on average throughout the sequence 

of auctions. The prices remain constant on average because there are two opposite 

forces at work as objects are being sold (1) less demand -- a reduction in competition 

(fewer buyers) drives prices downward, and (2) less supply – an increment in 

competition (fewer objects) drives prices upward.

The problems posed by the repeated interaction of bidders in multiunit 

auctions in business to business (B2B) online markets led to a revival of sequential 

auction theory in recent years. Branco (1997) finds equilibrium in an example of a 

two unit sequential ascending auction where there are two types of bidders: some 

bidders have unit demand functions and some bidders have super-additive demand 

functions. The equilibrium is in pure strategies. In equilibrium the expected price 

declines from the first to the second auction. 

The importance of information transmission is studied by Jeitschko (1998), 

who presents a model with two identical objects. These objects are auctioned in 



44

sequence to three bidders. Each bidder has a unit-demand function and his valuations 

can be of two possible types, low or high (valuation).  Bidders have an ex-ante 

probability of having a high valuation α, which is common knowledge. Ties are 

broken with the roll of a dice. The auction format is a first price sealed bid auction in 

which only the winning bid is announced. After the conclusion of the first auction, 

bidders use this information to update their expectations (beliefs) regarding the types 

of their opponents. The remaining bidders perform Bayesian updating of their 

expectations about the competitors’ values after the result of the first auction is 

revealed. The model shows that bidders who are aware of informational effects place 

lower bids on average and hence have higher payoffs. Regardless of the outcome of 

the first auction, the second price is expected to be equal to the first price. 

The first model with two-unit demand bidders is formulated by Katzman 

(1999), who establishes the efficiency of second price auctions when the seller is 

auctioning two homogeneous objects in a sequence. Katzman uses an auction model 

of incomplete information where bidders’ valuations are determined by two 

independent draws from a twice differentiable, atomless distribution. These two 

draws are ranked as high (H) and low (L). The study finds a symmetric equilibrium 

where the bidding function *b ( )H is strictly increasing and generates a bid shaded 

below the high valuation. 

The primary obstacle faced when introducing multi-unit bidder demands into 

a model of sequential auctions is asymmetry of bidder expectations (beliefs), even if 

expectations are ex ante symmetric. Any symmetry is broken after the first auction, 

since one bidder has won and the rest have lost. Katzman avoids this problem using a 
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second price auction and backward induction. The second and final auction can be 

viewed as a one-shot auction. It was shown that in a one object second price auction, 

bidders have a weakly dominant strategy of bidding their valuation for the object. 

Therefore, by limiting the auctions to two the asymmetry problem has been avoided. 

Jeitschko (1999) analyses sequential auctions when the supply is unknown ex 

ante. There are n>2 bidders and an unknown number of identical objects to be 

auctioned sequentially. Bidders have unit demands, and their valuations are 

independent random variables drawn from a continuous distribution. Objects are 

auctioned in a sequence of second price auctions. Jeitschko presents two scenarios. In 

the first scenario, whether an object will be auctioned does not become known until 

immediately before the auction for the item is about to commence. In this case, given 

the supply uncertainty, prices decline as more items are put for sale. In the second 

scenario, information regarding whether there are either one or two further objects for 

auction becomes available before each auction. As expected, if good news is 

announced (two more objects are for sale), prices decline. 

Jeitschko concludes that prices depend on information regarding supply: 

uncertain supply reduces the ‘option value’ and yields declining prices as more 

objects are put for sale. However, prices increase if it becomes known that supply 

falls short of expectations. 

Menezes and Monteiro (1999) consider the sale of two homogenous objects 

using two second price sequential auctions. They consider that bidders have synergies 

(or super-additive demand functions). Buyers’ valuations are iid; the positive synergy 

for owing two objects is modeled as a positive continuous increasing function of one 
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object value. Synergies can be positive (the two objects are worth more as a bundle 

than as separate objects) or negative (the two objects are worth less as a bundle than 

as separate objects). In presence of positive synergies, prices in the first auction 

include a premium and prices decline in the second auction. The opposite effect is 

found in presence of negative synergies. 

Jeitschko and Wolfstetter (2002) study a two object sequential auction with 

two bidders, where economies of scale can be present. Prior to the first auction each 

bidder privately observes his valuation for the first object, but not for the second. 

There are two possible valuations for the objects: high and low. In the first auction, 

both bidders have the same probability “τ” of having a high valuation. After the 

winner is announced, bidders privately observe their valuation for the second auction. 

The winner of the first auction has a probability σ of having a high valuation (for the 

2nd object) while the loser has a probability τ (with economies of scale: σ > τ, with 

diseconomies of scale: σ < τ). Jeitschko and Wolfstetter show that economies of scale 

give rise to higher bids in the first auction, where as the converse is not true. 

Moreover, first and second price auctions are not revenue equivalent. With economies 

of scale second price auctions have higher revenues, whereas the revenue equivalence 

is preserved in the case of diseconomies of scale. 

Unlike previous models, the last “economic” model to be reviewed is one of 

complete information and budget constraints. This implies that the values of the 

objects and the bidders’ budgets are common knowledge. With complete information 

the SIVP model becomes trivial; Benoit and Krishna (2001) introduce bidders with 

budget constraints in a sequential auction. They examine the revenue generated by the 
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sale of two heterogeneous objects under a complete information setting under 

sequential and simultaneous auctions. Depending on the nature of the relationship 

between the two objects (i.e., whether they are complements or substitutes) and the 

difference in their values, the optimal sequencing of the auctions may change. 

An appealing insight of Benoit and Krishna’s paper is that when multiple 

objects are auctioned in the presence of budget constraints, it may be advantageous 

for a bidder to bid aggressively on one object in order to raise the price paid by his 

rival. This high price may diminish his competitor’s budget so that the second object 

may then be obtained at a lower price. The same idea can be applied to a reverse 

auction, with one buyer and several capacity-constraint service providers. To 

illustrate how this intuition can be applied to the problem studied in this dissertation, 

three examples have been adapted from Benoit and Krishna’s paper. 

Example 1: Assume two shipments (A and B) sold sequentially by means of 

two successive English Auctions. Two carriers compete for the shipments; both 

carriers have the same costs: 40AC = and 50BC = . The shipper has a reservation 

value of 100 for each shipment. Carrier 1 can serve both shipments while carrier 2 

can serve either shipment but not both. Suppose that the object sell in the order A 

followed by B. 

Analysis: Being a game of complete information, the game can be solved with 

backward induction (assuming that weakly dominated strategies are not played). In a 

descending English auction without capacity constraints the buyer (shipper) would 

have paid only $90 for having both A and B served. The profit for both carriers would 

have been zero. 
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With capacity constraints it is an equilibrium for carrier 1 to let carrier 2 win 

the first auction with a bid of $41 (or $40+ε, without loss of generality natural 

numbers are used), then carrier 1 can win shipment B for $100 (carrier 2 cannot 

compete after wining shipment A). In this way carrier 1 has a profit of $50 and carrier 

B a profit of $1. The shipper pays $141 for both shipments. 

It is obvious that carrier 1 is using its market power to drive up its profits. The 

order of sale is important too. If the order of the auctions is reversed, i.e. B followed 

by A, the shipper would pay $151, carrier 1 would have a profit of $60 and carrier B a 

profit of $1. 

Example 2: This example is similar to the preceding one, but with different

costs: 1 40AC = , 1 50BC = , and 1 90ABC = for carrier 1. Costs for carrier 2 

are: 2 60AC = , 2 30BC = , and 2
ABC = ∞ . The shipper still has a reservation value of 100 

for each shipment. Carrier 1 can serve both shipments while carrier 2 can serve either 

shipment but not both. Suppose that the object sell in the order A followed by B. 

Analysis: with capacity constraints it is an equilibrium for carrier 1 to let 

carrier 2 win the first auction with a bid of $61 and then to win shipment B for $100 

(carrier 2 cannot compete after wining shipment A). In this way carrier 1 has a profit 

of $50 and carrier B a profit of $1. The shipper pays $161 for both shipments. 

It is obvious that the assignment is completely inefficient from a “society” 

point of view. The shipments are allocated to the carriers with the highest cost. Social 

wealth is $90 = $40 + $50. However, inverting the auction order, first B, followed by 

A, social wealth is $130 = $60 + $70. Therefore, the ordering of the auctions affects 

the efficiency of the allocations. 
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Example 3: 1 40AC = , 1 50BC = , and 1
ABC = ∞  for carrier 1. Costs for carrier 2 

are the same as for carrier 1. The shipper still has a reservation value of 100 for each 

shipment. Neither carrier has capacity to serve both shipments. Suppose that the 

objects sell in the order A followed by B. 

Analysis: In equilibrium carriers go down to $90 for the first object. The 

second object is sold for $100. In this equilibrium both carriers get a profit of $50 and 

are indifferent about what shipment they serve.  

It was shown in the examples that capacity constraints provide incentives for 

carriers to exercise market power and capacity rationing. This is possible because a 

particular bidder’s payoff is affected by the remaining capacity of the competition. 

Obviously, this is only possible when more than one shipment is sold sequentially.  

On the technical side, if the assumption of complete information about 

capacities is relaxed, one should not expect the bidding strategy in the incomplete 

information setting to be monotonically increasing. It was shown in example two that 

there is no decreasing equilibrium regardless of the auction order. Benoit and Krishna 

indicate that typical differential equation techniques used to determine equilibrium 

strategies do not work under these conditions.  

2.5.2. Operations Research Models

Oren and Rothkopf (1975) study optimal bidding in sequential auctions. Their 

model has a distinctive (unique to the author’s best knowledge) characteristic: the 

opponents explicitly adapt to the competition level. The competition level is 
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characterized by a scalar. A reaction function relates bids to changes in the state of 

the competition level.  The base model is a common value model where bidders draw 

their valuations from a Weibull distribution. The bidders develop a dynamic 

programming approach to find the best bidding policy. However, the bidding policy is 

not updated as the sequential auction evolves, ipso facto the model has become static 

in nature. Since the bidders account for the future impact of their bids, as the 

competitive reaction increases (competition responds harshly) bids and expected 

profits increase too. A similar effect takes place when the discount factors and the 

number of periods increase. The results are similar to those obtained using game 

theoretic models in oligopoly theory (for example Maskin (1988), and Philips (1995))

More recently, Friedman and Parkes (2002) describe the challenges associated 

with the design of an online sequential auction mechanism to allocate computational 

resources among consumers. They specifically analyze the challenges of designing an 

auction mechanism to allocate internet bandwidth when the arrival of customers is 

uncertain. 

Chaky et al. (2002) use sequential auctions to optimize the allocation of 

(homogenous) computational resources among users. They are interested in designing 

a fast and simple (from a computational standpoint) auction mechanism that 

guarantees equilibrium where users (agents) report their true valuation. They propose 

a mechanism that distributes users into auction pools and match them with the 

available resources using sequential auctions. 

Vulcano et al. (2002) try to optimize the revenue for a seller with C 

homogeneous items. The seller uses a sequential auction, in which a seller faces a 
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sequence of buyers separated into T time periods. Each group of buyers has 

independent, private values for a single unit. The number of buyers in each period as 

well as the individual buyers’ valuations is random. In this setting they prove that 

revenues are higher in dynamic versions of the 1st and 2nd price auctions than a 

selling mechanism using prices set as a function of time and remaining capacity. 

The previous model is the game theoretical equivalent of traditional revenue 

models in OR.  A seller with limited products or capacity tries to maximize his 

revenue using auctions.  The analysis is greatly simplified by assuming that 

customers appear in just one period, therefore customers do not learn/speculate about 

prices. Likewise, buyers do not return to the system if they lose one auction. 

Furthermore, buyers have unit demand functions. 

Elmaghraby (2003) studies what ordering is optimal in a sequential 

procurement auction of two heterogeneous jobs. The set suppliers (two or more) have 

capacity constraints and two different technological costs that are assumed to be 

distributed over[0,1] . Because any supplier can win just one auction, the sequence of 

the auctions affects their behavior (similar idea to what was already examined in 

Benoit and Krishna’s paper). The ability of the buyer to select the efficient suppliers 

is complicated by the presence of asymmetry in information (each supplier’s 

technology type is private information) and supplier capacity constraints. While the 

buyer does not know the types of the suppliers competing in the auction, the buyer 

assumes that knows their suppliers’ common distribution function, as well as their 

cost functions for each job. 
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2.6. Summary

This chapter describes characteristics of TL procurement auctions, which are 

compared to a basic auction model widely studied in the game theoretic auction 

literature, the SIPV model.  Basic auction terminology is introduced, as well as the 

strategic equivalence between Dutch and first price auctions, and the strategic 

equivalence among English, proxy bidding English, and second price auctions. 

Relevant relaxations of the SIVP model are presented. It is clear from the 

literature review that no game theoretical model provides a realistic representation of 

the TLPM under study. However, they provide useful insights.  Capacity constraints 

affect carriers bidding behavior and introduce speculation in the market. Furthermore, 

the models presented indicate that in general supply/demand variations affect market 

prices, even in the simple SIPV model.  Links between results in auction theory and 

oligopoly theory also confirm these results. 

The relationship among bidders and objects valuations is also important. The 

presence of economies of scale (or positive synergies) tends to increase the price of 

the first object being auctioned. The opposite can be said when there are 

diseconomies of scale or negative synergies.  Intuition that agrees with results 

obtained in chapter 4 when analyzing fleet management technologies. 

The SIPV model solution is explained in detail to show the number of 

assumptions that are necessary to develop a mathematically simple and solvable 

auction model. Relaxed SIPV models introduce new elements, but usually at the cost 

of introducing more simplifying assumptions that make the relaxation tractable. 
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This chapter provides the necessary background to formulate and analyze the 

complexity of the whole bidding-fleet assignment problem in chapter 3.  The intuition 

developed from the presented models will also be useful in chapter 6 when the results 

of competition among boundedly rational carriers are analyzed. 

This chapter focused on literature and models that are fundamentally game 

theoretical, i.e. with strategic rational players. This chapter does not include 

boundedly rational models of auctions and bidding. Chapter 5 deals with boundedly 

rational behavior and contains a survey of bounded rationality models. Chapter 4 

deals with technology based competition in a TLPM, a survey of relevant literature 

regarding technology and algorithms analysis is presented in chapter 4. . 
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Chapter 3: Conceptual Formulation

The focus of this chapter is on providing the specific context and formal 

definition of the problem addressed in this dissertation. Section 1 introduces the 

problem context. The overall bidding-fleet management problem for a TLPM 

problem is formulated as an equilibrium problem in section 2. This formulation is 

used to illustrate the game theoretic approach to the problem. Section 3 analyzes the 

complexity and behavioral assumptions of this approach. Section 4 introduces the 

simulation framework and parameters that are used throughout this dissertation. 

Section 5 formally introduces the concept of auctions as mechanisms. The mechanism 

approach is used to define market performance measures and to introduce the concept 

of truthful mechanisms that is used in chapter 4.  Section 6 ends the chapter with a 

summary. 

3.1. Problem Context

The elements that constitute a TLPM using sequential auctions were broadly 

defined in chapter 1. The specifics of the problem are defined in this section. 

Shippers are assumed to procure TL services using sequential auctions. A

fixed set of carriers bid on each announced auction. The auctioneer’s role 

(marketplace) is limited to setting the auction rules, as well as specifying and 

monitoring allowable communication among carries and shippers. Rules and settings 

do not change once auctions have started. A TLPM is a spot market, where auctions 
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for shipment service requests are taken or rejected on the fly; it is not possible to book 

or reserve capacity without buying it.  Future markets are not allowed (no bidding 

allowed on shipments that cannot be served immediately). Carries cannot resale 

already won shipments. 

Shippers announce to the market time-sensitive shipment service requests and 

call for auctions as needed on a continuous basis. Shipments have time windows that 

must be strictly satisfied (hard time windows). Once the auction announcement has 

been made, changes in the auction call or to the shipment service request 

characteristics are not possible. 

Given that all service quality (i.e. time windows) elements of the request are 

met, a shipper pre-selects the carrier with the lowest bid. The time windows are 

always respected since (a) deterministic service (travel) times are assumed, and (b) 

carriers are assumed to meet the shippers’ request (check for feasibility) before 

submitting a bid.  If the payment that the lowest bid carrier should receive is less than 

the shipper’s reservation value, the shipper selects the lowest bid carrier and the 

transaction is completed. Otherwise, the shipper uses an alternative system to obtain 

transportation services (long term contractor, own fleet, etc. paying the shipment 

reservation value). Shipments that are not successfully matched do not return to the 

market.

Carriers’ fleet management decisions are binding in the sense that past 

decisions affect future costs and even constrain whether future shipments can be 

served. Each carrier has a constant fleet size. Carriers serve the secured shipments by 

picking up the loads at their origins and delivering them to the destinations within 
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their specified time-windows. Loads are not combined as part of a tour (truckload 

operation).

Carriers bid on just one shipment auction at a time, in the same order (first in, 

first out) as these are arriving. The possibility of two or more requests arriving at the 

same time or composed requests (one order that involves several distinct shipments) 

is ruled out. The auction process, announcement, bidding, and resolution are done in 

real-time. 

In order to deal with this dynamic problem a carrier has to make two kinds of 

decisions: (a) bidding decisions (i.e. decide how much to bid), and (b) demand-truck 

assignment decisions for the accepted demands (i.e. when and which trucks serve the 

accepted demands within specified time-windows). 

The main objective of the carriers is to maximize profits while managing the 

fleet to satisfy the service quality requirements (time windows). This objective may 

run against other performance parameters, such as serving high number of loads, 

market share, or highest efficiency (low empty distance). The revenue from a secured 

auction is the auction payment. The primary operating costs are proportional to the 

haul-length and the distance traveled by a truck to serve it (loaded and empty distance 

respectively). Fixed costs are considered already sunk and therefore not considered. 

3.2. Formulation of a TLPM problem as a Game (Equilibrium 

Formulation)

This section describes the notation and theoretical concepts required to 

describe (a) the strategic issues involved in bidding, and (b) the dynamic fleet 
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management aspects. A sequential auction belongs to the class of dynamic games of 

incomplete information. Its characterization as a dynamic game refers to the fact that 

players (carriers) face each other at different stages that are usually associated with 

different time periods. Sequential auctions are also characterized by incomplete 

information since players do not know with certainty the private information that 

affects competitors’ costs. 

A sequential auction game is defined by the auction rules (allocation/payment 

functions), a set of players (carriers), a set of feasible actions (bids), a set of 

sequential auctions (stages), and a set of bidders’ private signals about its costs. In 

addition, TLPM requires the definition of shipment characteristics, carriers’ 

endowments (fleet size, vehicle routing technology, cost functions, etc.), and the 

market/demand geographic and temporal boundaries and characteristics.  

It is assumed that stages are identified with shipment arrival epochs. More 

precisely, each stage or auction is fully identified by the arrival of the shipment to be 

auctioned. In the previous chapter, it was noted that the auction literature by and large 

assumes that costs are drawn from a stationary probability distribution. This is not the 

case in a TLPM problem, in which history and fleet management decisions affect 

future cost probability distributions. The TLPM formulation distinguishes itself from 

other auction formulations in several aspects: (a) the description of items to be 

auctioned (shipments) require a multi-attribute characterization; (b) costs are 

functions of carriers’ status and vehicle routing technologies (carriers’ private

information); (c) history affects costs; (d) capacity constraints are linked to private 

information and shipments characteristics; (e) bidding strategies are dependent on 



58

public and private history; (f) timing of auctions is important; and (e) it is an online 

sequential auction. 

The formulation presented below is intended for the strategic situation where 

the operational information is private. Consequently, a carrier has full knowledge 

about its fleet status (vehicles and shipments) and its technology (how the carrier 

determines the routing and costing of vehicles and shipments). However, a carrier has 

uncertainty about its competitors’ fleet status or technology. The formulation follows 

the notation convention adopted in chapter 1, section 7. 

3.2.1. Players (carriers)

There are n carriers competing in the sequential auction market place, each carrier

i∈ℑ  where {1, 2,..., }nℑ =  is the finite set of players.

3.2.2. Stages/Auctions

Let the shipment/auction arrival/announcement epochs be 1 2{ , ,..., }Nt t t  such 

that 1i it t +< , where N ∈N (set of natural numbers). Let 1 2{ , ,..., }Ns s s be the set of 

arriving shipments. Let jt represent the time when shipment js  arrives and is 

auctioned. Each shipment has an associated reservation value, denoted jv , that is only 

known to the shipper. There is a one to one correspondence between each jt , js , and 

jv  for any 1,2,...,j N=  (i.e. for each jt  there is just one js  and jv ).

The subset of the first 1,2,...,j N=  arrival times is denoted as jT

where 1{ ,..., }j jT t t= , the corresponding subsets of shipments and reservation values 

are denoted jS  and  jV  where 1{ ,..., }j jS s s= and  1{ ,..., }j jV v v=  respectively. The 
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subset of last shipments is denoted as ... { ,..., }j N j NS s s= ( ...j NT  and ...j NV  are defined in 

a similar way).

3.2.3. History and Public Information

In an auction for shipment js , each carrier i∈ℑ simultaneously bids a 

monetary amount i
jb R∈ . A set of bids 1{ ,..., }n

j j jb b b
ℑ

= generates publicly observed 

information jy . The public information at the beginning of the auction for 

shipment js  is 0 1 2 1( , , ,..., )j jh h y y y −= , where 1h  denotes information publicly known 

to all carriers before bidding for shipment 1s .  The elements and corresponding 

attributes of jy  and 1h  may greatly vary with the auction type and rules; therefore 

they will be specified on a case-by-case basis (when analyzing a particular auction). 

Once the game is over, all the information revealed to the carriers is contained in Nh . 

The set of all possible histories up to time jt  (not including auction information for 

shipment js ) is jH . 

3.2.4. Private Information

Each carrier also has private information. Private information embodies any 

information that is relevant to a player’s decision making without being common 

knowledge for all carriers (Fudenberg, 1991). This private information is generally 

called (in game theory) the “type” of a player. In this formulation a carrier’s “type” 

includes, in addition to its status, its cost and assignment functions.  Denote this 

private information for each carrier i∈ℑ at time jt by i
jθ .
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In general, a “type” may include not only what a carrier believes about other 

carries’ cost functions, routing technology, and current status, but also its 

expectations (beliefs) about what other carriers expect (belief) its expectations 

(beliefs) are, and so on. 

The fleet status of carrier i  when shipment js  arrives is denoted as i
jz , which 

comprises two different sets:

i
jS :  set of shipments acquired up to time jt

i
jV :  set of vehicles in the fleet of carrier i  (vehicle status updated to time jt )

The elements of these sets have the following attributes:

For each | i
js s S∈  , attributes of shipment s  are:

Location of origin of shipment s , denoted ( )o s

Location of destination of shipment s , denoted ( )d s

Earliest pickup time of shipment s , denoted ( )ept s

Latest pickup time of shipment s , denoted ( )lpt s

Status of shipment s  at time jt  (served or not served), denoted ( , )jsts s t

For each | i
jv v V∈  , attributes of vehicle v  are:

Current location of vehicle v at time jt  , denoted ( , )jloc v t

Status of vehicle v at time jt  (empty or loaded with a shipment s ), denoted 

( , )jsts v t



61

Locations belong to a subset of 2R and times belong to a subset of R+ . At 

time 0t each carrier i  has an initial status of his fleet denoted as 0
iz  (vehicles are not 

necessarily empty or idle at time 0t ).

There is a state or assignment function such that the status of carrier i∈ℑ

when shipment js  arrives is 1a ( , , )i i i
j j j jz t h z −= . It is assumed that the fleet status at a 

given time is a function of time, previous fleet status, and history of play up to the 

previous epoch. The estimated cost of serving shipment js  by carrier i∈ℑ of type i
jz

is denoted c ( , )i i
j js z . The sets of possible assignment and cost functions are denoted 

by A  and C respectively, then for each i∈ℑ   it follows that a Ai ∈  and c Ci ∈ .

The private information or type for carrier at time jt  is { ,a ,c }i i i i
j jzθ = .  In a 

game of incomplete information each player (bidder) has expectations (beliefs) about 

the competitors’ private values. Following Harsanyi’s (1967) modeling of games of 

incomplete information, players’ types 1{ }i n
j j iθ θℑ

== are drawn from some probability 

density function 1p( ,..., )n
j jθ θ where types i

jθ belong to a space iΘ . The conditional 

probability about his opponents’ types 1 1 1{ ,..., , ,..., )i i i n
j j j j jθ θ θ θ θ− − += given his own 

type i
jθ is denoted 1p( | , )i i

j j jhθ θ−
− . This is what characterizes and complicates the 

solution of a dynamic game of incomplete information. Since the players do not know 

the competitors’ types at the start of each auction, they have to update these 

conditional probabilities (beliefs about the competitors’ status) as public information 

is revealed and the game evolves. 
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3.2.5. Bidding, Payment and Profit functions

The set of feasible actions is the same in all the auctions. Each and every 

carrier must participate in each action (submit a bid) and bids are restricted to the set 

of real numbers. A bidding strategy is a contingent plan on how to bid in each auction 

given current private information and a possible history.

Let b : , ,i iS H RΘ →  be the bidding function. Carrier 'i s  bid for shipment js , 

given history jh , and type i
jθ  is equal to b ( , , )i i i

j j j jb s h θ= . Denote by 

1 1 1b {b ,..., b , b ,..., b }i i i n− − += the set of bidding functions of all carriers but carrier i . 

Denote by 1b ( , , ) (b b )( , , ) { ,..., }i i n
j j j j j j j j jb s h s h b bθ θℑ ℑ ℑ − ℑ= = =� , where the set of all 

carriers’ bids is denoted jbℑ .  For each carrier i∈ℑ  the set of all possible bidding 

functions is denoted Bi . The set of all possible bids for all carriers is denoted Bℑ .  

Arranging the bids from lowest to highest, ( )k
jb  is the kth lowest submitted bid for 

serving shipment js , then (1) (2) ( )... n
j j jb b b≤ ≤ ≤ . 

Let i
jq  be the probability that carrier i  wins shipment js . Let q  be the 

auction assignment function that given the set of bids jbℑ  determines the probability 

that a carrier wins shipment js . Then, 1q( ) { ,..., } [0,1]n n
j j j jb q q qℑ ℑ= = ∈  and 1i

j
i

q
∈ℑ

=∑ . 

Ties are solved with the roll of a dice or any other random device. Let i
jI  be 

the indicator variable for carrier i  for shipment js , such that 1i
jI =  if carrier  i

secured the auction for shipment js  and 0i
jI =  otherwise. The set of indicator 

variables is denoted 1{ ,..., }n
j j jI I Iℑ =  and 1i

j
i

I
∈ℑ

≤∑ . 
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Let m  be the auction payment function, then m( , )j j jm b qℑ ℑ ℑ= , where  

1{ ,..., }n n
j j jm m m Rℑ = ∈  is the set of corresponding expected payments (ex-ante). 

Replacing jqℑ  by  jI ℑ  the realized payments (ex-post) are indicates 

by m( , )j j jm b Iℑ ℑ ℑ= .

Let m ( , )i i
j j jm b qℑ ℑ= , where mi  is the auction payment function that returns 

the expected payment for carrier i. Replacing jbℑ  and jqℑ :

m ( , ) m ((b b )( , , ) ,q ( (b b )( , , ) ) )i i i i i i i
j j j j j j j j jm b q s h s hθ θℑ ℑ − ℑ − ℑ= = � �

This is the expected payment obtained by carrier i  for shipment js  when (a) 

using bidding function (strategy) bi  (b) the other players are using bidding functions 

(strategies) b i−  (c) history of play is jh , and (e) the private information of all players 

is jθ ℑ .  

Let i

jπ  be the expected profit for carrier i  for shipment js , then: 

[ , ]i

j

i i i i
j j j jm c s qπ θ= − , replacing terms:

m b b q b b

q b b

( ( )( , , ) , ( ( )( , , ) ) )

[ , ] ( ( )( , , ) ) )

i

j

i i i i i
j j j j j j

i i i i i
j j j j j

s h s h

c s s h

π θ θ
θ θ

− ℑ − ℑ

− ℑ
= −

−
� �

�

m q b b( , , , , , , , , [ , ])i

j

i i i i i i i i i
j j j j j js h c sπ θ θ θ− −π=

Therefore, a carrier’s profit is affected by the auction payment and allocation 

rules, by its bidding function as well as the competitors’ bidding functions, by the 

characteristics of the shipment, by the history of play, by the private information of 

all carriers, and by its own cost function and fleet status.
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3.2.6. Equilibrium Formulation

The problem is to find a bidding function *b i  for each carrier i∈ℑ  such that 

the set of functions *1 * 1 * *{b ,..., b } {b , b }n i i+ −= form a Bayes-Nash Equilibrium for each 

carrier, possible auction, history of play, and possible set of private information. In 

mathematical terms:

...

* *b arg max m q b b

b B

( , ) ( , , , , , , , , [ , ])

, , ,  (3.1)

i i
j j N j j

i i i i i i i i i i i i
j j j j j j j j

s S

i i
j N j j j

p s h c s

i s S h H

θ θ
θ θ θ θ θ

θ
−

− − −
∈

ℑ ℑ

π∈

∈ ∀ ∈ℑ ∀ ∈ ∀ ∈ ∀ ∈Θ
∑ ∑ ∑

In the spirit of the auction models studied in chapter 2, the following concepts 

are common knowledge among carriers: their rationality, the space of private 

information and the corresponding probability density function, the auction rules, and 

the set of bidding functions. 

This equilibrium assumes that before the game starts, players (carriers) have 

already simulated all possible game paths and have selected a bidding strategy that 

satisfies equation (3.1). In game theory, this type of formulation is called “normal 

form game,” equilibrium. An alternative approach for dynamic games is the “agent 

form” equilibrium, This approach requires that the agent (player) finds the best 

bidding strategy for each and every possible decision point in the game.  Then, if the 

agent based approach is taken, the formulation becomes:

...

* *b m q b b

b B

arg max ( , ) ( , , , , , , , , [ , ])

, | ,  (3.2)

i i
j j N j j

i i i i i i i i i i i i
j j j j j j j j

s S

i i i
j N j j

p s h c s

i s S h

θ θ
θ θ θ θ θ

θ
−

− − −
∈

π∈

∈ ∀ ∈ℑ ∀ ∈
∑ ∑ ∑
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3.2.7. Online TLPM 

The previous formulation assumes that the sets NT  and NS  are known before 

bidding starts (offline sequential auction). 

In general, arrival times and shipments will not be known in advance. The 

arrival instants 1 2{ , ,..., }Nt t t will follow some general arrival process. Furthermore, 

arrival times and shipments are assumed to come from a probability space ( , , )Ω F P , 

with outcomes 1 2{ , ,..., }Nω ω ω . Any arriving shipment js  represents a realization at 

time jt  from the aforementioned probability space, therefore { , }j j jt sω = .

If the TLPM problem is considered online, the equilibrium formulation will 

need to be reformulated. In the spirit of a Markof Perfect Equilibrium (MPE) 

(Fudenberg, 1991) and agent based formulation, in equilibrium, a carrier bidding 

function has to maximize current period plus expected future profits, given the 

competitors equilibrium bidding functions, and the current state of the system (private 

information). A carrier’s profit function becomes: 

1

,.., 1 1

( ,..., ) 1
1

m q b b m q b b

m q b b

( , , , , , , , [ , ]) ( , , , , , , , [ , ])

[ ( , , , , , , , [ , ]) ]
j N

i

j N

i i i i i i i i i i i i i
j j j j j j j j j j

N
i i i i i i i

k k k k k
k j

s h c s s h c s

E s h c sω ω

θ θ θ θ
θ θ

+

− ℑ − ℑ
− −

− ℑ
−

= +

π π

π

=

+ ∑

The profit function has been expressed as the sum of current period profits 

plus expected future profits (
1( ,..., )j N

E ω ω+
 is the expectation of the future shipment 

arrivals). Calling ,..,

i

j Nπ  the current plus expected future profits function, the 

equilibrium formulation becomes:
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,..,

* *b arg max m q b b

b B

( , ) ( , , , , , , , [ , ])

| , , (3.3)

i i
j j

i

j N

i i i i i i i i i
j j j j j j j

i i
j j j

p s h c s

i s h

θ θ
θ θ θ θ

θ
−

− − ℑ

ℑ

π∈

∈ ∀ ∈ℑ
∑ ∑

Equation (3.3) it is not a MPE, since the whole history of play is used to 

estimate the current distribution of the competitors’ private information or carriers’ 

“belief” about the competitive status of the competition. A MPE is a relaxation of 

equation (3.3), where jh  is replaced by 1jy −  (i.e. the hole history is replaced by the 

information provided by the last bid only).

3.3. Sources of Complexity Analysis

This section deals with the complexity of the formulated equilibrium problem. 

The literature review in chapter 2 illustrated that the state of the art sequential auction 

models are fairly rudimentary compared to the problem described in the previous 

section. There are many factors that contribute to the intractability of TLPM game 

theoretic models. In this section these factors are divided into two groups: (a) 

technical problems – characteristics that impede reaching a closed analytical solution 

or even any solution for real-life problems and computational resources, and (b) 

conceptual problems – characteristics that go against the appropriateness of game 

theory to describe the strategic interaction among carriers. 
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3.3.1. Technical Problems

1. Even with extremely simple assumptions, the number of paths to be evaluated 

grows dramatically quickly. Assuming ten auctions, two carriers, two valuations 

(high-low), and two possible bids (high-low bids), the number of possible game 

paths is 402 .  

2. There is no possible symmetry among carriers. Even if carriers start in identical 

conditions, symmetry is broken in round two (there is only one winner and many 

losers). The differential equation approach used in the SIPV model is not possible. 

Furthermore, asymmetries are what make the problem interesting.  Each carrier 

has essentially the same information about the nature of the shipment but a 

different opportunity cost of completing it. Whenever the existence of 

asymmetries is common knowledge, the problem is asymmetric (Maskin, 2000).

3. The accurate estimation of service costs may involve the solution of NP-hard 

problems (multi-vehicle-multi-shipment routing problem with time windows)

4. Updating the beliefs about competitors’ private information (competition status 

conditioned on the public information revealed) might be a very complex 

problem. 

5. The cost functions [ , ]i
j jc s θ  are neither convex, nor differentiable, nor continuous 

(presence of binary variables in the routing problem).

6. The online problem is characterized by stochastic arrival times and unknown 

origins and destinations of future shipments.  Finding the expected profit function 

is not a trivial task. 
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3.3.2. Conceptual Problems

1. It was mentioned that large game theoretic problems usually have a multiplicity of 

solutions. If several equilibria are possible, how do carries agree on what unique 

equilibrium is played?

2. The lack of equilibrium uniqueness is exacerbated in dynamic problems. Several 

equilibrium refinements exist (perfect equilibrium (Selten, 1975), Nash 

refinements (Myerson, 1978), sequential equilibrium (Kreps, 1982), etc.) that try 

to eliminate the set of “unreasonable equilibria”. However, these refinements are 

not guaranteed to provide the same set of equilibria or even to eliminate all but 

one equilibrium (Fudenberg, 1991).

3. The use of equilibrium refinements to reduce the number of equilibria assume 

some kind of “super-rationality” (Aumman, 1997), necessary to solve the 

indeterminacy of beliefs at decision points that follow unexpected actions. 

4. The two ways of formulating the offline problem (Equation 3.1 and Equation 3.2) 

are both compatible with the concept of rationality, though they may provide 

different equilibrium sets even in simple games (Fudenberg, 1991).

5. What information is common knowledge? What information is not common 

knowledge? Who knows what others know?  How is this common knowledge 

obtained?  

6. How is learning taken into account by bidders? How is the potential information 

transmission and signaling taken into account by rational players?

7. The presence of capacity constraints introduces complex considerations into 

multi-object sequential auctions. Can bidders estimate all the implications?
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Real-life computational resources and bidding time limitations preclude 

exceedingly complex approaches. It seems impossible to conciliate a full game 

theoretic analysis and its real-life implementation. However, the game theoretic

approach provides an ideal and useful reference point. This reference point is used in 

subsequent chapters to introduce simplifying assumptions about carriers’ behavior; 

simplifying assumptions that try conciliate both, implementation feasibility and some 

degree of rationality (i.e. bounded rationality).

3.4. Simulation Framework

The complexity of the TLPM problem calls for the use of computational 

simulation. Although all models (even simulation models) necessarily abstract from 

some aspects of reality, simulation is indispensable given that closed analytical 

solutions for these complex dynamic systems would require many simplifications that 

could compromise the validity of the results. This is especially important in auction 

models, where relaxation of assumptions can lead to unexpected results. As expressed 

by Rothkopf and Harstad (1994b, page 374): “... auction models have shown a 

striking tendency for the answers to change as enrichments to their realism are 

introduced.  This tendency should discourage attempts to derive general answers in 

abstract models. Attempts to enrich mainstream models with a view toward relevance 

to practice are still a small part of the bidding theory literature, but they suggest that 

result reversals may be common.”
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Roth (2002) argues that the complications of an auction marketplace require 

new tools to supplement the traditional analytical toolbox of the theorist. He argues 

that experimental and computational economics are natural complements to game 

theory in the task of designing marketplaces.  

A realistic market experiment may require a large amount of economic resources. 

The analysis of actual market data could provide important insights into the behavior 

of a given TL marketplace. However, companies’ cooperation and willingness to 

fully disclose proprietary and competitive information is unlikely at best, if not 

impossible. Simulation enables the computational study of interactions among 

carriers by means of controlled and replicable experiments. In a wide spectrum of 

scenarios allowed by the many potential market settings it is also possible to explore 

and systematically test changes in key market parameter values.

This section introduces the framework used to simulate a TLPM and section five 

describes the simulation performance measures. The simulation framework presented 

in this section simplifies real-world TL markets but still provides useful insights 

about their performance – mainly to freight transportation researchers and 

practitioners. A discrete-event simulation (DES) framework is employed. The 

backbone of any DES is a set of events that take place at a specific time (Law, 1991). 

In this framework there are auction and fleet management related events. The former

includes posting, bidding, and resolution of an auction. The latter includes 

demand arrival, pick up, and delivery. 

Simulations are used to compare how auction types, behavioral assumptions, 

and demand patterns affect the performance of the market (performance measures are 



71

defined in the next section). In order to correctly compare the results, each run has a 

unique set of random number seed generators. Simulation results are obtained from 

ten runs of one thousand auctions each. The same random number generator sets are 

used across all experiments. 

The auction events are assumed to take place in real time. Computation times 

or delays are not taken into account, therefore the computationally efficiency or speed 

of different bidding/fleet management strategies are not compared. Shipment service 

times are taken into account in order to simulate dynamic truckload pickup-and-

delivery situations (dynamic multi-vehicle routing problems with time-windows). It is 

assumed that pick-ups and deliveries are instantaneous, i.e. the time spent at origins 

and destinations is negligible relative to travel times;  vehicles are assumed to travel 

at a constant speed in a Euclidean two-dimensional space. Shipments and vehicles are 

fully compatible in all cases; there are no special shipments or commodity specific 

equipment (for example, just tractors and trailers).  

The results obtained reflect the steady state operation of the simulated system. 

This is obtained using an adequate warm-up period - in all cases set to one hundred 

auctions; a warm up length that is more than adequate for the fleet sizes and shipment 

time windows considered. 

3.4.1. Market Geographic Area 

The shipments to be auctioned are circumscribed to a bounded geographical 

region. The simulated region is a 1 by 1, square area. Trucks travel from shipment

origins to destinations at a constant unit speed (1 unit distance per unit time). The 
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carriers do not know information concerning the precise origin and destination of the 

shipments in advance. Shipment origins and destinations are uniformly distributed 

over the region; the average loaded distance for an auctioned shipment is 

approximately 0.52 units.

There is no explicit underlying network structure in the chosen origin-

destination demand pattern. Alternatively, it can be seen as a network with infinite 

number of origins and destinations (basically each point in the set [0,1]x[0,1]) and the 

infinite number of corresponding links. Each and every link possesses an equal 

infinitesimal probability of occurrence. 

This geographical demand pattern creates a significant amount of uncertainty 

for fleet management decisions such as costing a shipment or vehicle routing. Since 

the degree of deadheading is unknown, any fleet management decision should hedge 

for this uncertainty. 

3.4.2. Time-Windows

A time-window constraint represents the time sensitivity of the shipment and 

limits the fleet capacity to accommodate and feasibly route present and future 

shipments. In the present framework, shippers alone specify the time windows before 

calling an auction. In a general depiction, long time windows are characteristic of

push inventory systems based on order and transportation economies of scale, while 

short time windows are a characteristic of pull inventory systems based on lean, just-

in-time (JIT) inventory and production control systems (Hopp, 2000).
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A growing trend in the TL market is the increase of Time-Definite Freight 

(TDF) (FHWA, 2001), defined as any shipment that is required to arrive within very 

tight time windows. Late and early arrivals are penalized with hefty fines. TDF is a 

standard requirement in most JIT manufacturing environments. 

From the carrier’s point of view, the ratio between shipment time window 

lengths and service time duration (or trip length) affects how many shipments can be 

accommodated in a vehicle’s route. In general (not always true), the more shipments 

that can be accommodated, the lesser the deadheading (or average empty distance). A 

low ratio indicates that few shipments can be accommodated, either due to short time 

windows (time sensitive shipment) or long trips (for example intercity operation) or 

both. A high ratio indicates that many shipments can be accommodated, either due to 

long time windows (no-time sensitive shipment) or relatively short trips (for example 

city deliveries) or both.

Given the importance of this ratio in carriers’ operations and as a characterizer 

of shipper/geographic demand patterns, three different TW length/shipment service 

duration ratios are simulated. These ratios are denoted short, medium, and long, 

making reference to the average time window length. The different Time Window 

Lengths (TWL) for a shipment s , where ld( )s denotes the function that returns the 

distance between a shipment origin and destination, are:

• TWL( ) 1(ld( ) 0.25) uniform[0.0,1.0] ( )s s short= + +

• TWL( ) 2(ld( ) 0.25) uniform[0.0, 2.0] ( )s s medium= + +

• TWL( ) 3(ld( ) 0.25) uniform[0.0,3.0] ( )s s long= + +



74

In the simulated market, vehicle speeds are a unit, the average shipment length 

is ≅0.52, and the average empty distance may range between [0.2, 0.3]. Average 

empty distance changes with arrival rate, time window length, and carrier fleet 

management technology.   

3.4.3. Arrival Rates

It was seen in chapter 2 that the ratio between demand and supply influences 

auction prices. In the simulated market, different demand/supply ratios are studied. 

Arrival rates range from low to high. At a low arrival rate, all the shipments can be 

served (if some shipments are not serviced it is due to a very short time window). At a 

high arrival rate carriers operate at capacity and many shipments have to be rejected.  

Changing demand/supply ratios can be caused by increases/decreases in 

economic activity and the lagging response of the supply (new vehicle orders/vehicle 

retirement). Changing ratios can also reflect temporal patterns (peak hourly demand, 

time of day, etc.). It is assumed that the auction announcements are random and that 

their arrival process follows a time Poisson process. The expected inter-arrival time is 

normalized with respect to the market fleet size. The expected inter-arrival times are 

1/ 2  arrivals per unit time per truck, 2 / 2  arrivals per unit time per truck, and 3 / 2

arrivals per unit time per truck (low, medium, and high arrival rates respectively). 
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3.5. Performance Measures - Auction Mechanisms

This section defines the performance measures used to compare TL markets. 

The concept of auction mechanisms is first introduced. This concept is necessary to 

define truthful mechanisms, which are used as a market performance benchmark and 

to define carriers’ behavioral assumptions in chapter 4.  The section ends defining 

performance measures for carriers and shippers. 

3.5.1. Auction Mechanisms

Auctions were defined in chapter 1 as market institutions with an explicit set 

of rules determining resource allocation and prices on the basis of bids from the 

market participants (McAffee, 1987). The design of an auction requires the precise 

specification of a set of rules. These rules determine an auction model, the system by 

which bidding is conducted, how information is revealed, and how communications 

are structured between buyers and sellers. The outcome of the auction strongly 

depends on the set of rules used. This section defines auctions in a general way, 

abstracting away from the details of any particular bidding format. 

There are three indispensable elements in an auction: (a) rules needed to 

allocate the resource – allocation rules, (b) rules to determine prices and payments –

payment rules, and (c) bids from the auction participants – a set of possible bids.  

Using notation previously defined, the auction mechanism (q, m, )Bℑ=A  has 

all three elements: an allocation rule, a payment rule, and a set of possible bids. 
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3.5.2. Direct and Truthful Mechanisms

If the set of possible bids Bℑ  is equal to the set of possible values (costs), the 

mechanism is called direct. If the mechanism is direct, and it is an equilibrium 

strategy for each player to bid his own value (cost), the mechanism is called truthful. 

Myerson (1979) established the revelation principle, which states that: given an 

auction mechanism and equilibrium for that mechanism, there exists a truthful 

mechanism in which the outcome is the same as in the given equilibrium of the 

original mechanism. Two sets of conditions must be met to guarantee the existence of 

a truthful mechanism. Each bidder must satisfy two conditions called (a) incentive 

compatibility, and (b) individual rationality constraints.  

In the TLPM let 1m( ) {m ( ),...,m ( )}n⋅ = ⋅ ⋅ and 1q( ) {q ( ),...,q ( )}n⋅ = ⋅ ⋅ . Without 

loss of generality, the next discussion is limited to one shipment, therefore the 

subscript j  is dropped. Using previous notation c ( , )i i ic s z=  will be the cost of 

serving shipment js  when the status of the carrier is iz . The set of all bidders’ costs 

is 1{ ,..., }nc c cℑ = . 

3.5.3. Incentive compatibility

A direct mechanism is said to be incentive compatible (IC) for a carrier i if: 

( , ) ( , )

( ( ) ( ) ) ( | ) ( ( , ) ( , ) ) ( | )

(3.4)

i i i i

i i i i i i i i i i i i i im c q c c p m a c q a c c p
θ θ Θ θ θ Θ

θ θ θ θ
− ℑ − ℑ

ℑ ℑ − − − −

∈ ∈
− ≥ −∑ ∑
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Where the carrier’s cost is ic and ia  is any other possible cost (in our case ia R∈ ). 

Incentive compatibility makes bidding the true cost a weakly dominated strategy. Any 

other bid achieves equal or less profit. Alternatively, a bidder’s unilateral deviation 

from the truthful mechanism is a weakly dominated strategy.

3.5.4. Individual Rationality

A direct mechanism is said to be individually rational (IR) for a carrier i if:

( , )

( ( ) ( ) ) ( , ) 0 (3.5)
i i

i i i i im c q c c p
θ θ Θ

θ θ
− ℑ

ℑ ℑ −

∈
− ≥∑

This guarantees voluntary participation of risk-neutral bidders, since a non-

negative utility is guaranteed. Again, participating in the auction is a weakly 

dominant strategy.  The second price auction in the SIPV model is an example of a 

truthful mechanism. From the behavioral point of view, a truthful mechanism 

simplifies bidding for rational carriers, which are only required to estimate their cost 

of serving the load. In chapter 4 competition is assumed to take place under a truthful 

mechanism.
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3.5.5. Efficient Mechanism

In auction theory a reverse auction mechanism is said to be “price efficient”1

if its allocation rule *q   is such that: 

*q ( ) arg min q ( ) (3.6)i i

i

c c cℑ ℑ
∈ℑ

∈ ∑
When there are no ties, a price efficient allocation rule allocates the shipment 

to the carrier with the lowest cost of service. If there are ties, only the carriers with 

the lowest cost may have a positive probability of obtaining the shipment. A second 

price auction of one object is an example of a “price efficient” auction. The value of 

social welfare obtained with a price efficient auction mechanism is defined as:

*( ) q ( )i i

i

W c v c cℑ ℑ
∈ℑ

= −∑
However, this is not the system optimal welfare outcome, which would 

usually imply more than allocating the load to the lowest cost carrier (for example a 

system optimal allocation may require swapping shipments among different carriers.) 

The allocation that maximizes social welfare or generates the most wealth is denoted:

( ) c (a( ))i

i

W z v zℑ ℑ
∈ℑ

= −∑
where "a" is the optimal assignment function (i.e. the assignment function that 

minimizes costs), which assigns shipments to carriers, thus ( ) ( )W z W cℑ ℑ≥ .

The TLPM defines a new class of problem, for which there is no standard or 

agreed upon performance measures. The social welfare of a price efficient auction 

1 A mechanism that satisfies (3.6) is called in auction theory simply “efficient”, in this report it is 

called differently to differentiate from allocations that minimize system wide costs.   
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mechanism is used as a benchmark to compare the efficiency of a marketplace. This 

is a market-wide measure of how much wealth is generated using auctions. Specific 

measures for shippers and carriers are detailed next.  

3.5.6. Carrier and Shipper Performance Measures

It was already stated in the equilibrium problem formulation that profit 

maximization is the primary objective of carriers. Other important performance 

measures include: (a) number of shipments secured – which is closely related to 

carriers’ market share and (b) average empty distance – a measure of how efficient 

the fleet assignment is.  Shippers’ performance measures include: (a) number of 

shipments served – which is closely related to the likelihood of being served and (b) 

shippers’ consumer surplus – which indicates how much money shippers would have 

saved if the alternative was to serve the shipments by a contract carrier, at a rate equal 

to the reservation prices.  

Carriers’ costs are composed of a fixed and variable part. Fixed costs are 

assumed sunk since they are mainly linked to fleet size, which cannot be modified in 

the short run. Variable costs are incurred through the total traveled 

distance (including loaded and empty movements). 

The set of auctioned shipments is 1 2{ , ,..., }N NS s s s= . Let ,j k Ns s S∈  and let 

{0,1}i
jkx ∈  be a binary variable. Let 1i

jkx =  if carrier i has served shipment ks

immediately after serving shipment js , 0i
jkx =  otherwise. Let ed( , )j ks s  be the 
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function that returns the distance between the destination of shipment js  and the 

origin of shipment ks . 

The number of shipments secured by carrier i is: 

ns ( )
j N

i i
N j

s S

S I
∈

= ∑
The empty distance traveled by fleet i is: 

,

ed ( ) ed( , )
j k N

i i
N j k jk

s s S

S s s x
∈

= ∑
The average empty distance of carrier i is: 

,

ed( , )

aed ( ) j k N

j N

i
j k jk

s s Si
N i

j
s S

s s x

S
I

∈

∈

=
∑

∑
The revenue secured by carrier i is:  

(1) str ( ) (1 priceauction)
j N

i i
N j j

s S

S I b
∈

= ∑
(2) ndr ( ) (2 priceauction)

j N

i i
N j j

s S

S I b
∈

= ∑
Assuming unit costs per unit distance, the profit secured by carrier i is:  

(1) st

,

( ) ed( , ) ld( ) (1 priceauction)
j N j k N j N

i i i i
N j j j k jk j j

s S s s S s S

S I b s s x I xπ
∈ ∈ ∈

= − −∑ ∑ ∑
(2) nd

,

( ) ed( , ) ld( ) (2 priceauction)
j N j k N j N

i i i i
N j j j k jk j j

s S s s S s S

S I b s s x I xπ
∈ ∈ ∈

= − −∑ ∑ ∑
The number of shipments served by the market is:  

ns( ) ns ( )
j N

i i
N N j

i i s S

S S I
∈ℑ ∈ℑ ∈

= =∑ ∑ ∑
The shippers’ consumer surplus is: 
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(1) stcs ( ) ( ) (1 priceauction)
j N

i
N j j j

i s S

S I v b
∈ℑ ∈

= −∑ ∑
(2) ndcs ( ) ( ) (2 priceauction)

j N

i
N j j j

i s S

S I v b
∈ℑ ∈

= −∑ ∑

It was already mentioned that the loaded distance is a constant associated to 

each shipment. Carriers can easily estimate the variable cost component associated to 

the loaded distance. Assuming that all carriers have the same cost per loaded mile, 

adding/subtracting a constant to/from all the bids does not alter the ranking of bids. 

Then, if all carriers include the loaded distance in their bids, that term cancels out 

when computing profits (the payment or second bid and the winner’s cost include the 

same constant: the shipment loaded distance). 

Herein, it is assumed that carriers’ bids take into account solely empty 

distance costs (correspondingly, shippers’ reservation values have also discounted the 

corresponding loaded distance). This is done for two reasons: (a) it does not alter the 

order of bids or profits, and (b) it emphasizes the fact that estimating the empty 

distance costs is the complex part of costing shipments. Carriers’ profits can now be 

expressed as:

(1) st

,

( ) ed( , ) (1 priceauction)
j N j k N

i i i
N j j j k jk

s S s s S

S I b s s xπ
∈ ∈

= −∑ ∑
(2) nd

,

( ) ed( , ) (2 priceauction)
j N j k N

i i i
N j j j k jk

s S s s S

S I b s s xπ
∈ ∈

= −∑ ∑



82

3.6. Summary

This chapter presented the conceptual and theoretical framework to define and 

measure the performance of a TLPM. The problem was formulated as a dynamic 

game of incomplete information. Section three analyzed the complexity of the 

problem. The intractability of the problem raises serious questions about the validity 

and feasibility of a game theoretic approach to model real life TLPM.

Simulation is a viable and helpful tool to tackle the study of TLPM. Section 

four described the simulation framework that is used to evaluate demand/supply 

patterns, fleet assignment technologies, and carriers’ behavioral assumptions. 

Demand/supply patterns are described by the relation among time window lengths, 

arrival rates, and the market geographic area.  

Section five describes the performance measures used to evaluate TLPM; the 

notation and formulas needed to define them are also introduced. In addition, this 

section introduces the concept of truthful mechanisms. This type of mechanism is 

very appealing for two reasons: (a) it considerably reduces the complexity of the 

problem from the carrier perspective (b) if there is an auction winner; a carrier with 

the smallest submitted bid always wins the auction. This type of mechanism is 

assumed in chapter 4 where it can be used to evaluate carriers’ fleet assignment 

technologies.
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Chapter 4: Technology Based Competition

The focus of this chapter is on technology based competition. A crucial 

chapter assumption is that a cost truth telling strategy (marginal cost bidding) is the 

only dominant strategy. Section one analyses the relevance of cost competition and 

technological adequacy in the TL industry. Existing approaches to evaluate carriers’ 

Dynamic Vehicle Routing (DVR) technologies and algorithms are reviewed in 

section two. Section three explores the difficulties and shortcomings of applying 

existing approaches to the TLPM problem. Section four presents a methodology 

based on second price auctions (auction analysis of algorithms) to evaluate online 

DVR technologies. The relationships between the new methodology and other vehicle 

routing problems are presented in section five. Section six compares auction analysis 

of algorithms with competitive analysis of algorithms.  In section seven the auction 

methodology is applied to the study of three different DVR technologies while 

section eight applies the auction methodology to compare auction and vertical TL 

market structures. The chapter summary is presented in section nine. 

4.1. Industry competition, Costing, and DVR Technologies

This chapter emphasizes the importance of the DVR aspects of the TLPM 

market. In this research a carrier’s DVR technology determines the estimated cost of 

servicing a shipment and the manner in which vehicle routes are constructed. The 

DVR technologies to be studied in this chapter are reduced to algorithms, when 
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simulated; however, their real life implementation may require inherently different

communication and decision support systems, software, computational power, 

qualified personnel, as well as an understanding of the nature and complexity of the 

DVR problem. As such, the terms algorithm and technology are used interchangeably 

throughout this chapter. 

Estimating the cost of serving a shipment is not a trivial task; it depends on all 

the other loads being served and the fleet deployment as well as on the future loads to 

be served. The auction models presented in chapter 2 assumed that any bidder knows 

the value of the object being auctioned. However, in a TLPM market the value or cost 

of servicing a shipment is not only unknown but also difficult to estimate for three

main reasons: (a) the number of potential schedules increases exponentially with the 

number of trucks and shipments (NP hard problem); (b) there always exists 

uncertainties about next arriving load characteristics and timing; and (c) prices 

(payments) are not only uncertain but also strongly dependent on the level of 

competition. The algorithmic complexity and analytical tractability of the problem 

may impede the evaluation of all potential schedules for carries with bounded 

computational resources and hard bid submission deadlines. The uncertainties 

surrounding the problem (points b and c) affect the cost of serving a shipment 

because the carrier must cover or hedge for future deadheading and opportunity costs. 

The service of a shipment can affect both, the empty distance of servicing follow-on 

shipments and the revenue (or payment) that can be obtained servicing those follow-

on shipments.
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Adequate costing and routing is especially important in a highly competitive 

environment such as the truckload industry. The Truckload Carriers Association of 

America (TCA) provides a set of suggested financial benchmarks for trucking 

companies. The TCA offers the following breakdown of operating ratios (operating 

expenses divided by operating revenues) to measure a company’s performance (TCA, 

2002):

0.90 to 0.91 - Excellent

0.92 - 0.95 - Average

Above 0.96 - Poor

An operating ratio of 0.95 allows 5 cents per dollar earned to cover fixed 

costs, interest cost, and return to owners/taxes. The intense competition in the 

trucking industry can be explained by a highly deregulated environment, low capital 

constraints to entry (especially in the TL sector), and the high number of trucking 

companies (Coyle, 2000). 

In such a tight and competitive environment, TL companies must constantly 

search for ways to increase revenues and/or decrease costs. Revenues and market 

share are influenced by many external factors that cannot be directly controlled by 

managers; while operating costs can be decreased as the result of efficient 

management practices and technological improvements. Therefore, a carrier’s 

constant consideration of new means to improve efficiency and competitiveness is a 

prerequisite for survival. Such competitive environment requires methodologies to 

evaluate the performance and advantage of DVR technological upgrades. 
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In a complex environment, such a methodology to evaluate technological 

competitiveness would provide the necessary insights and tools needed to make 

sound decisions. DVR researchers and developers (not just TL company’s managers) 

could use such a methodology to test and compare their DVR solutions.  In addition 

to looking at cost competition and comparing different DVR technologies this chapter

also develops and analyzes a methodology to compare DVR technologies in a 

competitive environment. 

Performance measures and evaluation of algorithms (i.e. technologies in the 

broader characterization used in this research) have been extensively studied in 

computer science and operations research. However, the emphasis has not been on the 

evaluation of algorithms in competitive market situations. The next section reviews 

related contributions of the computer science and operations research literature. 

4.2. Classical and Competitive Approaches to Analyze Algorithms

The main objective of the study of algorithms is to characterize the quality of 

the solution they compute and the resources (computer time or elementary computing 

operations) needed to reach those solutions. “Classical” computational complexity 

analysis of algorithms assumes complete information about the problem under study, 

while “competitive” analysis of algorithms assumes incomplete or partial information 

of the problem. A thorough introduction to the former type is presented by Cormen et 

al. (1991); Borodin and El-Yaniv (1998) present a comprehensive introduction to 

competitive analysis and online computation.  
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Under complete information (also called “static” or “off-line” problems),

algorithms that provide optimal solutions are compared in terms of the worst case 

number of computations necessary to reach a solution. Algorithms that do not always

provide optimal solutions (heuristics) are compared on the number of computations 

and their performance ratio. The performance ratio is defined as the ratio between the 

worst case behavior of the algorithm (measured in units of the objective function, e.g.

cost in a minimization problem) on a problem instance and the behavior of the 

optimal algorithm in the same problem instance (for profits or maximization 

problems the definition of the performance ration is inversed). Employing worst case 

analysis is not the only option; a different ordering of algorithms could be obtained

using average case analysis. For this type of analysis it is necessary to make some 

assumptions on the input distribution or problem instances. Both measures could be 

problematic. Worst case analysis could be overly pessimistic, while average case 

analysis requires the specification of a “typical” or “representative” distribution. The 

latter could be problematic since the performance of algorithms may depend on the 

distribution assumed; thus such a comparison does not impose a unique ordering in 

the quality of the algorithms. 

Competitive analysis of algorithms assumes incomplete or partial information 

about the problem. This type of analysis is especially helpful for a problem where 

information is progressively revealed over time; this type of problem is also 

commonly called an “online” problem.  Worst case and average analysis can be 

applied to this type of problem.  A major issue inherent to online problems is that 

incomplete knowledge of the problem may lead an algorithm to perform very poorly. 
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Another important consideration is the computational complexity of an algorithm, 

particularly when the algorithm operates in a real time environment and response time 

is a factor that affects the quality of the solution.  

Typically, a distinction is made between problem parameters and the problem 

instance of online problems. This distinction refers to what is known to the algorithm 

in advance, i.e., the problem parameters, and what is not known ahead of time, i.e. the 

problem instance. An on-line algorithm is said to be c-competitive if at each instance 

its performance is within a factor of, at most, c of the performance of the optimal off-

line algorithm for the same instance (Boroding, 1998. This would be characterized as 

a worst-case measure since it is valid on every instance. Competitive analysis 

assumes that the online algorithm being analyzed faces the competition of a powerful 

adversary that begets the worst sequence of tasks in order to maximize the 

competitive ratio; while the online algorithm makes decisions with partial 

information. 

Boroding and El-Yaniv (1998) distinguish three types of powerful 

adversaries: (a) an oblivious adversary constructs the whole sequence of tasks in 

advance and compares the resulting cost or profit of the online algorithm with the 

result obtained with an optimal offline algorithm; (b) an adaptive-online adversary 

chooses the next task based on the online algorithm’s actions so far and compares the 

resulting cost to the performance obtained by the adversary’s online algorithm (which 

has the advantage of knowing the future sequence of tasks); and (c) an adaptive-

offline chooses the next request based on the online algorithm’s actions so far and 
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compares the resulting cost to the performance obtained by the optimal off-line 

algorithm. 

It is not surprising that with such powerful adversaries, worst case analysis 

can be overly pessimistic (Karlin, 1998). Karlin attributes this to the fact that real life 

studies of task/demand/request records/logs for different classes of online problems 

(from computer paging to message network routing) have indicated that there exists 

usually a “structure” underlying the task sequences. However, each case or 

application may have a particular input structure. Therefore, it is impossible to make 

any detailed or general assumption about the input distribution. 

Fiat and Woeginger (1998) suggest that the competitive approach does 

provide insight into the underlying online problem. They also acknowledge that in 

many cases, meaningful information about the actual quality of an algorithm is lost. 

The loss of meaningful quality information occurs mainly when the worse case that 

can be forced (by the powerful adversary upon the online algorithm) is abnormally 

(pathologically) bad. Randomization is a recourse used successfully by many online 

algorithms to decrease their competitive ratio. Randomizing over the set of possible 

answers, allow the online algorithm to partially deceive the powerful adversary; it 

introduces uncertainty about the worst possible sequence of future tasks. When the 

competitive results are trivial even with randomization, researchers have suggested 

limiting the power of the online adversary, either reducing their resources such as 

memory in the  paging problem (Awerbuch, 1996) or limiting an adversary’s

computing speed in scheduling problems (Phillips, 1997). Another approach to limit 

the relative power of the online adversary is the diffuse adversary model proposed by 
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Koustupias and Papadimitriou (1974). In the diffuse adversary model the online 

algorithm is empowered since it is given the information that the request sequence  

belongs to a specific class of distributions (in competitive analysis the online 

algorithm knows nothing about the future request sequence). 

Competitive analysis is an active area of current research. Nissan and Ronen 

(2001) study algorithmic problems in distributed settings (the internet for example, 

where each computer is a self-interested agent). In this environment, agents can 

manipulate the central or scheduling algorithm by lying or hiding information. This is 

an extension of the mechanism design problem, presented in chapter 3, to algorithms. 

In the type of problems studied by Nissan and Ronen the algorithm designer should 

ensure in advance that the agents’ best interest lies in behaving correctly (i.e. 

reporting the truth would be the agent’s best strategy).  Ajtai et al. (2003) try to 

extend competitive analysis to distributed algorithms. Distributed algorithms are 

several sub-algorithms or agents that act based on local (as opposed to global) 

information. They propose to compare distributed algorithms to the best distributed 

algorithm in any given input (instead of comparing against the best global algorithm), 

effectively reducing the power of the adversary. 

Competitive analysis has also been applied to transportation problems. 

Ausiello et al. (1995) study competitiveness of algorithms for the online traveling 

salesman problem (TSP). In their study of the single vehicle TSP, a vehicle has to 

service (in an order to be determined) a sequence of requests that are presented in a 

metric space in an on-line fashion. After serving all the requests the vehicle must 
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return back to the departure point. For the multi-vehicle dynamic traveling repair 

problem, Lu et al. (2002) present an asymptotic performance study. 

Paepe (2002) studies the online TSP where the online salesman moves at no 

more than unit speed and starts and ends his work at a designated origin. The 

objective of the online algorithm is to find a routing which finishes as early as 

possible. Paepe reduces the power of the adversary, assuming the existence of a “non-

abusive adversary”, who is not allowed to move in a direction where there is no 

request waiting to be served. 

The limitations of competitive analysis (or even hind sight advantage) have 

been recognized when applied to real-time dynamic routing and scheduling problems. 

Powell et al. (1995) claim that comparing against hind sight solutions does not 

provide a fair evaluation of real time fleet management strategies. The lack of 

systematic evaluation methodologies has led researchers to compare algorithms 

performance using simulation and under the same strings of randomly generated 

demands, as in Kim (2003).  

Since the problems faced by carriers in a TLPM can be described as online

problems, the next section describes the advantages and difficulties that arise when 

applying competitive analysis of algorithms to a TLPM problem.

4.3. Applying Competitive Analysis to TLPM Problems

Applying competitive analysis to the TLPM market would result in a 

competition among two carriers; one denoted O for “ordinary” and one denoted P for 

“powerful” (the adversary). The carrier O possesses a given fleet assignment and 
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bidding functions, has uncertain information about the future (only knows the 

parameters of the demand function, not the future instances), and knows with 

certainty his private information. Carrier O falls along the general description of a 

carrier in chapter 3. The carrier P possesses a given fleet assignment and bidding

functions, determines the sequence of future shipment arrivals (the future instances), 

and knows with certainty his private information as well as O’s private information. 

The objective of P is to maximize the competitive ratio ( max[ ( ) / ( )]P O
N NS Sπ π ) 

while the objective of O is to minimize the competitive ratio:

min max[ ( ) / ( )] [ ( ) / ( )]P O P O
N N N NS S S Sπ π π π= − . 

These perfectly conflicting objectives determine a zero sum game between carriers O 

and P. 

Under the previous assumptions competitive analysis would provide trivial 

results; i.e. the adversary P is so powerful that the competitive ratio would not 

sufficiently distinguish among DVR technologies otherwise of distinct quality. If 

carrier P determines the sequence and characteristics of shipment arrivals, these can

be easily chosen to minimize his fleet empty distance. If carrier P knows carrier O’s 

private information, P also knows O’s bids. With this information, carrier P can bid in 

a way that completely minimizes carrier O’s profits in a first or second price auction, 

even if P does not determine the shipment arrivals. In a second price auction, P can 

bid O’s bid plus a non negative negligible amount in order to limit O’s revenues. In a 

first price auction, P can maximize his revenues bidding O’s bid minus a non negative 

negligible amount. 
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The assumptions of competitive analysis go against standard notions of fair 

market competition and operation. Firstly, in a procurement marketplace the sequence 

and characteristics of arrivals are determined by the shippers’ needs, carriers cannot 

determine those needs. Secondly, assuming that just one carrier has full and precise 

knowledge about competitors’ private information (deployment, assignment, costing, 

and bidding functions), the information asymmetry  provides such an advantage in the 

bidding process that it conceals any qualitative difference among carriers DVR 

technologies. Thirdly, competitive analysis assigns the adversary P with an off-line

technology (since P has full information) and limits O to have an online technology. 

The two carriers are not even “competing” in the same kind and problem instance. 

From a behavioral perspective, the competitive analysis of algorithms cannot 

capture the objectives and goals of TLPM agents. It is in the best interest of shippers 

to foster competition and efficiency in the markets, therefore advocating for auction, 

data disclosure rules, and carrier behaviors that do not foster monopolistic or 

anticompetitive practices. Carriers are not willing to relinquish sensitive information

about their fleet management strategies and status that could compromise their 

profits.  It was already mentioned that operating ratios in the TL industry are fairly 

high (0.95 is good, 0.90 is excellent). Therefore it is more realistic to analyze the 

performance of DVR technologies in a market environment characterized by cut-

throat competition and perfect information symmetry than in a market characterized 

by one dominant player and extreme information asymmetry. The next section 

describes the attempt proposed in this research to create an environment and 

procedure to analyze DVR technologies in a level playing field.   
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4.4. Auction Analysis of Algorithms

The proposed methodology to analyze DVR technologies in a market 

environment utilizes a sequence of second price auctions. Carriers are symmetric in 

all aspects but in their DVR technology. Therefore the DVR technologies and results 

can be compared ceteris paribus. Shipments or auctions are generated by a demand 

function that is representative of the shippers demand arrivals and characteristics. As 

in chapter 3, arrival times and shipments are assumed to arise from a probability 

space ( , , )Ω F P , with outcomes 1 2{ , ,..., }Nω ω ω . Any arriving shipment js  represents 

a realization at time jt  from the aforementioned probability space, therefore:

{ , }j j jt sω = . 

Two carriers compete for each and every shipment j Ns S∈ . Sequential second 

price auctions are used to allocate the shipment to the carrier with the lowest bid (if 

the lowest bid is less than the shipment reservation value).  The winner is paid the 

minimum between the second lowest bid and the shipment reservation value. 

Therefore prices and payments are generated endogenously as a result of the 

interaction between carriers and their environment. The carriers know the parameters 

and functional form of the probability space but not the future demand realizations. 

The only public information revealed after the auction is the price paid to the winner, 

if any. Simulation is used to estimate the performance of DVR technologies.

It is assumed that each carrier bids his best estimation of his marginal cost 

given his DVR technology and current status.  As mentioned in section two, 
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estimating the marginal cost of serving a shipment is not a trivial task given the 

complexity of the problem and the uncertainties about future arrivals and payments. It 

was noted in the game theoretic auction literature review (chapter 2) that, in a one-

item second price auction, bidding the items value (cost) is the dominant strategy. 

However this generally does not hold true for several items and bidders with multi-

unit demand functions. Nevertheless, marginal cost bidding may be reasonable or 

even a dominant strategy in a particular setting. For example, a setting where a carrier 

believes that is being randomly matched with a group of carriers drawn from a large 

population (in each and every auction). If the chances of meeting the same

competitors are negligible, a carrier may safely ignore any inter-temporal link 

between his current bid and the opponents’ future bids. 

 If the carriers’ problem is completely outstripped of their strategic 

considerations, carriers model market prices or payments as a random process that is 

not influenced by their own actions (bids). Therefore, the problem is similar to a one-

item second price where competitors’ behavior can be ignored and the dominant 

strategy is marginal cost bidding.  In the notation introduced in chapter 3, this is 

similar to assuming that competitors are playing b ( ) f ( )i ξ ξ− =  or 

simply b ( )i ξ ξ− =  , where ξ  is a random process that is not linked in any way to 

carrier 'i s  bidding, capacity/deployment, or history of play. It can also be 

interpreted that b ( )i ξ ξ− =  reflects the degree of competition in the market or 

represents different fractions of customers’ reservation prices. However, with 

uncertainty about the prices (since prices are not revealed until the auction is 

completed), the problem is still best described as an auction. If the reservation price is 
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known immediately before the auction takes place, the carrier’s problem is better 

described as an acceptance/rejection decision given a fix posted price. 

4.4.1.  Shipment Cost Function 

In a one-item second price auction, the value of the item (to a particular 

bidder) is equivalent to the bid that maximizes the bidder’s profit. Applying the same 

logic, the value of a shipment to a carrier is equal to the bid that maximizes the

carrier’s profit – in the assumed procurement marketplace and given the carrier’s 

technological endowment and status. In mathematical terms, the cost of serving 

shipment js  for carrier i  is equal to *i
jb , where:

1,.., 1,..,

*
( )arg max [ ( ( , )) ( | 1) ( | 0) (1 ) ]

(4.1)R

i i

j N j N

i i i i i i i i
j j j j j j j j j jb E c s z I s I I s I I

b

ξ ξ + +π π∈ − + = + = −

∈

11,.., ( ,..., ) ( )
1

( | 1) [ ( , , , | 1) ]] (4.2)
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N
i i i i i

j j k k j
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π π= = [ =∑

11,.., ( ,..., ) ( )
1
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j N

i
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N
i i i i i

j j k k j
k j

s I E E c s z Iω ω ξ ξ
++

= +

π π= = [ =∑
*

( ) ( ) 1 1( , , , )] ( , )) | ] (4.4)i i i i i i i
k k k k k kE c s z E c s z I bξ ξξ ξ + +π[ = [( −

1 0 (4.5)i i i i
k k k kI if b and I if bξ ξ= > = ≤

1a ( , , ) (4.6)i i i
k k j kz t h z −=
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The value of the shipment js  in equation (4.1) is the value of the bid that 

maximizes the expected sum of present plus future profits conditional on bidding a 

real number b . In equation (4.1) there are two kinds of profits: (a) present expected 

profit – estimated as if shipment ks  is the last shipment to be auctioned – and  (b)  

future expected profits – depending on whether the auction for ks  is won or not. The 

former type of profit expressed is by ( ( , ))i i
j jc s zξ − and the latter is expressed 

by 1,.., 1,..,( | 1) ( | 0)i i

j N j N

i i
j j j js I s I+ +π π= + = . 

Equation (4.4) shows the recursive nature of the problem while equation (4.6) 

is the “rule” to be applied to obtain a carrier’s status when a new shipment arrives 

(given a history of outcomes and the previous fleet status – this could include 

repositioning of vehicles and projection of a schedule into the future). The cost 

provided by c ( , )i i
j js z  is the change in distance traveled by incorporating js  to the 

carrier schedule when his status is i
jz  (change estimated using the carriers assignment 

function a i ). This change in distance traveled is estimated at time jt as if js  is the 

last shipment to be acquired in the marketplace and the vehicles do not have to return 

to the depot.  Equation (4.5) simply states that an auction is won by the carrier if his 

bid is lower than the competitors’ bids or the realized shipment price. 

4.4.2. Solving for the Optimal Bid

Neither equation (4.2) nor equation (4.3) are affected by the bid value for 

shipment js , they are simply conditioned on the outcome of the auction for js . The 
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expected value of the present plus future profits for any bid b R∈  can be expressed 

as:

1,.., 1,..,

1,..,

1,..,

( )[ ( ( , )) ( | 1) ( | 0) (1 ) ] (4.7)
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The first two integrals are evaluated in the interval [b, ∞] because they are not 

zero only if the bid b  is smaller than the competitors’ bids ( )b ξ< , or equivalently, if 

the auction for js  is won. The last integral is evaluated in the interval [-∞, b] because 

it is not zero only when the bid b  is bigger than the competitors’ bids ( )b ξ> , or 

equivalently, if the auction for js  is lost. Grouping terms in (4.7):
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The term

1,.., 1,..,( , ) ( | 1) ( | 0)i i

j N j N

i i i i
j j j j j jc s z s I s I+ +π π− + = − =

does not depend on the realization of ξ  or the value of b . Denoting 

1,.., 1,..,

* ( , ) ( | 1) ( | 0)i i

j N j N

i i i i i
j j j j j j jc c s z s I s I+ +π π= − = + =  and replacing in (4.8):
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1,.., 1,..,( ){ [( ( , )) ( | 1) ( | 0) ] | }i i

j N j N

i i i i i
j j j j j j jE c s z s I s I b bξ ξ + +π π− + = + = = =

1,..,

*( | 0) ( ) ( ) ( ) (4.9)i

j N

i i
j j j
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s I c p dξ ξ ξ+

∞
π= = + −∫

Then, (4.9) is strategically equivalent to a second price auction, where ξ   is 

the distribution of the best competitors’ bids and *i
jc  is the carrier 'i s  value. The bid 

that maximizes equation (4.9) is simply *i
jc , the proof that *i

jc  is optimal parallels the 

proof given in chapter 2 for the one-item second price auction. Assuming *i
jb c>

then:

*

* * *( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
i

j

b
i i i

j j j

b b c

c p d c p d c p dξ ξ ξ ξ ξ ξ ξ ξ ξ
∞ ∞

− ≤ − + −∫ ∫ ∫  

since all the elements in the last integral are equal or bigger than zero. Assuming 

*i
jb c<  then:

* * *

* * *( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
i i i

j j j

b
i i i

j j j

c c c

c p d c p d c p dξ ξ ξ ξ ξ ξ ξ ξ ξ
∞ ∞

− ≥ − + −∫ ∫ ∫  

since in the last integral the term *i
jcξ −  is negative while the other the elements are 

equal or bigger than zero. Therefore, equation (4.9) is maximized when *i
jb c= . 

Therefore, the optimal bid for a shipment i
js  is:

1,.., 1,..,

* ( , ) ( | 1) ( | 0) (4.10)i i

j N j N

i i i i i
j j j j j j jc c s z s I s I+ +π π= − = + =  
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4.4.3. Optimal Bid Analysis 

Equation (4.10) represents the value of the best bid given a carrier’s 

assignment technology a i  and estimated price function b ( )i ξ− . Therefore, a carrier 

with a different technology or estimated price function may have a different value for 

the optimal bid (even if the both carriers have the same fleet status). 

The intuition behind (4.10) is fairly straightforward. The first term represents 

the “static marginal cost” of serving shipment js  as if it was the last shipment to 

arrive. The other two terms are linked to the future and are best interpreted together. 

If the difference ,.., ,..,( | 0) ( | 1)i i

j N j N

i i
j j j js I s Iπ π= − = is: 

a) ,.., ,..,( | 0) ( | 1) 0i i

j N j N

i i
j j j js I s Iπ π= − = >

Having to serve js  decreases the future profits since the carrier is better off 

without serving js . The carrier must hedge against the expected decrease in future 

profits increasing the static marginal cost by the positive difference. This increase 

may not be only due to the increase in the probability of deadheading but also due to 

the carrier’s operation at or near capacity levels (serving the present shipment may 

preclude serving a more profitable shipment in the future)

b) ,.., ,..,( | 0) ( | 1) 0i i

j N j N

i i
j j j js I s Iπ π= − = =

Having to serve js  does not change future profits. The carrier must not hedge 

any value. 

c) ,.., ,..,( | 0) ( | 1) 0i i

j N j N

i i
j j j js I s Iπ π= − = <
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Having to serve js  increases future profits since the carrier is better off 

serving js . The carrier must bid more aggressively for shipment js  decreasing the 

static marginal cost by the negative difference. This last case may seem 

counterintuitive at first glance. However, if a vehicle is located in a “sink” area (a lot 

of trips are attracted and few are generated) and js  originates in a “sink” and goes to 

a “source” (a lot of trips are generated and few are attracted), it is absolutely plausible 

that future expected profits with js  are greater than without js . 

The true cost of serving shipment js  is equal to the payment that carrier i

has to receive in order to make him indifferent between serving the shipment or not, 

this payment is i
jc .  Therefore, paying the exact value of the shipment makes the 

bidder indifferent between winning and losing the auction.

4.4.4. Optimal Bid Complexity 

Analyzing the complexity of (4.10) helps to put in perspective the complexity 

of equation (3.1) or equation (3.3), where carriers not only have to estimate their own 

and competitors’ costs but to find equilibrium in bidding strategies. The expectation 

over the sums of expected profits can be an insurmountable task since it involves 

several random variables: arrivals, shipment characteristics, and prices. Furthermore, 

equation (4.10) contains an exponential number of future histories. Even assuming,

for the time being, that 1,...,j NS +  is known at time jt , since each auction can be won or 

lost, the corresponding decision tree has  1,...,| |2 2j NS N j+ −=  end nodes and possible future 
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histories. Furthermore, the potential NP hard complexity of the underlying VRP is 

present every time c ( , )i i
k ks z  has to be estimated. 

The intricacies do not stop there. The profitability of each history is linked to 

the value of future costs (which are unknown when going forward). The value of 

future costs are known when moving backwards, but not the carrier’s status at the 

time (a carrier’s status is dependent on the previous history). 

Therefore, in general, equation (4.1) cannot be solved on one pass, neither 

going forward or backward, nor by brute force enumeration or simulation. Some kind 

of iterative process becomes necessary (if convergence were possible) to break the 

circular process where the future depends on the present. It is important to note that 

future deployment depend on the present bid and its probability of winning. At the 

same time, the present depends on the future, the present bid depend on the future 

profits and future fleet statuses.   

4.5. Relaxations of Auction Analysis 

Auction analysis can be seen as a general methodology to evaluate algorithms, 

which is closely linked to two well known problems. Under special demand and 

auction settings, auction analysis can be reduced to (a) the acceptance/rejection 

problem and (b) optimal DVR assignment and average analysis of the DVR.  
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4.5.1. Acceptance/Rejection Online Problem

Assume a carrier has a fleet assignment technology a i  and a static cost 

function ci . Assume also a demand arrival rate that exceeds carrier capacity (i.e. the 

carrier cannot satisfy all the arriving shipments without violating time windows 

constraints). As in the general problem, the carrier does not know the timing or 

characteristics of future shipment arrivals. However, when a shipment arrives, the 

carrier is told the shipment reservation price, denoted P . No auction is held. The 

shipper fixes a price and the carrier has to either accept or reject it. 

It is trivial to show that accepting a load is equivalent to bidding less than P

and rejecting a load is equivalent to bidding more than P . Then, there are two 

possible decisions: accept or reject the shipment.  The problem can be formulated as:

1,.., 1,..,

* arg max{( ( , )) | ( | 1) ( | 0) }i i

j N j N

i i i i i i
j j j j j j j jb P c s z I b s I s I

b R
+ +π π∈ − + = + =

∈
while the other formulas (4.2), (4.3), (4.4), and (4.5) remain unchanged. Then, 

shipment js  is accepted if: 

1,.., 1,..,( , ) ( | 1) ( | 0) (4.11)i i

j N j N

i i i i
j j j j j jP c s z s I s I+ +π π− + = ≥ =

Shipment js  is rejected otherwise. This is the best acceptance/rejection policy 

given carrier’s assignment technology a i  and static cost function ci , under the 

assumed arrival and shipment probability space ( , , )Ω F P and estimated price 

function for future arrivals b ( )i ξ ξ− = . 
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4.5.2. Average Case Analysis of DVR Technologies

Assuming a situation similar to the acceptance/rejection problem but now 

assuming that (a) the reservation price P  is constant (b) the cost of serving a 

shipment never exceeds the reservation price (c) the arrival rate is such that the carrier 

can serve all the arriving shipments. Then, equation (4.4) becomes: 

( ) b( ( ) , , , )] ( , )i i i i i i
k k k kE c s z P c s zξ ξ−π[ = −

Equation (4.2) becomes: 
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Since all shipments can be served and the prices are always greater than the 

costs, no shipment is ever rejected. Therefore 1i
jI =  always holds, while 0i

jI =  never 

takes place. Then, the expected profit function for shipments ...j NS  given a current 

status i
jz  becomes:
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This expected profit is a function of a carrier’s assignment technology a i  and 

static cost function ci . Since bidding is trivial under the conditions assumed (all 
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shipments must be accepted), a carrier maximizes profits when has the best 

assignment function:

1
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Taking out ( 1)N j P− + , since it is a constant, and multiplying by -1:
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Under the current assumptions, profit is maximized choosing the assignment 

function *a i  which minimizes expected operating costs (present and future expected 

operating costs). For any assignment function a i , the average cost for the assumed 

arrival and shipment probability space ( , , )Ω F P  is:

1( ,..., )
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E s zω ω
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∑

Therefore, average case competitive ratio c  for the assignment function and 

shipment probability space ( , , )Ω F P  is equal to:
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When the demand surpasses the capacity of the carrier the problem becomes 

an acceptance/rejection problem. With high demand, the optimal assignment policy is 

the one that maximizes profits using equation (4.11) to accept or reject shipments. 
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4.6. Comparing Competitive and Auction Analysis of Algorithms

Competitive and auction analysis are both suitable methodologies to analyze 

the performance of online algorithms; however the similarities among them stop 

there. Competitive analysis is a form of worst case scenario; auction analysis is closer 

in spirit to average case analysis (as it was shown in section 4.5). 

Competitive analysis is fundamentally asymmetrical. A powerful adversary 

has control (not just knowledge) over the yet unknown (to the algorithm under 

analysis) future tasks. Auction analysis strives for symmetry, aiming at comparing 

two different technologies ceteris paribus in a level playing field. No competitor 

controls the future, and rewards and prices are a result of technological interaction; 

not even the researcher has control over them. Prices are determined online; they do 

not follow a preset function. In auction analysis both competitors have the same 

knowledge, however a technological (algorithmic) attribute is precisely how well and 

to what degree it takes advantage of that knowledge – ranging from ignoring the 

future and past to completely accounting for it.

Competitive analysis is mainly an analytical approach. Auction analysis is a 

simulation based approach; which has some pros and cons. Simulation allows the 

analysis of richer and complex environments that could never be fully addressed 

analytically. For example, the incorporation of real time limits to evaluate trade offs 

between solution quality and technology complexity (execution speed). However, 

with simulation is not possible to obtain close solutions or to prove general theorems 

or results.  
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Semantically, the name “competitive” for the worst case competitive analysis 

methodology was not wisely chosen. The Merriam Webster Online dictionary 

(www.m-w.com), defines competitive as “1. Relating to, characterized by, or based 

on competition”. Competition, in turn is defined as “1 : the act or process of 

competing as a : the effort of two or more parties acting independently to secure the 

business of a third party by offering the most favorable terms b : active demand by 

two or more organisms or kinds of organisms for some environmental resource in 

short supply”. 

Paraphrasing definition a, auction analysis wants to distinguish how the effort 

(the cost determination) of two parties (technologies/algorithms) – acting 

independently to secure the business of a third party by offering the most favorable 

terms (bid) – affect the parties’ profits. Paraphrasing definition b, auction analysis 

wants to replicate the active demand by two or more organisms (algorithms or 

transportation companies) or kinds of organisms for some environmental resource 

(tasks/shipments that is) in short supply.

Concluding, auction analysis aspires to construct an environment that rewards 

low cost or more efficient technologies. In that environment, auction analysis 

measures the relative performance of two technologies. Competitive analysis also 

measures the performance of technologies (algorithms), but, first comparing them to 

some imaginary all powerful adversary, which are simply a technical aid to allow 

absolute worst case comparisons. 
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4.7. Applying the Proposed Methodology

It was mentioned in chapter 1 that carriers and shippers are increasingly using

private exchanges, where a company invites selected suppliers to interact in a real 

time marketplace, compete, and provide the required services. Carriers have to keep 

in mind the cost for each transaction, especially in a sequential auction that 

implements a truth revealing mechanism. Even though carriers may compete in the 

same market in a level playing field, they are “endowed” with inherently different 

resources ranging from physical assets, such as fleets and facilities, to communication 

and decision support systems. Furthermore, the adoption of communication 

technology and expertise by carriers may vary greatly (Regan, 1999).The purpose of 

auction analysis of algorithms is to evaluate ceteris paribus the impact of a DVR 

technology on carriers’ market performance. 

4.7.1. Formulations and Solutions of the DVR Problem

A review of the main formulations and solutions, proposed up to date, for the 

DVR problem is presented in this section. The DVR problem is a relaxation of the 

static vehicle routing problem, where information about the demand or shipments to 

be served unfolds over time. Stochastic arrival times and shipment characteristics 

differentiate the DVR problem from the vehicle routing problem. Stochasticity 

transforms a NP hard combinatorial optimization problem (with complete 

information) into a decision making problem under uncertainty (partial information), 

while preserving all the intricacies associated with the original NP hard problem. 

Powell et al. (1995) present an extensive discussion of dynamic network modeling 
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problems that arise in logistics and distribution systems, including a-priori 

optimization and on-line decision policies for stochastic routing problems. 

Regan et al. (1996a, 1996b, and 1998) analyze the opportunities and 

challenges of using real time information for fleet management. They also formulate 

and evaluate (using simulations) various heuristics for the dynamic assignment of 

vehicles to loads under real-time information. Subsequent work by Yang et al. (1999 

and 2002) introduces a static optimization-based approach and tests it against the 

previously developed heuristic rules. Their approach solves static snapshots of the 

DVR problem with time windows using an exact mathematical programming 

formulation (which is the basis for two of the technologies studied in this paper). As 

new input occurs, static snapshot problems are solved repeatedly, allowing for a 

complete reassignment of trucks to loads at each arrival instance. Mahmassani et al. 

(2000) and Kim et al. (2002) study DVR strategies for fleet size operations, where 

computational and response times are important constraints. They also study 

strategies for DVR under high arrival rates and “priority” loads. 

A growing body of work focuses on the solution of the stochastic DVR 

problem.  Powell proposes a formulation based on a Markov decision process and 

several formulations using stochastic programming (1986a, 1986b, 1987, and 2000). 

Gendreau et al. (1999) and Ichoua et. al. (2000) use tabu search to solve a DVR 

problem with soft time windows. Gendreau et al. (1999) suggest the use of 

information about future requests to solve the DVR problem. This paper delves 

further into this idea, presenting a methodology that uses information about future 

requests to estimate the cost of servicing a new load. More recently, Larsen et al. 
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(2002) study the DVR problem with different degrees of dynamism (defined as the

percentage of demands that carriers typically do not know in advance).  

4.7.2. Static Cost of Serving a Shipment

Chapter 3 defines how a carrier’s performance is evaluated. These definitions 

can be applied after the market has closed and the whole sequence of shipments has 

been auctioned and served. Additional notation is necessary to describe the costing of 

shipments while the market is operating. This notation is also going to prove helpful 

to describe carrier technologies and analyze results.

As before, let i
jI  be the indicator variable for carrier i  for shipment js , such 

that 1i
jI =  if carrier  i  won the auction for shipment js  and 0i

jI =  otherwise. The 

set of acquired shipments up to time kt  by carrier i is i
kS .  Let the set of acquired 

shipments up to time kt  by carrier i  which are not yet served be i
kS
�

 and the set of 

the set of acquired shipments up to time kt  by carrier i  which have been already 

served be i
kS
�

, then i i i
k k k k NS S S S S+ = ⊆ ⊆� �

. A shipment is considered to be served if it 

has been already delivered at its destination point; a shipment is considered to be yet 

to be served otherwise. 

Let , i
j k ks s S∈ �  and let {0,1}i

jkx ∈�  be a binary variable. Let 1i
jkx =�  if a 

carrier 'i s vehicle has already picked up and served shipment ks  immediately after 

serving shipment js , 0i
jkx =�  otherwise. Similarly, let , i

j k ks s S∈ �  and let {0,1}i
jkx ∈�

be a binary variable. Let 1i
jkx =�  if a carrier 'i s vehicle is going to deliver shipment
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ks  (not yet delivered) immediately after serving shipment js , 0i
jkx =�  otherwise. 

However, while i
jkx
�

 is a constant, i
jkx
�

( )i
tz is a binary variable that is dependent on the 

carrier’s status i
tz  at time t . The carrier’s status can be in turn obtained as a function 

of the carrier’s assignment function, history of play, and time 1 1a ( , , )i i i
k k k kz t h z− −= . 

To clearly distinguish the different statuses whether the auction is won or not, the 

following notation is used:

(a) 1 1| ( 0) a ( , | 0, ) a ( , , )i i i i i i i
k k k k k k k k kz I t h I z t h z− −= = = =  to indicate the status 

immediately before  the auction for shipment ks  or the status immediately after the 

auction for shipment ks  if the auction is lost.

(b) | ( 1) a ( , | 1, )i i i i i
k k k k k kz I t h I z= = =  to indicate the status immediately after

the auction for shipment ks  if the auction is won.

Any set of binary variables { ( )}i i
jk tx z
�

 that constitute a complete fleet schedule 

is assumed to satisfy all the time windows and flow constraints of a Mixed Integer 

Programming (MIP) formulation of the corresponding vehicle routing problem. The 

base MIP formulation used in this research is based on the work of Yang et al. (2002).  

Let ed( , )m ns s  be the function that returns the distance between the 

destination of shipment ms  and the origin of shipment ns . When a new shipment ks

is posted (the next auction after shipment js  has been auctioned) the total estimated

distance needed to serve i
jS , at time kt , is:  
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' '

'

' ' ' '
, ,

' '
,

ed( , ) ld( ) ed( , ) ( | 0)

ed( , ) ( | 0) (4.13)
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The first term represents the empty distance already traveled by the fleet; the 

second term represents the sum of the acquired shipments loaded distance; and the 

third and fourth term represents the empty distance that is going to be traveled by the 

fleet according to the current schedule at time kt . This schedule changes if 

shipment ks  is acquired; otherwise it remains the same if ks  is not acquired since the 

status of the carrier has not changed. The second term includes the loaded distance of 

both already served and going to be served shipments since a shipment loaded 

distance does not change over time. 

If carrier i wins the auction for shipment ks , the estimated distance needed to 

serve the acquired shipments so far (including ks ) is: 

' '

'

' ' ' '
, ,

' '
,

ed( , ) ld( ) ed( , ) ( | 1) (4.14)

ed( , ) ( | 1)

ld( ) ed( , ) ( | 1) ed( , ) (

i i i
j j k j k j j k

i i
j k j k

i i
j k j k

i i i i
j j jj j j j jj k k

s s S s S s s S

i i i
j j jj k k

s S s S

i i i i i
k j k jk k k k j kj k

s S s S

s s x s s s x z I

s s x z I

s s s x z I s s x z
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� �
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�

� �
| 1)i

kI =

The first two terms are the same as in equation (4.13). The third and fourth 

represent the empty distance that is going to be traveled by the fleet to serve i
kS

given the new schedule; the fourth term is the loaded distance of ks ; the fifth term 

represents the empty distance that is going to be traveled to pick up ks ; and the sixth 

term represents the empty distance that is going to be traveled (if any) after 

serving ks  to pick up a shipment that belongs to i
kS . 
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The cost of serving shipment ks  (at the time of its auction and as if ks  is the 

last shipment to arrive) is the difference between equation (4.14) and equation (4.13). 

Let c ( , )i i
k ks z be the cost of shipment ks  for carrier i  when his status is i

kz , then:

' '

' '

' '
, ,

' ' ' '
, ,

c ( , )= ed( , ) ( | 1) ed( , ) ( | 0)

ed( , ) ( | 1) ed( , ) ( | 0)

ed( , )

i i
j j k j j k

i i i i
j k j k j k j k

i
j k

i i i i i i i i
k k j j jk k k j j jk k k

s s S s s S

i i i i i i
j j jj k k j j jj k k

s S s S s S s S

j k jk
s S

s z s s x z I s s x z I

s s x z I s s x z I

s s x

∈ ∈

∈ ∈ ∈ ∈

∈

= − = +

+ = − =
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∑ ∑
∑ ∑
∑

� �

� � � �
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� �

�
( | 1) ed( , ) ( | 1) ld( )

(4.15)

i
j k

i i i i i i
k k k j kj k k k

s S

z I s s x z I s
∈

= + = +∑ �

The first two terms in equation (4.14) and equation (4.13) cancel each other 

out. The conditions 1i
kI =  and 0i

kI =  indicate the current schedule with and without 

ks  respectively. The sum of the two differences represents the change in empty 

distance for the shipments in i
kS  that are not yet serviced. The cost of serving a 

shipment according to equation (4.15) does not depend on the cost of the already 

served shipments, which have already been “sunk”. 

The previous formulation assumes that vehicles are always located at the 

destination of some shipment, which is compatible with assumptions taken for the 

technologies studied in this chapter. However, if real time diversion and repositioning 

is used, equation (4.15) is still valid if, for each vehicle a dummy shipment is added 

to i
kS
�

. 
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4.7.3. Technologies 

In the rich spectrum of DVR technologies, three inherently distinct and 

archetypical approaches are evaluated. These three technologies require different 

levels of sophistication in communication capabilities, static optimization, and the 

evaluation of opportunity costs. In real time situations, cost evaluation is a difficult 

task when optimal decision-making involves the solution of larger NP hard problems 

and the necessity of taking into account the stochastic nature of future demands. The 

three technologies are presented in an order that shows an increasing and distinct 

level of sophistication.

4.7.4. Base or Naïve Technology

This type of carrier simply serves shipments in the order they arrive. If the 

carrier has just one truck, it estimates the marginal cost of an arriving shipment js

simply as the additional empty distance incurred when appending js  to the end of the 

current route. If the carrier has more than one truck, the marginal cost is the cost of 

the truck with the lowest appending cost. This technology does not take into account 

the stochastic or combinatorial aspect of the cost estimation problem and is 

considered one of the simplest possible. Each vehicle acts as if it were an independent 

carrier; in fact, the auction and fleet assignment results are not altered if each vehicle 

submits its own bid. Communication and coordination overheads are reduced to a 

minimum. Nonetheless, this technology provides a useful benchmark against which to 

compare the performance of more complex and computationally demanding 

technologies.
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The first technology is such that the schedule for the yet not served shipments 

in i
kS
�

 does not change. The first four terms of equation (4.3) cancel each other out 

since the schedule for the “old shipments” is not changed. The last term of equation 

(4.3) is zero since the “new shipment” is appended at the end of a carrier’s vehicle 

route. Then:

c ( , )= ld( ) ed( , ) ( | 1)
i

j k

i i i i i
k k k j k jk k k

s S

s z s s s x z I
∈

+ =∑ �

For each 1| i
kv v V +∈ , let denote by ls( )v the last shipment in vehicle v  current 

route if any or vehicle v  current location otherwise.  If the auction is won, shipment 

1ks +  is allocated to the vehicle *v  that: 

* arg min[ ed (ls( ), )]k

i
k

v v s

v V

∈
∈

Therefore, the marginal cost of serving shipment 1ks +  is:

*c ( , )  ed (ls( ), ) ld( ) (4.16)i i
k k k ks z v s s≈ +

Finally, in terms of equation (4.10), it is clear that equation (4.16) is simply a 

heuristic that approximates the optimal static cost. 

4.7.5. Static Fleet Optimal (SFO)

This carrier optimizes the static vehicle routing problem at the fleet level. The 

marginal cost is the increment in empty distance that results from adding js  to the 

total pool of trucks and loads yet to be serviced. Communication and coordination 



116

capabilities are needed to feed the central dispatcher with real time data and to 

communicate altered schedules to vehicle drivers. 

If the problem were static, this technology would provide the optimal cost. 

Like the previous technology, it does not take into account the stochastic nature of the 

problem. This technology roughly stands for “the best” a myopic (as ignoring the 

future but with real time information) fleet dispatcher can achieve. A detailed 

mathematical statement of the MIP formulation used by SFO is given in Yang et al. 

(2002). 

Using this technology, the set of ( | 1)i i i
jk k kx z I =�

 must be such that they 

minimize equation (4.15) given the current status of the fleet and the current 

schedule. If ld( )ks and ( | 0)i i i
jk k kx z I =�

are constant expressions, the set of 

( | 1)i i i
jk k kx z I =�

 that minimize (4.15) must also minimize: 

' '

' ' '
, ,

min{ ed( , ) ( | 1) ed( , ) ( | 1)

ed( , ) ( | 1) ed( , ) ( | 1) } (4.17)
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Using this technology, the marginal cost of serving shipment ks  is equal to the 

empty distance needed for best possible schedule including load ks  minus the 

previous schedule (which does not include ks  and that is still “optimal” if it was the 

best schedule at time kt  and travel times are deterministic).

Finally, in terms of equation (4.10), it is clear that equation (4.17) 

approximates the real cost of serving a shipment as * ( , )i i i
j j jc c s z≈ -- the 

opportunity costs are completely ignored. 
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4.7.6. 1- step-look-ahead Fleet Optimal Opportunity Cost (1FOOC) 

As the previous carrier, this carrier optimizes the static vehicle routing 

problem at the fleet level. This provides the static cost for adding js . However, this 

carrier also knows the distribution of load arrivals over time and their spatial 

distribution (it is not discussed in this research how the carrier has acquired this 

information). This type of carrier also has an estimation of the endogenously 

generated prices or payments. Hence, the carrier can assess whether and how much 

winning js  affects his future profits. This is the opportunity cost of serving js . 

Unlike previous types, this carrier takes into account the stochasticity of the problem 

to estimate the opportunity costs of serving js  as if there is just one more auction 

after the auction for js  (one step look ahead). Limiting the “foresight” to just one 

step into the future has two advantages: (a) it considerable eases the estimation and 

(b) it provides a first approximation (as in the first term of a Taylor series) about the 

importance of opportunity costs in a given competitive environment. 

Unlike the previous technologies, this one is not function or parameter free. 

Estimation opportunity cost requires the knowledge of arrival, shipment, and price 

distributions. In addition, there is the computational burden of estimating the 

opportunity costs. On the other hand, this type of carrier can adapt to changing 

conditions in the marketplace – his price is truly “dynamic” and “flexible”, in the 

sense that future consequences are evaluated and that the shipment and price 

distribution can be estimated online. In the present research, this type of carrier 
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estimates the price function as a normal function, whose mean and standard deviation 

are obtained from the whole sample of previous prices.

4.7.7. One Step Look-ahead

The previous formulation implicitly assumes that acquiring shipment ks  does 

not affect the marginal cost of future loads (i.e. 1ks + , 2ks + , ..., Ns ). However this is not 

entirely correct since acquiring a new load (a) temporarily reduces carriers’ capacity 

(capacity defined as the ability to serve additional shipments at a point in time) and 

(b) changes the current schedule and therefore possibly changes fleet deployment at 

the time of the next shipment auction. The only exception to this takes place in the 

final auction (shipment Ns ) and there are no repositioning costs (trucks do not return 

to depot).

As stated in Chapter 3, in general, arrival times and shipments will not be 

known in advance. The arrival instants 1 2{ , ,..., }Nt t t will follow some general arrival 

process. Furthermore, arrival times and shipments are assumed to come from a 

probability space ( , , )Ω F P , with outcomes 1 2{ , ,..., }Nω ω ω . Any arriving shipment js

represents a realization at time jt  from the aforementioned probability space, 

therefore { , }j j jt sω = . Therefore, at time 1kt + , the sets 2,...,k NT +  and 2,...,k NS +  are 

unknown before bidding for 1ks + starts.

The carrier is also assumed to know the parameters of the function 

b f ( )i ξ− = --reservation price or competition function. It has already been 
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discussed the complexity of estimating the value of the bid that maximizes equation 

(4.1). However, the estimation of the cost of serving ks  is greatly simplified if it is 

assumed that shipment 1ks + is the last shipment to ever arrive at the marketplace. 

Using backward induction, the cost of serving 1ks +  has to be estimated first. 

This cost would be simply 1 1( , )i i
k kc s z+ + ; however 1ks +  and 1

i
kz + are still unknown at 

time kt . Equation (4.2) for this special case becomes:
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Similarly, equation (4.3) becomes:
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In this report , ( | 1)i

j k

i
j js Iπ = and , ( | 0)i

j k

i
j js Iπ = are estimated using

simulation. Then the optimal bid value is:

, ,

* ( , ) ( | 1) ( | 0) (4.18)i i

j k j k

i i i i i
j j j j j j jc c s z s I s Iπ π≈ − = + =  

This result coincides with the theoretical analysis of auctions surveyed in 

chapter 2. In the presence of synergies or economies of scale the first bid is increased 

(decreased in reverse auctions); conversely, in the presence of negative synergies or 

diseconomies of scale the first bid is decreased (increased in reverse auctions). 

4.7.8. Assumptions

Response or solution time is a key consideration in real time applications. 

However, given that the objective of this paper is to analyze how much can be gained 
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using different technologies, it is assumed that carriers have enough computational 

power to submit a bid before another request comes in.

In all cases it is assumed that a carrier bids only if a feasible solution has been 

found. If serving js unavoidably violates the time window of a previously won 

shipment, the carrier simply abstains from bidding or submits a high bid that exceeds 

the reservation price of js . Simulation experiments are conducted to evaluate the 

performance of these strategies under alternative specifications and parameter values. 

The loaded distance is not included in the final cost because it is assumed that 

all carriers have the same cost per mile, therefore adding/subtracting a constant 

to/from all the bids (e.g. the loaded distance of an arriving shipment) does not alter 

the ranking of bids. Besides, if all carriers include the loaded distance in their bids, 

that term cancels out when computing profits (the payment, in this case the second 

bid, and the winner’s cost include the same constant: the shipment loaded distance). 

Shippers’ reservation prices do not include the loaded distance either. However, 

loaded distance of all shipments is included when estimating the opportunity costs in 

(4.18), since loaded distance is a key factor that can affect a carrier’s capacity. 

Another assumption is that once a vehicle is loaded with a shipment (i.e.

at its origin), it travels directly to the shipment destination before picking up another 

demand. Therefore, the possibility of shipment consolidation at a terminal or load 

exchanges among vehicles (in-route load swap) is precluded. It is also assumed that a 

vehicle that is moving empty to pick up a shipment cannot be rerouted before 

completing the service of that shipment. It is further assumed that, a vehicle does not 

move empty unless they are going to pick up a load (no repositioning).
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The simulations settings are as described in chapter 3 unless stated otherwise. 

Auction analysis of technologies was applied to compare naïve vs. static fleet optimal 

(SFO) and to compare static fleet optimal vs. 1-step-look-ahead fleet optimal 

opportunity costs (1FOOP). All the figures presented and analyzed in this chapter 

were obtained with a carriers’ fleet size of two vehicles. 

4.7.9. Analysis of Results

Figures 3, 4, 5, and 6 compare the performance of the SFO vs. naïve 

technology.  Figures 3 and 5 are absolute changes in profits and shipments served

respectively; while Figures 4 and 6 are percentage changes in profits and shipments 

served respectively. 

The results obtained for the less sophisticated carrier (naïve carrier in Figures 

3, 4, 5, and 6) are used as the base line. Therefore, any positive difference (indicated 

in red) in the first four graphics demonstrates that the more sophisticated carrier (SFO 

carrier in Figures 3, 4, 5, and 6) has either obtained more profits or served more 

shipments than the less sophisticated carrier; a native difference (indicated in blue) 

would demonstrate the opposite.

As expected, a more sophisticated technology outperforms the naïve one. 

However, relative performance critically depends on the arrival rate and time 

windows. Figures 3 and 4 show how SFO outperforms naïve in profit levels, for the 

most part with wider time windows and medium arrival rates. A similar behavior can 

be observed in Figures 5 and 6 with respect to the number of shipments served. 
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Figure 3 Profit Difference SFO vs. Naïve Technology 

Figure 4 Profit % Difference SFO vs. Naïve Technology

PROFIT DIFFERENCE

0.0

10.0

20.0

30.0

40.0

50.0

60.0

TW Short Med. Long Short Med. Long Short Med. Long

AR Low Med. High

P
R

O
F

IT

PROFIT DIFFERENCE % 

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

50%

TW Short Med. Long Short Med. Long Short Med. Long

AR Low Med. High

P
R

O
F

IT



123

Figure 5 Shipments Served Difference SFO vs. Naïve Technology

Figure 6 Shipments Served % Difference SFO vs. Naïve Technology

SHIPMENTS SERVED DIFFERENCE 

-50

0

50

100

150

200

TW Short Med. Long Short Med. Long Short Med. Long

AR Low Med. High

S
H

IP
M

E
N

TS
 S

E
R

V
E

D

SHIPMENTS SERVED DIFFERENCE %

-5%

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

50%

TW Short Med. Long Short Med. Long Short Med. Long

AR Low Med. High

S
H

IP
M

E
N

TS
 S

E
R

V
E

D



124

To understand why the SFO technology outperforms the naïve one, it is useful 

to look at how they estimate the cost of serving a shipment. Assuming for a moment 

any carrier i  with a fleet status i
kz , bidding for shipment ks  , the marginal cost 

obtained with equation (4.16) is bigger or equal than the marginal cost obtained with 

equation (4.17) since the former is special case of equation (4.15) – search over a 

subset of feasible solutions set – and the latter is the result of minimizing equation 

(4.15) – search over the whole feasible solution set. Comparing both marginal costs 

and simplifying the constant loaded distance:
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Any schedule that assigns the new shipment to the end of a vehicle route 

results in a strict equality. This is:

*ed (ls( ), ) ed( , ) ( | 1) (4.19)
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Any “optimal static” schedule that does not assign the new shipment to the 

end of a vehicle route results would generally result in a strict inequality (though ties 

are theoretically possible they are not very likely). This is:
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 Let denote the former type of schedule (4.19) as “appending” and the latter 

(4.20) as “inserting”. Formally, inserting takes place any time:

ed( , ) ( | 1) 0
i

j k

i i i
k j kj k k

s S

s s x z I
∈

= >∑ �
,

while appending takes place when ed( , ) ( | 1) 0
i

j k

i i i
k j kj k k

s S

s s x z I
∈

= =∑ �
. 

The “appending” technique has at most a polynomial number of solutions. 

The two DVR techniques provide the same costs when they search over the same set 

of feasible solutions. Intuitively, if time windows constraints are very tight, the only 

feasible solutions may be to append the arriving shipment to the end of existing 

routes. The initial status of the carrier ( | 0)i i
k kz I =  does not provide “enough room” to 

insert arriving shipments. A very low arrival rate would have a similar effect. If all 

vehicles are idle, the two technologies would provide the same cost. The cardinality 

of i
kS
�

 must be equal or bigger than one for an insertion to be possible. 

However, the greedy polynomial approach is in serious disadvantage when 

“inserting” is possible, especially if it results in near zero or even negative marginal 

costs. Inserting it is facilitated when time windows are wide enough to accommodate 

the service of several shipments. As the cardinality of i
kS
�

 and the time windows width 

grow linearly, the set of feasible solutions can have an exponential growth. 

While the cost of appending is always bigger or equal than zero, the cost of 

inserting could be negative. The best case scenario is when the arriving shipment ks

“fits” perfectly on an existing route. In this case the marginal cost is negative and 

equal to ld( )ks− .  
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Time-windows have a significant impact on the carriers’ ability to serve 

shipments. All things equal, a SFO carrier’s capacity increases as the shipments’ 

time-windows increase since the carrier (a) has more flexibility to “insert” a shipment 

and (b) can hold more shipments in a queue (shipments waiting to be served) which 

increases exponentially the number of possible schedules and therefore  the number 

of opportunities to insert loads and reduce average deadheading. On the other hand, a 

naïve carrier can only “append” shipments at the end of the route. Therefore, any 

increase in queue length of shipments waiting to be served cannot be utilized to 

improve the previous schedule.   

Arrival rates also have a significant impact on the number of carriers’ 

shipments waiting to be served (queue length). All things equal, a carrier’s queue 

length tends to increase as the arrival rate increases -- up to a limit determined by the 

average time windows length.  At the arrival rate where that queue length limit is 

reached, the advantage of the SFO carrier over the naïve carrier is maximized. Under 

very high arrival rates, all the carriers’ fleets are fully utilized irrespectively of their 

intrinsic technology or efficiency. On the other hand, if the demand arrival rate is 

low, such that the queue length is close to zero, a repositioning policy of moving idle 

vehicles to geographic areas that are “sources” (demand generating areas) may 

provide a competitive edge (specially with short time windows).
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Figure 7 Profit Difference 1FOOC vs. SFO Technology

Figure 8 Profit Difference % 1FOOC vs. SFO Technology
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Figure 9 Shipments Served Difference 1FOOC vs. SFO Technology

Figure 10 Shipments Served % Difference 1FOOC vs. SFO Technology
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Figures 7, 8, 9, and 10 compare the performance of the 1FOOC vs. SFO 

technology. Figure 7 and 9 are absolute changes in profits and shipments served 

respectively; while Figure 8 and 10 are percentage changes in profits and shipments 

served respectively. The results obtained for the less sophisticated carrier (SFO 

carrier in Figures 7, 8, 9, and 10) are used as the base line. The color convention 

remains unchanged. 

Unlike the previous results, the more sophisticated technology does not 

outperform less sophisticated technology across the board. Profit-wise, the 1FOOC 

carrier obtains higher or equal profits than the SFO, yet no clear pattern emerges from 

Figures 7 and 8. 

Regarding shipments served, the 1FOOC carrier tends to serve fewer 

shipments when the time windows are short. However, 1FOOC carrier tends to serve 

more shipments for medium and long time windows. Arrival rates affect these 

differences, because as arrival rates decrease the positive changes increase. However, 

as arrival rates increase the negative changes decrease. 

To understand why the 1FOOC technology outperforms the OFS, it is useful 

to look at how they estimate the cost of serving a shipment. Assuming for a moment 

any carrier i  with a fleet status i
kz , bidding for shipment ks  , the marginal cost 

obtained with technology SFO differs from the result obtained with 1FOOC 

technology by the term:

, ,( | 1) ( | 0)i i

j k j k

i i
j j j js I s Iπ π− = + =

As previously mentioned, this term measures the opportunity cost of winning 

the current auction. The influence of the opportunity cost on carrier 1FOOC bids can 
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be seen in Figures 11 and 12 which depict the percentage change in winning and 

losing bids. The 1FOOC carrier sets bids values more aggressively (bids lower) when, 

the time windows are not short, and the arrival rate is not too high. The 1FOOC 

carrier bids less aggressively (bids higher) when the time windows are short and the 

arrival rate is high. There are two distinct forces operating in the market: time 

windows and arrival rates. An increase in arrival rates increases the bid values 

(therefore the opportunity cost has increased). A decrease in time windows lengths 

increases the bid values (therefore the opportunity cost has increased).

Short time windows affect the ability of carriers to “insert” new shipments, 

therefore limiting carriers’ capacity, which increases the opportunity cost of serving a 

shipment. The arrival rate effect on opportunity costs follows the universally accepted 

economic laws of demand, supply, and prices. From the fleet management 

perspective, it can be reinterpreted as a consequence of decreasing returns of scale, 

where scale is measured by the number of shipments to be served or the length of the 

queue. All things equal, having more having more shipments in the queue increases 

exponentially the number of possible schedules and therefore the number of 

opportunities to insert loads. Therefore, at low arrival rates and with a short queue 

length, the opportunity cost may be negative. However, the number of possible and 

feasible schedules starts to decrease if the queue keeps growing. Effectively, adding 

an extra shipment (especially if the static marginal cost is high) precludes servicing 

other future more profitable shipments, which increases the opportunity cost. 
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Figure 13 Loaded Distance % Difference 1FOOC vs. SFO Technology
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Figure 14 Shipper Surplus % Difference 1FOOC vs. SFO Technology 
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Another effect of adding opportunity costs can be seen in Figure 13 which 

depicts the change in average loaded distance per shipment served. Carrier 1FOOC 

tends to serve shorter shipments when the time windows are short. This indicates that 

the opportunity cost of a shipment increases with its loaded distance when time 

windows are small, since inserting or even appending new shipments becomes more 

difficult.  Finally, Figure 14 points out what changes can be expected by shippers 

when opportunity costs are incorporated. Shippers should expect prices to go up when 

shipments have short time window and arrival rates are moderate to high. However, 

prices should go down as time windows widen. Clearly, prices are adjusted to reflect 

the difficulty or opportunity cost to serve them. 

4.8.  Private Fleets vs. Procurement Markets

It was mentioned in chapter 2 that in one-item auctions, truth revealing 

auction mechanism like a second price auction, optimizes social welfare since the 

item is acquired by the bidder with the highest value (lowest cost in a reverse 

auction). In TLPM markets, a truth revealing auction mechanism, like the proposed 

auction analysis, allocates each shipment to the carrier with the lowest expected cost. 

Such mechanism cannot be guaranteed to optimize social welfare. However it is still 

incentive compatible and guarantees that the shipment is handed to the carrier with 

the lowest expected cost, therefore the mechanism is ex-ante efficient.

It was mentioned in chapter 1 that vertical integration takes place when each 

shipper uses a private fleet. Equipment availability and service quality is guaranteed 

but at the cost of excessive deadheading. Conversely, in a market, shippers must 
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search for and transact with carriers interested in providing the demanded services. 

Auction analysis can be used to approximate what can be gained by “society”, in 

terms of extra-generated wealth, when an ex-ante efficient marketplace is 

implemented. 

4.8.1. Assumptions and Results

Figures 15, 16, 17, 18, 19, and 20 show the changes in average empty 

distance, total number of served shipments, and total wealth generated when a 

marketplace is implemented. The original market consists of four shippers with 

private fleets of two vehicles each. Shipments are assigned to each carrier as follows:

carrier one serves shipments 1 5 997{ , ,..., }s s s ,

carrier two serves shipments 2 6 998{ , ,..., }s s s , 

carrier three serves shipments 3 7 999{ , ,..., }s s s , and 

carrier four serves shipments 4 8 1000{ , ,..., }s s s . 

The TLPM consists also of four shippers and four carriers, however, 

shipments are assigned to the carrier with the lowest cost. All carriers are 

implementing the same SFO (static fleet optimal) fleet management strategy. 

Figure 15 and 17 indicate that deadheading is reduced considerable across the 

board, improvements range from 24% to almost as high as 50%. The number of 

served shipments increased considerably with short time windows and at high arrival 

rates. The increases indicate that in a competitive market, the cost of serving a 

shipment provides a competent tool to allocate supply and demand. 



135

Figure 15 Empty Distance Difference Resale Market vs. Private Fleets

Figure 16 Empty Distance % Difference Resale Market vs. Private Fleets
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Figure 17 Shipments Served Difference Resale Market vs. Private Fleets

Figure 18  Shipments Served % Difference Resale Market vs. Private Fleets
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Figure 19 Total Wealth Generated Difference Resale Market vs. Private Fleets

Figure 20 Total Wealth Generated % Difference Resale Market vs. Private Fleets
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The market system clearly generates more wealth than a system of 

independent shipper-carrier pairs. In absolute terms, the additional wealth that is 

generated by the marketplace increases with the arrival rate (see Figures 19 and 20). 

However, percentage-wise, the major increases correspond to short time windows 

and, in a lesser degree, to high arrival rates. Results that reflect the influence of the 

additional shipments served (see Figures 17 and 18). 

4.8.2. Resale TLPM 

The benefits of a TLPM can be reached even if each carrier has signed a 

private contract with a shipper (dedicated carrier situation). The carriers can set up 

their own private “resale” marketplace. When a carrier, called A  for “assigned” 

carrier, is handed a shipment js , the carrier estimates his cost of serving js , 

denoted A
jc . Then, carrier A  calls for a second price auction for shipment js  with 

secret reservation price A
jc . If the lowest bid, denoted (1)

jc , is less than the reservation 

price ( (1) A
j jc c< ), the lowest cost carrier is handed shipment js  and is being paid an 

amount equal to (2)min( , )A
j jc c . 

The implementation of such a resale TLPM clearly benefits carriers and could 

be the basis for cooperation and partnership agreements. The benefits to the carriers 

are clearly independent of the level of the originally contracted payment in the 

carrier-shipper agreement. Furthermore, the same allocations and payments are 

obtained with a private marketplace and with private contracts plus resale 
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marketplace, independently of marketplace carriers or demand characteristics. Market 

forces are providing a decentralized matching of supply and demand – matching 

which is ex-ante efficient – in an incentive compatible environment. 

4.9. Summary

This chapter studies a TLPM based on cost competition. In this environment a 

general framework to evaluate DVR technologies was introduced. The proposed 

methodology to test DVR technologies seems more adequate to evaluate competitive 

performance than traditional analysis of algorithms; especially in logistics and 

transportation problems embedded in dynamic stochastic environments and 

supporting e-commerce marketplaces and activities.

The auction methodology was successfully applied to evaluate the 

competitiveness of three distinct DVR technologies. It was shown that under certain 

demand condition auction analysis of algorithms is similar to average cost analysis. It 

was shown that the estimation of opportunity costs in an online marketplace provides 

a competitive edge. However, an exact calculations of these opportunity cost can be 

quite challenging. A simplified approach (1-step-look-ahead) to estimate opportunity 

costs was developed and applied successfully.  Cost competition was also utilized to 

demonstrate the advantages of a market structure over a set of independent fleets. 

In this chapter it was assumed that carriers’ best strategy was cost bidding. 

Chapter 5 presents a framework to study carrier behavior in TL sequential auctions. 

Under that framework, cost bidding is considered a particular case that can arise 

under determined auction and informational settings. 
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Chapter 5: Boundedly Rational Behavior in a TLPM

This chapter lays out the basis for a conceptual framework that facilitates the 

study of behavioral aspects of carriers participating in TLPM. The behavioral 

assumptions used in chapter 3 and 4 are special cases of this general framework.  An 

important chapter objective is to link a carrier’s behavior to the auction and 

competitive setting as well as the carrier knowledge and problem solving capabilities. 

Section one introduces the concept of bounded rationality. Section 2 presents 

a literature review of boundedly rational behavior in auctions and marketplaces (in 

chapter 2 a game theoretic auction literature review was presented). Section 3 defines 

bounded rationality in the TLPM context. Section 4 identifies and analyzes the 

sources of bounded rationality. Two of the identified sources, knowledge acquisition 

and problem solving capabilities are analyzed in sections 5 and 6 respectively. 

Section 7 evaluates different bidding problems from a complexity point of view. 

Similarly, section 8 compares the complexity of first and second price auctions in an 

array of different bidding problems. Section 9 defines the factors that are used to 

classify carriers’ behavior. Section 10 summarizes the chapter.

5.1. The Genesis of Boundedly  Rational Behavior

Competition in a TLPM is an ongoing and sequential process, and thus 

naturally represented as an extensive-form game. The standard notion of rationality 

(for economists at least) requires that agents automatically solve problems that may 

in fact lay beyond the capabilities of any agent (Colinsk, 1996). Chapter 3 presented 
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the game theoretical formulation of the sequential auction TLPM problem. 

Unfortunately, the problem is intractable and well beyond the conceptual and

computational abilities of ordinary humans or decision support systems. In addition, 

response time limitations, framing effects, and cognitive limitations of the human 

mind impede bidders’ ability to strictly adhere to precepts of economic rationality. 

The framing and cognitive limitations of human judgment and decision making have 

been widely studied and reported (Camerer, 1995; Kagel, 1995), mainly in the 

psychology and behavioral economics literature. Therefore, the basic motivation for 

studying models of bounded rationality in TLPM environments stems from the  need 

to inject a dimension of behavioral realism in situations where perfect rationality may 

be implausible. 

When the complexity of the auction problem precludes bidders from 

implementing optimal solution strategies, computational agents (or human beings 

with the help of decision support systems) need to simplify or modify the original 

decision problem. Boundedly rational behavior, as studied in this research, is born out 

of these simplifications or alterations to the original intractable problem. This chapter 

provides a behavioral framework to represent how carriers might tackle the 

overwhelming complexity of the problems they face in a TLPM (complex detailed 

histories, numerous current options, future infinite contingent options, and the 

potential consequences).

Boundedly rational bidders solve a less complex problem than fully rational 

bidders. The type of problem they solve is directly influenced by available response 

time, existing computational/material resources, and their own cognitive/decision-
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making process. Although the result of boundedly rational deliberation would not 

necessarily be an equilibrium solution, the boundedly rational response would likely

have greater relevance to how ordinary carriers would act in sequential auction 

TLPM. The introduction of boundedly rational decision makers radically alters the 

notion of equilibrium and decision making. The next section reviews the bounded 

rationality literature in auctions, marketplaces, and freight transportation. 

5.2. Relevant Background Review and Concepts

This section reviews the large body of research that deals with boundedly

rational behavior in auctions, with special emphasis on those contributions that are 

relevant to sequential auctions and TLPM’s. Contributions are mainly classified 

according to the disciplinary approach taken or the academic background of the 

authors. 

5.2.1. Operations Research and Computer Science 

The first contribution of operations research to auction theory is attributed to 

Friedman (1956), who presented a method to determine optimal bids in a first price-

sealed bid auction. Actually, the first Ph. D. in Operations Research (OR) was granted 

to Friedman for his work on auctions (Rothkopf, 2001).  Friedman’s idea was to 

estimate the probability distribution of the best competitive bid on the basis of

previous bidding data/records. The distribution of competitors’ bids could then be 

used to estimate the bid that maximizes expected profits in a first price sealed auction.  
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In a reverse auction, calling B  the set of feasible bids,  c  the cost of 

producing or serving the auction item, and ( )p b  the probability that bid b B∈  is the 

lowest bid, the optimal bid *b , according to Friedman’s model is:

* arg max ( ) ( )b b c p b

b B

∈ −
∈

Friedman’s approach did not seek equilibrium among rational bidders. It 

presented the best response of a bidder that model competition as a probability 

distribution. 

Extensive literature in OR and technical journals took Friedman’s approach 

and tailored it to practical bidding applications in the construction, timber, and 

petroleum industries. Stark and Rothkopf’s (1979) comprehensive bibliographical 

review contains hundreds of references to the aforementioned literature. Friedman’s 

approach is appealing for a boundedly rational bidder seeking a good bidding strategy 

rather than a presumed equilibrium. 

The description, evolution, and usage of a real-life bidding system is 

presented by Keefer et al. (1991). The purpose of the bidding system was to provide 

decision support and insight to Gulf Oil Corporation managers. The bidding system 

combined techniques from decision analysis, statistics, and nonlinear optimization. 

The system was used in the early 1980’s to bid for U.S. offshore oil and gas leases, an 

auction environment characterized by considerable uncertainty from multiple sources

and many interrelated decisions. The system was used as a decision tool in Gulf’s 

bids that totaled over $1.5 billion. Equilibrium was not analyzed nor considered in the 

model; rather the emphasis was on estimating the probability of winning (based on 
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past data), allocating the limited budget to the most promising oil exploration blocks, 

and on forecasting and performance models for oil production and future oil prices. 

The emergence of electronic commerce and auction marketplaces in the 

mid/late 1990’s stimulated boundedly rational auction research. Larson and Sandholm 

(2002) study optimal strategies for computationally bounded agents. The agents face

uncertainty in their valuations; however the accuracy of the valuations can be 

improved by spending more computational resources. Agents are free to compute on 

any valuation problem including their opponents’. Larson and Sandholm distinguish 

two types of computation (deliberation): (a) strong, if an agent uses part of its 

deliberation resources to compute another agent’s valuation problems, and (b) weak, 

if an agent does not use part of its deliberation resources to compute on another 

agent’s valuation problems. If the computational power is bounded and free, agents 

only estimate their own valuation in second price auctions (weak). However, this does 

not hold in first price auctions where agents have an incentive to use resources to 

estimate competitors’ valuations (strong); therefore not obtaining their own best 

achievable valuation. These results cannot be generalized to multiple objects (Larson, 

2002) or when computations are costly (Sandholm, 2000).

Part of the computer science community retook the OR auction tradition but 

incorporated a multi-agent system perspective, agent learning, and simulation flavor 

to it.  Richter (1998) uses genetic algorithms to improve bidding strategies in an 

environment where electric companies buy and sell power via double auctions. 

Boutilier et al. (1999) provides a Markov Decision Process (MDP) formulation of the 

bidder’s problem in sequential auction of objects with complementarities as an 



145

alternative to combinatorial auctions. The MDP model does not allow for strategic 

interaction, the bidding agent takes the expected prices as given and does not compute 

the impact of his bids on his competitors’ behavior. Agents update its bidding policies 

based on past price observations. Kephart et al. (2000) use simulation to study search 

and pricing by computational agents (shop-bots). Walsh et al. (2002) propose a model 

for  analyzing complex games with repeated interactions, for which a full game-

theoretic analysis is intractable, using simulation and evolutionary selection of 

strategies, and finally perturbation analysis to determine the most plausible equilibria. 

 Zhu and Wurman (2002) simulates the market interaction of boundedly

rational bidders in a first price sequential auction, with several identical items for 

auction, where bidders are interested in just one item and have independent private 

values. They assume that players use fictitious play to model opponents’ bidding 

behavior. It is assumed that after each auction, a bidder gets to see all competitors’ 

bids. Tesauro and Bredin (2002) develop a dynamic programming formulation that 

can be used to formulate agent bidding strategies in double auctions with sequential 

bidding, continuous clearing, and buyer/seller agents. States are represented by an 

agent’s holding, and transition probabilities are estimated from the market event 

history. The model uses a belief function (about price formation), combined with a 

forecast of how it changes over time, as an approximate state transition model in the 

DP formulation. With a similar approach, Hattori et al. (2001), develop a DP 

formulation for agents with quasi-linear utilities and budget constraints in a first price 

auction.
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A common theme in the reviewed papers is a predominantly non-strategic 

approach to auctions and market interactions, following Friedman’s model. Despite 

the non-strategic approach, simplifications are still necessary in order to obtain 

tractable problems (for example, sufficiently compact state-spaces for DP 

formulations); the auction problems have to be solvable. In repeated auctions learning 

is an issue that it is mostly ignored, except for the simple updates of the state 

transition function as the game is played or auctions are resolved.

5.2.2. Economics -Learning and Experimental Game Theory

The concept of bounded rationality economic agents was first fully articulated 

by Simon (1955 and 1956). There are two main sources of objections to the 

traditional rational model of the economic man. First, many researchers are uneasy 

about the fundamental assumptions of rationality and game theory that are 

inconsistent with evidence about human decision-making. Secondly, there is 

widespread documentation of anomalies observed in the outcome of laboratory 

experiments (i.e. rationality does a poor job explaining the outcomes). A survey of 

those objections can be found in Camerer (1995) and Kagel and Roth (1995) 

respectively. 

These incompatibilities between theory and experiments led empirical 

economics researchers (econometricians) to search for models that better fit their 

observations. A family of models that has close ties to discrete choice modes of 

behavior arises when the perfect rationality assumption of game theory is relaxed 
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(introducing some noise into rational behavior, mostly via a logit probabilistic choice 

functions). 

In a seminal work, McKelvey and Palfrey (1995) propose a model of 

stochastic choice in finite games. McKelvey and Palfrey interpret the agent or player 

underlying decision processes and knowledge of the game as rational with the 

addition of noise (an error term). A logit formulation can be used. One of the most 

appealing features of this formulation is that it is parameterized in a way that 

is intuitive for interpretation from a bounded rationality perspective. As one 

parameter varies from zero to infinity, the choice behavior of the agent varies from 

being random to rational. Further, different players can exhibit different degrees of 

rationality. The logit equilibrium is a generalization of the Nash equilibrium, which 

incorporates decision error and links the likelihood of a deviation from a best 

response to the cost of such a deviation. 

Chen et al. (1998) add conditions that in repeated games lead to a convergence 

to equilibrium. They explicitly introduce learning in their model structure, assuming a 

population of players who repeatedly play the same game, and model the dynamic 

learning through fictitious play (Brown, 1951). Under fictitious play, players’ beliefs 

concerning the other players’ choice probabilities are given by the frequency of 

observed past behavior. Anderson et al. (1999), extend the use of the logit equilibrium 

to a continuous set of actions. Rather than limiting the game to a discrete set of 

actions, the action set is an interval of the real line. This type of game is easily found 

in economic situations anytime prices or bids are assumed to be continuous. Since 
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there is a continuous set of possible actions (decisions) the equilibria are 

characterized by a probability density function over the space of actions. 

Other learning models are based on reinforcement. Archetypal examples of 

this type of models include Arthur (1993) and Erev and Roth (1996) models of 

learning. The agent keeps track of a cumulative utility index and chooses an action 

with a proportional probability, where ratios of choice probabilities for two decisions 

depend on ratios of the cumulated payoffs for those decisions. 

Fictitious play (Brown, 1951), has already been mentioned. With fictitious 

play, the agent chooses at each period the best response to his present conjecture on 

others’ strategies. But he acts more or less myopically, since he re-optimizes at each 

step, not only on a limited horizon, but without considering that his beliefs or 

conjunctures will change. The standard fictitious play assumes that the probability of 

an opponent’s next action equals its frequency in the past. A weighted sum giving 

more importance to the last actions can also be employed. 

Fudenberg and Levine (1998) thoroughly detail the convergence properties of 

fictitious play. An application of this type of learning to auction is done by Hon-Snir 

and Monderer (1998). They study repeated first price auctions, where bidders have a 

discrete distribution of private values. Bidders are boundedly rational, they use 

learning with bounded recall and fictitious play, and each player's private value is 

determined before the first auction and does not vary with time. Hon-Snir and 

Monderer find that after a sufficient amount of time the players play the one shot 

auction equilibrium in which players' types are common knowledge, i.e. the player 

with the highest valuation wins the object and pays the second-highest valuation. In 
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the long run a repeated first price auction yields the outcome of a one-shot second-

price auction. The results are sensitive to the tie-breaking rule used, a caveat of 

discrete models. 

McCabe et al. (1999) argue for the simultaneous use of game theory and 

laboratory experimentation to guide auction design. Olson et al. (1999) document a 

series of controlled experiments in the trading of wholesale electricity using cash 

motivated students. The experiments aim to compare the performance of two systems: 

a day-ahead sealed bid trading and a simultaneous continuous double auction (up to 

the hour of delivery). 

5.2.3. Economics - Agent  based Computational Economics

Agent based Computational Economics (ACE), studies the economics of the 

self-organization of boundedly rational agents (Tesfatsion, 2001). The approach relies 

heavily on simulating the interaction of heterogeneous agents among each other and 

with the environment on the basis of their behavior and experience. Agents 

continually adapt and experiment new rules of behavior. Usually, once initial 

conditions are set, all subsequent events can be initiated and driven by agent-agent 

and agent-environment interactions without further outside intervention.

Work done in ACE that closely relates to this research includes the simulation 

of auctions in the electric power marketplace (Bower, 2001). Andreoni and Miller 

(1995) use bidders represented by genetic algorithms in first and second price 

auctions. The authors suggest that such a simple adaptive learning process provides a 

lower bound on the potential impact of learning in auction systems. Among their 
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main findings, Andreoni and Miller report that auctions are very problematical 

environment for genetic based learning. Independent values and first price auctions 

tend to make learning even harder. 

The approach of ACE is somewhat similar to the one used later in this 

research. After defining and analyzing different types of carrier bounded rationality, 

simulation is used to study the interaction of carriers among each other and with the 

environment on the basis of their behavior and experience. 

5.2.4. Automata Models and Machine Learning 

Another more theoretical path of research about boundedly rational agents is 

found in the area of automata and machine learning models. From the strategic point 

of view these models tend to be more sophisticated than the previously mentioned.

These machines believe that other machines are also learning or speculating and may 

try to anticipate how these other machines are going to change before deciding what 

to do. 

Binmore (1987, 1988) proposes the replacement of perfectly rational players 

by machines. These machines can be represented in games as Turing machines. Each 

machine has in itself some approximate idea of what the other players (machines) 

may look like. When these machines play a repeated game they are limited to using 

mixtures of pure strategies, each of which can be programmed on a finite automaton 

with an exogenously fixed number of states.

Stahl and Wilson’s “players’ models of other players” (1995) where players 

truncate an internal simulation of the model of the other players is an example of this 
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type of cognitive process. Stahl uses this model to explain how people play games (in 

controlled experiments). This model admits players with different types or levels of 

rationality, from a zero level (no modeling of the opponents) to the n-level player 

(can compute the expectations and play of the competitors up to n-1 levels of best or 

optimal responses).  

When the game players’ reasoning becomes limited to n-common knowledge 

(crossed probabilistic expectations truncated at finite level n), and all the agents are of 

this type they give origin to a “rationalizable equilibrium,” a weaker equilibrium

notion than Nash Equilibrium (Walliser, 1998). In this equilibrium, each player 

chooses a best response to their competitors’ expected strategies estimated in a 

recursive loop up to some common level.

Modeling players’ model of other players in the machine learning context is 

done by Vidal and Durfee (1995). Wellman and Hu (1998) study the equilibrium of 

multiagent learning, when all agents (machines) are simultaneously optimizing and 

learning in a double auction. Vidal and Durfee (2003) try to predict the expected 

behavior of agents that learn about other agents; however the task is highly complex 

unless extreme simplifying assumptions are taken.

5.2.5. Bounded Rationality in Freight Transportation

Unfortunately, empirical or theoretical work dealing with carriers’ cognitive 

process or bounded rationality is practically nonexistent. Even in the travel behavior 

research community the behavioral dimensions of freight demand has received 

limited attention (Mahmassani, 2001). Part of the vehicle routing literature deals with 
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the implementation of online computerized routing and scheduling optimizers, for 

example Bell et al. (1983), Powell et al. (1988). More relevant work from the 

boundedly rational point of view is presented by Gelfand et al. (1998) and Powell et 

al. (2002). 

Gelfand et al. (1998) describe pattern learning in a motor carrier scheduling 

system. The scheduling system is based on a dynamic programming formulation; 

however the formulation does not include all possible states of the system. Human 

dispatchers experience and patter recognition abilities are used to improve the 

performance of dynamic programming based scheduling system. Basically, human 

dispatchers can recognize states that computational decision support system can’t. It 

is the first reported contribution of systematic human-computer system learning in 

freight transportation scheduling.  

Powell el al. (2002) discusses the challenges faced over a two years 

implementation of a dispatching decision support system. From a boundedly rational

perspective, their work is noteworthy in that it compares the decision making process 

followed by humans and mathematical programs. Powell el al pointed out that a 

major difficulty for implementing effective computerized dispatching systems is the 

information transmission process among different agents: drivers, dispatchers, and the 

decision support system.

Summarizing, this section has presented a survey of relevant literature in 

bounded rationality with applications to auctions, bidding, and freight transportation. 

Given the breadth of topics covered, the survey does not intend to be exhaustive; 
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rather it aims at highlighting important references. Different research approaches are 

pointed out to better frame this research in the existing body of research. 

5.3. Modeling Bounded Rationality

The literature review revealed the variety of approaches that could be used to 

model boundedly rational bidders. Bounded rationality is borne out of simplifying a 

(complex) problem or the cognitive/material limitations of the decision maker (or 

decision support system). Therefore, bounded rationality is always associated with the 

notion of deficiency or insufficiency of a positive quality (of a rational player). 

Though bounded rationality as a research topic is not new, it was first proposed by 

Simon (1955), many modeling issues surrounding boundedly rational decision 

making have not yet been fully addressed. 

Bounded rationality and learning in games are currently very active areas of 

research; however general and comprehensive models that integrate how agents (or 

humans) acquire, process, evaluate, search for information, and make decisions are 

still mostly open. As expressed by highly respected game theorist Robert Aumman, 

“there is no unified theory of bounded rationality, and probably never will be.” 

(Aumman, 1997, page 4). 

Rationality assumptions are very convenient from a modeling point of view. 

The self-referential nature of rationality (coupled with common knowledge in games) 

imposes astringent limitations on how a rational agent (player in a game) foresees his 

competitors’ behavior and how the competitors foresee other players’ behavior. 

Bounded rationality come with an embarrassment of riches in terms of the number of 
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possible deviations from a fully “rational” model. When boundedly rational behavior 

appears, it may take on many different forms. Boundedly rational decision makers do 

not necessarily choose equally, even when having the same knowledge or 

information. Furthermore, there may be many “plausible” boundedly rational models 

that can explain a given social or economic phenomenon. Correspondingly, the many 

possible ways a boundedly rational bidder can model his competition, and vice versa, 

adds a class of uncertainty not found were players are perfectly rational. 

Determining the bounded rationality of a carrier is crucial since it is 

equivalent to determining how the carrier bids (i.e. his bidding function) in a TLPM. 

Similarly, determining that all carriers are rational is equivalent to determining how 

the carriers bid (i.e. their bidding function) in a SIPV setting. A bidding function, as 

understood in this research, is a process, whose inputs are a carrier’s private 

information and his knowledge about the auction and competitors, and whose output 

is a bid. 

Given the plethora of games and decision problems, boundedly rational

behavior is hard to define, classify, and model in general terms. When the restrictions 

of rationality are lifted, any general assumption about the behavior of the bidders that 

is not properly justified, introduces a strong sense of arbitrariness. In order to avoid 

this kind of arbitrariness, the discussion of bounded rationality is limited to the TLPM 

context. Furthermore, departures from the rationality model are analyzed and 

connected to carriers’ cognitive and problem solving processes.
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5.4. Sources of Bounded Rationality in a TLPM

Bounded rationality can stem from different cognitive and 

computational/physical limitations, in the TLPM context, the following classification 

of sources is proposed:

o Bounded Recall and Memory: a carrier has limited memory (physical 

capacity) to:

o  record and keep past data/information

o  simulate and record data of all future possible paths in the decision 

tree

o Processing Speed: time is valuable in a dynamic setting. Most practical 

problems have a limited response time that may limit the solution quality or 

decrease the effectiveness of a delayed response. 

o Data Acquisition and Transmission: data acquisition and processing is usually 

costly. Furthermore, the transmission of data among agents can be noisy. In a 

world with bounded resources (budget/memory/attention), deciding how, how 

much, and what type of information should be acquired, kept, transmitted, or 

analyzed can lead to complex decision problems. 

o Knowledge Acquisition: in a dynamic strategic situation, as data is being 

revealed or obtained, carriers have the potential to acquire knowledge (truths 

about competitors or the environment) from logical and sound inferences. In 

particular, the decision maker may have limited ability to discover 
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competitors’ behavior, which may involve modeling and solving complex 

logical and econometrics problems.

o Problem Solving: as a carrier participates in a TLPM market, it is required to 

make decisions (bidding or fleet management decisions).  These decisions 

may lead the carrier to formulate and solve complex optimization problems. In 

particular, the decision maker may have limited ability to predict or model the 

impact of his own actions on future fleet operational costs or on his 

competitors’ behavior.

Although the five aspects of bounded rationality are somewhat interrelated, 

this research focuses on the knowledge acquisition and problem solving aspects. 

Memory and processing speed are physical limitations. It is assumed carriers have 

enough material resources and response time/speed to implement bidding and fleet 

management strategies with different degrees of sophistication. Carriers have 

limitations to formulate and elucidate knowledge acquisition problems. Similarly, 

carriers have limitations to formulate and solve complex optimization problems. The 

data available to carriers is only limited to data publicly and freely disclosed after 

each auction, which renders the data acquisition problem trivial.  No transmission 

losses or alterations are considered. 

The focus of this research is on the knowledge acquisition and problem 

solving aspects, as they capture how carriers can frame and solve TLPM problems. 

Therefore, the emphasis is on the more “mental” processes that determine behavior 
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rather than on the “physical” limitations. Knowledge acquisition and problem solving 

in a TLPM are analyzed in the next two sections. 

5.5. Knowledge Acquisition in a TLPM

In a TLPM, each carrier is aware that his actions have significant impact upon 

his rival’s profits, and vice-versa. In the perfect rational model, common knowledge 

and logical inferences allow the estimation of the impact of a carrier’s actions on 

competitors’ profits and vice-versa. It is implicit that a rational bidder bids as a 

rational bidder.  In a boundedly rational model, a carrier faces two basic types of 

uncertainties regarding the competition: (a) an uncertainty relative to the private 

information of his opponents, and (b) a strategic uncertainty relative to bounded 

rationality type of the others players. 

The first type of uncertainty, using the notation developed in chapter 3, is 

about { ,a ,c }i i i i
j jzθ − − − −=  for a carrier i∈ℑ  at time jt , the private information 

regarding competitors’ fleet status, assignment, and cost functions. This type of 

uncertainty is also present in most game theoretic auction models (games of 

incomplete information). The second type of uncertainty is about the bidding 

strategies that the competitors use, 1 1 1b {b ,..., b , b ,..., b }i i i n− − += the set of bidding 

functions of all carriers but carrier i . It is implicit that a boundedly rational bidder 

bids accordingly, i.e. as a boundedly rational bidder. However, it is not evident for the 

competition to determine what “type” of bounded rationality a carrier has.  This type 

of uncertainty is not present in game theoretic auction models. 
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Depending on a carrier’s ability to elucidate uncertainties (a) and (b), two 

extreme cases may take place: 

1. No knowledge acquisition. The carrier cannot form a useful model of 

competitors’ behavior that links their private information and their 

bids. In this situation, the “best” a carrier can do is to observe market 

prices and estimate them as the result of a random process. In the 

notation introduced in chapter 4, this is similar to assuming that 

competitors are playing b ( ) f ( )i ξ ξ− =  or simply b ( )i ξ ξ− =  , 

where ξ  is a random process that is not linked in any way to 

carrier 'i s  bidding, capacity/deployment, and history of play or to the 

competitors private information { ,a ,c }i i i i
j jzθ − − − −= . 

2. Full knowledge acquisition. The carrier knows { ,a ,c }i i i i
j jzθ − − − −= and 

also 1 1 1b {b ,..., b , b ,..., b }i i i n− − += , therefore carrier i  is able to precisely 

foresee what the competition is going to bid for shipment js .   

However, carrier i  still has uncertainties about the future bids, simply 

because carrier i  does not know the future realizations of the demand. 

Nevertheless, carrier i  can estimate future prices not just as a 

stationary random process but as a function of shipment arrival 

distribution, shipment characteristics distribution, competitors’ 

behavior, and competitors’ private information. This 

is f ( , , b )i i
jξ θ − −= Ω . 
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In game theoretic terms the former case is not possible since there is no game 

if players cannot speculate about the competitors’ actions. The latter case corresponds 

to a game of perfect and complete information if all the players are rational and the 

private information is common knowledge. Knowledge states in between the two 

extreme cases correspond to games of imperfect information, if all the players are 

rational and there is uncertainty about the players’ private information (as in chapter 

3, the uncertainty can be expressed as 1p( | , )i i
j j jhθ θ−

− ).

The two extreme cases have already been analyzed in chapter 4. The no-

knowledge case corresponds to the general competitive situation described under 

auction analysis while the asymmetric full-knowledge case (one carrier has complete 

knowledge and the others have no-knowledge) corresponds to an acceptance/rejection 

problem. Therefore, the value of full knowledge acquisition in a TLPM or any other 

competitive situation, for a given player can be defined as the difference in profits 

between the full-knowledge and no-knowledge cases. A definition that is fairly 

similar (at least in spirit) to the definition used in stochastic programming for the 

value of the stochastic solution. 

Acquiring knowledge about the competitors’ private information and bounded 

rationality type poses a potentially highly complicated econometric/logical problem. 

A carrier’s behavior is likely to be affected by his own history and how the carrier 

perceives and models the strategic situation. From the public information (revealed 

after each auction) and its own private information a carrier needs to build a model of 

the private information and bounded rationality type of his competitors.  
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Even in simple auctions, the econometric models can quickly become 

extremely complex and data are usually not rich enough to successfully estimate 

those structurally complex models (Laffont, 1997). Furthermore, the complexity of 

the underlying DVRP adds hurdles to the problem. However, the most challenging 

obstacle may come from the competitors, which may be “sophisticated” enough to 

realize that they are bidding against other bidders who are also learning and may

adjust their behavior accordingly, in order to obstruct the process of knowledge 

acquisition. This type of sophistication is particularly important when the fact that the 

same carriers interact repeatedly is common knowledge. 

In most game theoretic models, a simple private value probability distribution, 

symmetry, rationality, and common knowledge assumptions permit a closed 

analytical solution. In equilibrium bidders know the competitors’ bidding function, 

however, they do not know the realization of the competitors’ private value, therefore 

they do not know the competitors’ actual bid. Conversely, in a TLPM, private values 

are not random but correlated, the status of a carrier at time jt  provide useful 

information to estimate the status of the carrier at time 1jt + .  A bidder may potentially 

obtain information about competitors’ private values and bidding functions if the 

bidder invests resources to infer them. Market settings, such as auction data disclosed 

and number of competitors, strongly affect the difficulty of the inference process. 

Summarizing, repeated interaction can lead to learning and knowledge 

acquisition. This research distinguishes among the two. Learning takes place in the 

no-knowledge case; the carrier does not get to know the competitors’ behavioral 

processes just the price function as a random process. Learning is superficial, it is 
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merely phenomenological. In the full knowledge case, the carrier acquires knowledge 

about the competitors’ behavioral processes. Knowledge acquisition is deeper; it is 

causal. 

5.6. Problem Solving in a TLPM

The previous section focused on “what can be learnt or known” about the 

competition. This section specifically contemplates “how carriers come up” with a 

bid or decision given what has been learnt or what knowledge has been acquired 

about a problem. Usually, models in which decision makers are assumed rational do 

not explain the procedures by which decisions are taken, rational procedures are 

implicitly embedded in the answer or approach. Furthermore, economic models pay 

no or little attention to how hard it is to make decisions.  Conversely, boundedly 

rational decision maker models detail the procedural aspects of decision making. 

Those detail procedures are the essence of a boundedly rational decision making 

model. The degree of intricacy of the decision making procedure is used in the last 

part of this chapter to classify boundedly rational behaviors.

As a carrier participates in a TLPM market, it is required to make decisions, to 

choose among alternative future paths. Each decision poses a problem that the carrier 

has to solve (not necessarily optimally). The rest of this section analyzes, in this 

order, the type of decision a carrier faces in a TLPM and how bounded rationality can 

appear in the steps of a decision making process.
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5.6.1. Carriers Decisions in a TLPM

From the carriers’ point of view, the choice problems that take place in a 

TLPM are either bidding or operational (fleet management) decisions. Bidding 

decisions may carry a strategic value since they directly affect competitors’ profits. 

Bidding decisions are also the result of a boundedly rational decision process, a 

carrier’s choice and therefore can reveal or transmit information about a carrier’s 

decision making process or intentions. 

Operational (fleet management) decisions mostly affect a carriers’ own fleet 

status (private information). Therefore, operational decisions are considered non-

strategic and take place as new information arrives: auctions are won or shipments are 

served. This type of decision, for example, includes the estimation of a shipment 

value or service cost, the rerouting of the fleet after a successful bid, the reaction to 

unexpected increase in travel times, etc.

In this research, a strategic decision is defined as the investment of resources, 

for the purpose of learning about or influencing competitors. The ultimate goal of a 

strategic decision is to improve future profits but somehow linked to future the 

behavior or reaction of the competitors. In an environment where bidders know that 

competitors are also learning about the marketplace environment, strategic decisions 

can be sub-classified as identifying or manipulative. 

Identifying decisions are characterized by attempts to identify or discover a 

competitor’s behavior – the second type of uncertainty dealt with in the knowledge 

acquisition section. Those labeled manipulative are decisions that aim to control 
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competitors’ future behavior – i.e. use the behavioral knowledge acquired to improve 

future profits. 

Whether a carrier can bid strategically or not it is an important characteristic 

that is used to classify bounded rationality behavior in section 7. The analysis of the 

decision making process from a bounded rationality perspective will be discussed 

next. 

5.6.2. Bounded Rationality and Decision Making 

Given a decision maker and a decision problem, a rational decision maker, as 

assumed in economic theory, chooses an alternative after inquiring (Rubinstein, 1997) 

what can be done, how to evaluate, and what to choose given alternatives and values. 

This procedural description is expanded in order to fully dissect the relevant steps of 

decision making in a TLPM. In this research a rational decision maker chooses an 

alternative after inquiring and answering correctly: 

0. What is the decision/problem?

1. What are the feasible alternatives? 

2. What is desirable in an alternative? 

3. How desirable is each feasible alternative? 

4. What is the best alternative given the answers to questions 0,1, 2, and 

3? 
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Boundedly rational problem-solving arises if any of the previous questions are 

not answered completely and flawlessly given the available data and knowledge 

about the problem. Defining the problem or decision correctly is essential, hence 

numbered as zero – needless to say that generally an optimal answer for the wrong

problem is not useful unless it is used to slyly misguide competitors. Problem 

definitions can be quite challenging in real life decision making (as well as in 

research projects). 

The first question is associated to a search problem. Applying the concept to 

the DVR technologies analyzed in chapter 4, it is clear that the naïve technology is 

boundedly rational since the search for alternatives is incomplete. Even the MIP 

based SFO is boundedly rational because it does not include repositioning of idle 

vehicles. In more general terms, the search problem may involve what and where to 

search under time or budget constraints.

The second question is associated to defining the objective function. In the 

case of the DVR technologies analyzed in chapter 4, the alternatives are simply 

evaluated as a function of their profitability. If there were more than one objective 

(i.e. profits and market share), the comparison of alternatives is not trivial as the 

decision maker has to define a preference relation function for each possible pair (i.e. 

{profit, market share}).  

The third question is associated to the evaluation of each objective. In the case 

of the DVR technologies analyzed in chapter 4, from a fleet management perspective, 

the alternatives selected by the technologies SFO and 1FOOC are the same (the best 

static assignment). However, the difference among the two technologies resides in the 
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evaluation of the scheduling change cost or value. In the DVR realm, a technology 

like 1FOOC can be improved in two ways: (a) evaluating more alternatives – the 

problem is how to select good candidates, and (b) improving the evaluation itself, for 

example increasing the foresight to two, three, or more steps in the future.

The fourth question is associated with putting it all together, in the vein of a 

mathematical program or algorithm. The same type of analysis can be applied to 

bidding decisions, which is done in the next section.  

5.7. Bidding Problem Complexity 

There are several factors that contribute to the complexity of biding in a TLPM. 

These factors are: competitors bounded rationality, knowledge about the competitors, 

look-ahead depth, and the type of auction utilized. This section analyzes the first three 

factors while the next section analyzes the latter.  

It was mentioned in the literature review that sophisticated boundedly rational

players have a “model” of the other players. In the work of Stahl and Wilson (1995) 

and Vidal and Durfee (1995), players model other players’ cognitive process and 

decision rules up to a finite number of steps of iterated thinking. The number of 

iterations that a player can perform is a measure of the sophistication of a player. A 

zero level player does not model his opponents, it simply ignores the fact that other 

agents exit.  Reinforcement learning is an example of this type of agent 

sophistication. A one level agent models only the frequency or another statistic that 

represents other players’ actions. Fictitious play is an example of this type of agent 

sophistication. A two level agent can simulate the other agents’ internal reasoning 
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process (i.e. a model of level zero or level one agents) and take an action by taking 

into account how the other players (of level zero or one) are going to play. A level 

three agent can build models, simulate them, and act in response to the behavior of 

players up to level two. Recursively, a level four agent can model the actions of level 

three agents and so on. Perfectly rational agents can follow the recursion to an infinite 

level. Then, if the level of rationality of a player is denoted by iL , then that player can 

model the most sophisticated of his competitors up to a level 1i iL L− = − . 

Section 5.6 dealt with the level of knowledge about the competition. A player 

with no-knowledge about the competition can only implement a level zero or level 

one type of player since it cannot link his actions (bids) to the consequences that his 

actions have.  A player with full knowledge could possibly foresee (if it could only 

solve the corresponding problems) the behavior of any player type. However, the 

complexity increases as the level type to be implemented increases, i.e. as the 

competitors bounded rationality sophistication increases. 

The carrier with full-knowledge knows { ,a ,c }i i i i
j jzθ − − − −=  about the 

competition and also 1 1 1b {b ,..., b , b ,..., b }i i i n− − += . Therefore, carrier i  can compute 

precisely what the competition is going to bid for shipment js .  However, carrier i

still has uncertainties about the future bids, simply because carrier i  does not know 

the future realizations of the demand. Nevertheless, carrier i  can estimate future 

prices, not just as a random process but as a function of shipment arrival and 

characteristics distribution, competitors’ behavior and competitors’ private 

information. 
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When the knowledge is imperfect, complexity further increases since there is 

a probability distribution over the competitors’ private information space. 

Furthermore, the probability distribution is a function of the history of play and the 

competitors’ fleet management strategies. In mathematical notation, the probability 

distribution of competitors’ future private information is p( | )i
N Nhθ − .  

The third factor is the look-ahead depth. In a sequential auction setting like a 

TLPM, bids affect future auctions profits. The look-ahead depth is the number of 

future auctions that are taken into account when estimating how a bid may affect 

future auctions profits. A zero step look-ahead (or myopic) analysis does not consider 

future auction profits, just the profit for the current auction. A one-step look-ahead 

analysis considers one future auction, current plus the following auction profits. 

Similarly, a m -step look-ahead analysis considers m  future auctions, current plus the 

following m  auction profits. 

When the analysis is myopic, shipment js  is known and the uncertainties are 

reduced to a minimum. Projecting one step into the future, the arrival time ( 1jt + ) and 

characteristics of shipment 1js +  are uncertain. Furthermore, if the link between 

bidding and future prices 1jξ +  is incorporated, the optimal bid for shipment js  takes 

into account its impact on competitors’ bids (prices) in the next auction. Then, for 

shipment 1js +  the price function at time 1jt +  is a function of the previous bids and the 

unknown previous arrival *
1( , )i

j j js bξ + . 

In the one-step problem, the arrival and characteristics of 1js +  are uncertain, 

but the future history 1jh +  is a function of the already known js . Projecting two steps 
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into the future, the estimation of the future price function 2jξ +  becomes more 

complex. The price function 2jξ +  for shipment 2js +  is a function of the yet 

unknown 1js +  and the two previous bids * *
1 1{ , | )i i

j j jb b h+ + . Moving one extra step into 

the future increases the problem complexity significantly. For shipment 2js +  the price 

function at time 2jt +  is a function of the previous bids and the unknown previous 

arrival * *
2 1 1 1( , ( , ), , | )i i

j j j j j j js s t b b hξ + + + +Ω .  Calculation of future price functions is 

increasingly difficult as uncertainties and dependencies on earlier (but not yet 

realized) bids and shipments accumulate. When the look ahead is up to shipment Ns , 

the number of decision variables * * *{ ,..., | }i i i
j N NB b b h=  to be estimated is

0

N j
k

k

p
−

=
∑ . 

When the number of players (bidders) is n , after each auction there are n

possible outcomes and future histories. If backward induction is used, for each 

possible history it is necessary to estimate an optimal bid, the total number of 

decision variables increases exponentially with the number of future look-ahead 

steps. Let denote by 1 1{ , ( , )..., ( , )}j j j N Ns s t s t+ −Σ = Ω Ω  the set of shipments to be 

analyzed. Then, the future price function when earlier bids affect future prices and the 

carrier has imperfect information is a function of * *
1f( , ..., , , p( | ))i i i

N j N N Nb b hξ θ −
−= Σ . 

Table 2 puts the three factors together.  The table is set up in such a way that 

the complexity of the price function ξ  increases, moving downward or rightward. 

With higher levels of competitors’ bounded rationality, the complexity of the problem 

increases exponentially with the number of iterations and players to be simulated. The 
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symbol 
inL−〈⋅〉 is used to denote the number of iterations as a function of the number of 

players and the highest level of iterations that the competition can sustain. Table 2, is 

very general and accommodates all bidding and pricing problems seen so far.  

Auction analysis of chapter 4 is a special case of the no-knowledge case (with second 

price auctions). The acceptance rejection problems of chapter 4 are special cases of 

the full-knowledge case. 

The equilibrium formulation of chapter 3, is a special case of the imperfect 

knowledge case when all players are rational and iL− →∞ . In the game theoretic 

case, it is common knowledge that all the bidders are simultaneously foreseeing and 

simulating each others bids and decisions at infinitum.  Each cell of Table 2 is a 

different decision theory problem that can potentially be expressed as a mathematical 

program or algorithm. It was mentioned that the complexity increases moving 

downward or rightward.

The problem solving capabilities of the carrier determines the type of problem 

the carrier solves. For example, a carrier may have imperfect information about the 

competitors; however, problem solving limitation may force him to solve a myopic 

problem assuming no-knowledge about the competition. When cost or time 

limitations are added to the problems, carriers can choose to ignore part of his 

knowledge in order to get a reasonable answer in a reasonable time, in the spirit of the 

“satisfying” rule, originally proposed by Simon (1982). According to Simon, 

economic agents do not always optimize fully, they optimize up to a satisfying level. 

Level that depends on personal characteristics and circumstances. 
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Look-Ahead Depth

Know-
ledge 
Level

Own
Type

iL
Type

iL−

Myopic

{ }jsΣ =
* *{ }i i

jB b=

1-step

1{ , ( , )}j j js s t+Σ = Ω
* * *

1 1{ , | }i i i
j j jB b b h+ +=

Multi-step

1{ ,..., ( , )}j N Ns s t −Σ = Ω
* * *{ ,..., | }i i i

j N NB b b h=

0iL =
-

Reinforcemen
t Learning

- -

NO
1iL = -

Fictitious  
Play 

Stationary ξ
Fictitious Play 
Stationary ξ

Fictitious Play 
Stationary ξ

1iL = -
Acceptance 
Rejection

Acceptance 
Rejection 

Stationary ξ

Acceptance      
Rejection        

Stationary ξ

2iL ≥ 1iL− ≤ Acceptance 
Rejection

Optimal Pricing      
Non-stationary 

*
1 f( , )i

j jbξ + = Σ

Optimal Pricing      
Non-stationary 

* *
1f( , ..., , )i i

N j Nb bξ −= Σ
FULL

iL m=
2 i

i

L

L m

−

−
≤

<

Iterated 
Acceptance 
Rejection

Iterated     
Optimal Pricing       
Non-stationary 

*
1 f( , )

inLi
j jbξ −

+ = Σ

Iterated              
Optimal Pricing
Non-stationary 

* *
1,..., ,

,
i

i i
N j N

nL

b bξ
−
−=

Σ

1iL = 1iL− ≤
Fictitious  

Play 
f(p( | ))i

j j jhξ θ −=

Acceptance 
Rejection 
Stationary

1j jξ ξ+ =

Acceptance      
Rejection        
Stationary 

1...N j jξ ξ ξ+= = =

2iL ≥ 1iL− ≤
Fictitious  

Play 
f(p( | ))i

j j jhξ θ −=

Optimal Pricing      
Non-stationary 

*
1

1 1

f( , ,

p( | )

i
j j

i
j j

b

h

ξ
θ

+

−
+ +

= Σ

Optimal Pricing      
Non-stationary 

* *
1f( ,..., , ,

p( | ))

i i
N j N

i
N N

b b

h

ξ
θ

−
−

= ΣIMPER
-
FECT

iL m=
2 i

i

L

L m

−

−
≤

<

Iterated         
Fictitious Play 

f(p( | ))
i

j

nLi
j jh

ξ
θ −−

=

Iterated     
Optimal Pricing      
Non-stationary 

*
1

1 1

f( , ,

p( | )
i

i
j j

nLi
j j

b

h

ξ
θ −

+

−
+ +

= Σ

Iterated              
Optimal Pricing      
Non-stationary 

* *
1,..., , ,

p( | )
i

i i
N j N

nLi
N N

b b

h

ξ
θ −

−

−

= Σ

Table 2 Bidding Complexity as a function of price function ( ξ ) complexity



171

Simplifying (downgrading complexity) the problem due to boundedly rational

limitations is always possible. In terms of the problem solving steps of section 5.6 the 

bidding limitations stem mainly from step number three. It can be interpreted that 

each problem type (each cell) of Table 2 is a different way of measuring how 

desirable each possible bid is, for a given DVR technology. Step number one 

(feasible alternatives) is determined partly by the DVR technology. Step number two 

is trivial, since profits are the only objective. 

In section 5 the value of knowledge was defined as the profit difference that a 

carrier can obtain going from the no to full knowledge assumption. That definition 

can be complemented by the value of computational power. The value of 

computational power is the profit difference that a carrier can obtain from solving a 

more complex problem due to the increased performance of his computational 

resources.  

Summarizing, based on their knowledge level and problem solving 

capabilities, agents differ in the type of problem they can solve. Next section analyzes 

the complexity of first and second price auctions. 

5.8. Auction Mechanisms and Complexity

This section compares the complexity of first and second price auctions for 

boundedly rational agents in TLPM bidding problems. Chapter 4 developed the 

optimal bidding formulae for second price auctions and stationary price function.  

This section develops a similar bidding function for first price auctions, compares the 
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complexity of both types of auctions, and finally points out problems where both 

auctions have similar complexity. 

In a sequential first price auction, the best bid for serving shipment js  for 

carrier i  is equal to *i
jb , where:

1,.., 1,..,

*
( )arg max {[ ( ( , )) ( | 1) ( | 0) (1 ) ]}
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In the first price formulation, the profit at each period is the difference 

between the optimal bid and the cost of serving the corresponding shipment. 

Accordingly, either b  or *i
kb  has to be added in equations (5.1), (5.2), (5.3), and (5.4)

–  replacing ξ  by the bid value is the only difference between the first and second 

price auctions formulations. 
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5.8.1. One Step Look-ahead for First Price Auctions

If acquiring shipment js  does affect the marginal cost of serving future loads 

(i.e. 1js + , 2js + , ..., Ns ), this must be taken into account. In a first price auction, it still 

holds that a new load (a) temporarily reduces carriers’ capacity (capacity defined as 

the ability to serve additional shipments at a point in time) and (b) changes the current 

schedule and therefore possibly changes fleet deployment at the time of the next 

shipment auction. The only exception to this takes place in the final auction 

(shipment Ns ) if there are no repositioning costs (for example, trucks do not return to 

a central depot).

The estimation of the best bid for shipment ks  is greatly simplified if it is 

assumed that shipment 1ks + is the last shipment to ever arrive at the marketplace. The 

solution of the one step problem for the second price auction is in chapter 4, section 7. 

This section presents the equivalent analysis for the first price auction. 

Using backward induction, the optimal bid, *
1

i
kb +  for shipment 1ks +  has to be 

estimated first. This bid would be simply:

*
1 ( ) 1 1 1arg max [( ( , | )) ] (5.7)i i i i i

k k k k kb E b c s z I I

b R

ξ+ + + +∈ −

∈
* *

1 1 1 11 0i i i i
k k k kI if b and I if bξ ξ+ + + += > = ≤

Since there are two possible values for i
kI , two optimal bids must be estimated 

for shipment 1ks + . One bid is for the case where the auction for shipment ks  is 

won ( 1)i
kI = ), the other bid is for the case where the auction for shipment ks  is 
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lost ( 0)i
kI = . The last equation (5.7) assumed that the value of the shipment 1ks +  is 

known. The expected profits obtained with the optimal bids are respectively:
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Then, the optimal bid for shipment ks  is the bid that maximizes this function:

1 1

*
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Using backward induction, the values of *
1 | 1i i

k kb I+ = , *
1 | 0i i

k kb I+ = , 

1( | 1)i

k

i
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i
k ks I+π = ,  and *i

kb are to be estimated in that order. In general, 

solving equation (5.8) or even equation (5.5) can lead to a nonlinear optimization 

problem (even assuming that the random process ξ  corresponds to a simple 

distribution such as the uniform distribution). In order to estimate (5.8) three 

optimizations are needed, one for each possible bid. In general, for N k−  steps into 

the future, the number of nonlinear optimizations to be performed is:

1

2 1
N k

l

l

−

=
+∑
In comparison, the second price auction requires solving equation (4.18) 

instead.  
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In order to estimate (4.18) two expected profits have to be estimated. In 

general, for N k−  steps into the future, the number of expected profits to be 

estimated is:
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Paralleling the results obtained in chapter 2 for the SIPV model, the 

complexity of the first price auction is higher than the complexity of the second price 

auction. For each possible decision node, the corresponding first price auction 

optimal bid is the result of an optimization over the expected profits given the level of 

competition ξ . This adds an exponential number of nonlinear optimizations to be 

performed. Even assuming, for the time being, that 1,...,k NS +  is known at time kt , the 

number of additional nonlinear optimizations to be performed in the first price 

auction is of order (2 )N ko − . 

5.8.2. Minimum and Maximum Complexity Gap -- First vs. Second Price 

Auctions

As in the SIPV model, the complexity gap stems from the fact that in second 

price auctions the best bid is just the value/cost of the item regardless of the 

competitors’ bid distribution functions. With complete information (no uncertainty), 



176

one item auction, a first price auction bidder does not need to optimize since he 

knows the highest (lowest) value that the competitors are going to bid. 

In the Table 2, there is no uncertainty about competitors’ bids only in the 

myopic case with full knowledge. In this case, a first price auction bidder does not 

need to optimize since he knows the lowest value that the competitors are going to 

bid. It is simply an acceptance rejection problem. 

Looking ahead into the future introduces uncertainty about the competitors’ 

bids simply because the carrier (even with full-knowledge) cannot control when and 

what shipments are going to arrive next. Bidding using reinforcement learning 

ignores the existence of competitors; in this case also the bidding complexity is 

similar for first and second price auctions. In the problems where the complexity gap 

is zero, the complexity stems only from estimating the cost of serving the shipment, 

i.e. the complexity of the DVR technology.   

The complexity gap between first and second price auctions is expected to 

grow with the number and intricacy of the non-linear optimizations to be performed 

in each decision node. More uncertainty is found with imperfect information and 

multi-steps. Furthermore, the number of optimizations grows exponentially with the 

number of steps, the level of bounded rationality, and the number of players. In Table

2 this corresponds to the problems found at the bottom rightmost cells.

The implications of this complexity analysis are important. With constrained 

and similar computational resources and similar setting, a second price bidder may 

look further into the future since it is solving a simpler problem. Similarly, there are 

cases where full knowledge about the competition is less significant for second price 
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bidder (for example the myopic case). This analysis presents some similarities to the 

findings of Larson and Sandholm (2002), where the second price bidders use more 

resources to estimate their true costs than first price bidders.

5.9. Determinants of Carrier Behavior

Carrier behavior is defined as a sequence of bids taken by a carrier. This 

section looks into the elements or factors that determine carrier behavior. These 

factors are: carrier technology, bounded rationality, information availability, and 

strategic setting.  Though all the factors are somewhat related, the first two are 

prominently intrinsic to the carriers’ own characteristics, while the last two are 

predominantly linked to environmental or somewhat extrinsic factors. Some of the 

factors have been already extensively analyzed, for these factors the discussion is 

limited to highlight the link between them and carrier behavior. 

5.9.1. Carrier Technology

Carrier technology or DVR technologies, as defined and explained in chapter 

4, has an important role in bidding. In the bidding decision making process the carrier 

technology determines the number of feasible schedules to be evaluated. Therefore, 

unsophisticated DVR technologies serious limit the quality and quantity of 

alternatives that could be evaluated. 
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5.9.2. Auction Rules - Information Revelation

It has already been illustrated in the previous section that different auction 

payment rules lead to different bidding functions.  Information revelation rules can 

also play a significant role. 

The information that is revealed (before bidding begins or after each auction) 

can influence how, how much, and how fast carriers can learn or acquire knowledge 

about the strategic setting and competitors’ behaviors. The information that could be 

available after auctions are resolved includes: bids placed, number of carriers 

participating, links (names) between carriers and bids, and payoffs. The information 

that could be available before bidding begins includes: some carriers’ individual 

characteristics (e.g. fleet size or previous performance/profits from public financial 

reports), information about who knows what, information asymmetries, or common 

knowledge about previous items. Private information (as defined in chapter 3) is not 

included since it involves proprietary information that usually is to the best interest of 

the carrier to keep private. 

Two extreme information scenarios can be defined: maximum and minimum. 

A maximum information environment is defined as an environment where all the 

information, mentioned in the previous paragraph, is revealed. On the other hand, an 

environment where no information is revealed is called a minimum information 

environment. 

These two extreme scenarios can approximate two realistic situations: 

maximum information would correspond to a real time internet auction where all 

auction information is equally accessed by participants; minimum information would 
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correspond to a shipper telephoning carriers for a quote. The shipper calls back just 

the selected carrier (if any is selected).

5.9.3. Strategic Setting

In this chapter, it has been tacitly assumed that a carrier operates in an 

environment determined by the other carriers’ behaviors; a carrier uses a model of the 

behavior of the other carriers as an input to his decision problem. Under this 

interpretation a carrier’s bidding function suits a carrier’s best interest, assuming that 

competitors bidding functions pursues competitors’ best interests. This is defined as a 

competitive strategic environment. 

A diametrically different environment is a collusive or collaborative 

environment. One danger of auctions is the possibility that buyers/sellers who 

repeatedly participate in the same auctions could engage in collusive behavior. This 

topic is of primordial importance in the field of Industrial Organization – general 

references to this area include the work of Tirole (1989) and Martin (1993). As a 

general rule, the more information is revealed, the easier collusion becomes. 

Even in minimum information settings collusion is possible. Blume and 

Heidhues (2003) study collusion in repeated first-price auctions under the condition 

of minimal information release by the auctioneer. In each auction a bidder only learns 

whether or not he won the object. Bidders do not observe other bidder’s bid, who 

participates or who wins in cases in which they are not the winner. Even under these 

restrictive assumptions, for large enough discount factors, collusion can nevertheless

be supported in the infinitely repeated game. Nevertheless, it may entail complicated 
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inferences and full monitoring among them. Marshal and Marx (2002) analyze bidder 

collusion in first and second price auctions and SIPV assumptions. 

The two environments, competitive and collusive, are nonetheless connected 

since underlying every negotiation or agreement there is a game-like component

(Raiffa, 2002). From each carrier’s individual perspective, the incentives (and legal or 

market risks) of collaborating with competitors has to prevail over the profits that can 

be obtained when each party acts separately (competitive environment).

5.9.4. Bounded Rationality 

Bounded rationality limitations affect a) the knowledge that a carrier is able to 

acquire, and b) the bidding problem that the carrier can solve. Given the carrier’s 

rational limitations, fleet technology, information available, and a competitive

strategic setting the carrier ends up solving a bidding problem that best represent his 

interests in Table 2

5.9.5. Framework for Carrier Behavior 

After analyzing carriers’ decisions, learning, knowledge acquisition, problem 

solving processes, and bounded rationality we possess all the necessary elements to 

present a framework for studying carriers’ behavior. Figure 21 presents a schematic 

overview of the process that brings about carriers’ behavior. 
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Figure 21 Carrier behavior in a sequential auction marketplace
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A shipper’s decision to post a shipment in the auction market initiates an 

auction. Carriers respond to auctions postings. Carriers attempt to maximize profits 

by adjusting their behaviors in response to interactions with other carriers and their 

environment. Bounded rationality limitations and pervasive and affect how a carrier 

models, evaluates, and optimizes his action as indicated by the arrows in Figure 21. 

Carriers also must abide by the constraints and the physical feasibility specified by 

their assignment strategies and pool of awarded shipments. 

In this framework, carriers’ learning and knowledge about other competitors’ 

behavior types evolve jointly over time and their strategies at a given moment are 

contingent on interactions that have occurred or will occur in a path-dependent time 

line. Past decisions are binding and limit the future actions of carriers, therefore 

behavioral rules are state-conditioned and the carriers co-adapt their behavior as the 

marketplace evolves over time.

Carriers’ internal events are the assignment, pickup, and delivery of loads, 

mostly operational decisions. Carriers repeatedly engage in bidding interactions 

modeled as noncooperative games. However these repeated bidding interactions are 

also the only means of communication for a carrier to “identify” or “manipulate” 

other competitors. 

5.10. Summary

This chapter dealt with bounded rationality in a competitive TLPM setting. 

After reviewing the relevant literature, bounded rationality was approached analyzing 

its likely sources in the context of carriers’ decision making process. Given the 
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complexity of the bidding/fleet management problem, carriers can tackle it with 

different levels of sophistication. Carriers’ decision making processes and bounded 

rationality were analyzed. The complexity of the different bidding problems that a 

boundedly rational carrier can be faced with was analyzed and classified.  A 

framework to study carrier behavior in TL sequential auctions was presented.

The provided framework is general enough to accommodate problems already 

seen in previous chapters such as the game theoretic formulation of chapter 3 and the 

auction analysis of chapter 4. In the framework presented in this chapter, sequential 

auctions can be used to model an ongoing transportation market, where the effect of 

carrier competition, knowledge and information availability, dynamic vehicle routing 

technologies, computational power, and decision making processes can be studied. 

Auction type influences the complexity of TLPM bidding. It was shown that

second price auctions can be equally or less demanding computationally than first 

price auctions. It was also shown that bidding problems are less demanding 

computationally if no-knowledge conditions are assumed. Chapter 6 studies learning 

and behavior of carriers in a competitive TLPM under no-knowledge conditions.

. 
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Chapter 6: Non-Strategic Boundedly Rational Competition

Chapter 6 studies the bidding behavior of carriers in a competitive setting 

where carriers are unable to use causal models of competitors’ behaviors. This 

competitive setting corresponds to the no-knowledge assumption and non-strategic 

environments (defined in chapter 5 sections 5.5 and 5.6 respectively). Chapter 4 

assumed that cost truth telling strategy was a dominant strategy, therefore carriers 

were limited to bid their marginal cost. In this chapter that assumption is relaxed; 

carriers bid trying to maximize their profits but limited by their boundedly rational

limitations. 

In this competitive setting (no-knowledge assumption, non-strategic 

environment, and no cost truth telling limitations) three different auction formats are 

compared using computational experiments. These auction formats are second price 

auctions, first price auction with minimum information disclosure, and first price 

auctions with maximum information disclosure. 

Section 1 describes the properties and behavioral assumptions of carriers 

competing in the no-knowledge and non-strategic environment. Section 2 describes 

learning in a no-knowledge environment. Two widely used forms of learning that do 

not attempt to model competitors’ behavior directly are discussed in section 3 and 4; 

these learning methods are reinforcement learning and fictitious play, respectively. 

Section 5 compares a carrier’s behavior with the behavior of a machine. 

Reinforcement learning and fictitious play can be seen as either human or machine 

behavior. Sections 6 to 8 present different computational experiments aimed at 
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studying the properties of different auction settings and learning methodologies. 

Section 9 presents a chapter summary. 

6.1. Competition in a Non-Strategic Environment

The high complexity of acquiring and using knowledge about competitors’ 

behaviors was discussed in chapter 5, even in a TLPM market that has been 

streamlined to its very basic elements. Knowledge acquisition and its use can be 

considerably more complex in a more complete model where other critical constraints 

and variables are added (for example, getting drivers home, variation in travel times, 

delays incurred while unloading the truck, etc).  Furthermore, noisy information 

transmission, as reported by Powell et al. (2002), even among agents that respond to 

the same carrier (i.e. drivers, dispatchers, decisions support systems), seem to sustain 

the notion that perfect knowledge about competitors’ private information and 

behavior could only be possible in a flight of the imagination. Imperfect knowledge is 

possible, but at the cost of even higher complexity. 

Given the high level of complexity of full or imperfect knowledge 

assumptions, it is methodologically sensible to first focus on behaviors and settings 

which are more plausible for implementation in real-life TLPM marketplaces. The 

first tool that bounded-rational agents use to cope with insurmountable complexity is 

simplification. In this chapter it is assumed that acquiring or using knowledge about 

the competitors’ behavior causality (bounded rationality) is so complex that carriers 

make no attempt to acquire this knowledge about competitors. Rather, carriers learn 
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about the distribution of past market prices or the relationships between realized 

profits and bids. 

6.1.1. Behavioral Assumptions

In a TL transportation company, scheduling decisions can be made by a 

human being, a computerized decision support system, or a hybrid human/machine 

dispatcher. Powell et al. (2002) indicates that most carriers still rely heavily on human 

dispatchers, though large carriers have already implemented or are in the process of 

implementing more computerized decision support systems.

It is assumed that humans, as well as computerized systems, follow a set of 

rules or programs whose ultimate goal is to maximize carrier’s profits.  Therefore, 

boundedly rational behavior, as understood in this research, is not chaotic or absurd. 

Carriers try to evaluate the possible consequences of their actions; carriers prefer 

outcomes that yield higher expected profits. Furthermore, carriers’ decisions must be 

related to the deployment of the carrier’s assets or fleet status. It is also assumed that 

decisions are based on the possible consequences of the choices made. 

The previous set of behavioral assumptions are needed to ensure that the steps 

of rational decision making, described in section 5.6, are at least followed.  Though 

the steps of rational decision maker are followed different boundedly rational

imperfections can arise when implementing any given step. The objective of the 

mentioned assumptions is to screen out carriers’ behaviors that could not be expected 

from any thriving carrier in a TLPM. 
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The goal of this chapter is not to find the “optimal” rules or procedure that 

lead to the best possible boundedly rational reasoning or machine (with the no-

knowledge assumption), a la Descartes (i.e. setting out to conjecturally discover 

general rules for proper reasoning). Rather, the idea is to define plausible boundedly 

rational procedures that carriers can implement in a TLPM. These carriers are then 

engaged in competition in simulated TLPM markets.  The next section discusses 

plausible learning and behavioral models.  

6.2. Learning

The learning literature mainly takes an experience based learning approach. In 

an auction context, learning methods look for good bidding strategies by 

approximating the behavior of competitors. Most learning methods assume that 

competitors’ bidding behavior is stable. This assumed bidding stability is like 

believing that all competitors are in a strategic equilibrium. 

Learning in this environment is based on the belief that experience is 

important and can improve carriers’ profits. Such past experience can not only help 

players to avoid dominated (poor) strategies but it can also lead them to play the most 

successful strategies. Given that learning is phenomenological rather than causal, 

learning can be based on false backward-looking procedures that: a) make forecasts 

about other players’ behaviors and b) select a response to these forecasts. Therefore, 

since learning can be fundamentally based on false premises, learning does not 

guaranty good performances. Nevertheless, this may not be a problem in an 

environment where all players share the same level of sophistication (i.e. all players 
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are type zero or type one level). In other words, no other competitor can exploit their 

boundedly rational weaknesses. Still, poor performance may take place if carriers’ 

bids get attracted to an undesirable “equilibrium” or attractor point. 

Walliser (1998) distinguishes four distinct dynamic processes to play games. 

In a decreasing order of cognitive capacities they are: eductive processes, epistematic 

learning (fictitious play), behavioral learning (reinforcement learning), and 

evolutionary process. An eductive process requires knowledge about competitors’ 

behavior, such as the n-level player theory where players simulate each others 

behavior.  Epistemic and behavioral learning are similar to fictitious play and 

reinforcement learning, they are studied in this chapter in sections 3 and 4. In the 

evolutionary process, a player has (is born with) a given strategy, after playing that 

strategy the player dies and reproduces in proportion to the utilities obtained (usually 

in a game where it has been randomly matched to another player).

This chapter studies the two intermediate types of learning. It was already 

discussed in the first section that eductive-like type of play requires players (carriers) 

that are assumed too smart (to be possible). On the other hand, evolutionary model 

players seem too simplistic: they have no memory, and simply just react in response 

to the last result. Furthermore, the notion that a company is born, dies, and reproduces 

with each auction does not fit well behaviorally in the defined TLPM. Ultimately, 

neither extreme approach is practically or theoretically compelling in the TLPM 

context. Carriers that survive competition in a competitive market like TL 

procurement cannot be inefficient or simply dumb. They are just limited in the 

strategies they can implement. Carriers would like to implement the strategy 
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(regardless of its complexity) that ensured higher profits, but they are restricted by 

their boundedly rational limitations. 

6.2.1. Learning Initial Assumptions

In practical and theoretical applications, the process of setting learning initial 

beliefs has always been a thorny issue. Implemented learning models must specify 

what agents initially know. Ideally, how or why these initials assumptions were built 

should always be reasonable justified or explained. In this aspect, solely restricting 

the research to the TLPM context has clear advantages.

 It was mentioned in chapter 4 that normal operating ratios in the TL industry 

range from 0.90 to 0.95. It is expected that operating ratios in a TLPM do not 

radically differ from those in the mentioned range. If prices are too high shippers can 

always opt out, abandon the marketplace and find an external carrier. Prices cannot be 

substantially lower because carriers would run continuously in the red, which does 

not lead to a self-sustainable marketplace. Obviously, operating ratios fluctuations in 

a competitive market are expected, which reflects natural changes in demand and 

supply. However, these fluctuations should be in the neighborhood of historical long 

term operating ratios unless the market structure is substantially changed.   

Another practical consideration is the usage of ratios or factors in the trucking 

industry. Traditionally, the trucking industry has used numerous factors and 

indicators to analyze a carrier’s performance, costs, and profits. It seems natural that 

some carriers would obtain a bid after multiplying the estimated cost by a bidding 

coefficient or factor. Actually, experimental data show that the use of multiplicative 
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bidding factors may be quite common in bidding as (Paarsch, 1991). Learning 

coupled with the usage of bidding factors is studied in section 7. In chapter 5 it was 

mentioned that there are two distinct information levels. The next two sections 

describe a suitable learning method for each level. 

6.3. Reinforcement Learning

In this learning method the required knowledge about the game payoff 

structure and competitors behavior is extremely limited or null. From a single 

carrier’s perspective the situation is modeled as a game against nature; each action 

(bid) has some random payoff about which the carrier has no prior knowledge. 

Learning in this situation is the process of moving (in the action space) in a 

direction of higher profit. Experimentation (trial and error) is necessary to identify

good and bad directions. 

6.3.1. Stimulus Response Model with Reinforcement Learning

Let M  be the ordered set of real numbers that are multiplicative 

coefficients 0M { ,..., }Kmc mc= , such that if Mkmc ∈  and 1 Mkmc + ∈ , 

then 1k kmc mc +< . Using multiplicative coefficients the profit obtained for any 

shipment js , when using the multiplicative coefficient kmc   is equal to:

( ) ( ) ( 1) (6.1 )i

j

i i i i i
k k j j j j j kmc mc c c I c I mc aπ = − = −

(2)( ) ( ) (6.1 )i

j

i i
k j j jmc b c I bπ = −
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The first equation (6.1a) applies to first price auctions while the second 

equation (6.1b) applies to second price auctions. Adapting the reinforcement model to 

TLPM bidding, the probability ( )i
j kmcϕ of carrier i  using a multiplicative coefficient 

kmc  in the auction for shipment js  is equal to:

1 1 1 1( ) (1 ( ) ) ( ) ( ) ( ) (6.2)i i i i i
j k j k j k j k j kmc mc mc I mc mcϕ λπ ϕ λπ− − − −= − +

To use equation (6.2), each bidder only needs information about his bids and 

the result of the auction.  To use this model the profits 1( )i
j kmcπ − must be normalized 

to lie between zero and one so that they may be interpreted as probabilities. The 

indicator variable ( )i
j kI mc  is equal to one if carrier i  used the multiplicative 

coefficient kmc  when bidding for shipment js , the indicator is equal to zero 

otherwise. The parameter λ  is called the reinforcement learning parameter, it usually 

vary between 0 1λ< < . 

The stimulus response model with reinforcement had its origin in the 

psychological literature and has been widely used to try to explain human and even 

animal behavior. Some computer science literature calls this model the learning 

automaton. Narenda and Tatcher (1974) showed that a players’ time average utility, 

when confronting an opponent playing a random but stationary strategy, converges to 

the maximum payoff level obtainable against the distribution of opponents’ play. The 

convergence is obtained as the reinforcement parameter λ goes to zero. 

The reinforcement is proportional to the realized payoff, which is always 

positive by assumption. Any action played with these assumptions, even those with 

low performance, receives positive reinforcement as long as it is played (Fudenberg, 
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1998). Furthermore, in an auction context there is no learning when the auction is lost 

since 1( ) 0 Mi
j k kmc mcπ − = ∀ ∈  if 1 0i

jI − =

Borgers and Sarin (1996) propose a model that deals with the aforementioned 

problems. In this model the stimulus can be positive or negative depending on 

whether the realized profit is greater or less than the agent’s “aspiration level”. If the 

agent’s aspiration level for shipment js  is denoted i
jρ  and the effective profit is 

denoted 1 1( ) ( ) (6.3)i i i
j k j k jmc mcπ π ρ− −= −� , then 

1 1 1 1( ) (1 ( ) ) ( ) ( ) ( ) (6.4)i i i i i
j k j k j k j k j kmc mc mc I mc mcϕ λπ ϕ λπ− − − −= − +� �

When 0i
jρ = , the equation (6.4) provides the same probability updating 

equation as (6.2). Borgers and Sarin explore the implications of different policies to 

set the level of the aspiration level. These implications are clearly game dependent.  A 

general observation applies for aspiration levels that are unreachable. In this case 

equation (6.3) is always negative; therefore the learning algorithm can never settle on 

a given strategy, even if the opponent plays a stationary strategy. 

These learning mechanisms were originally designed for games with a finite 

number of actions and without private values (or at least for players with a constant 

private value). In the TLPM context, the cost of serving shipments may vary 

significantly. Furthermore, even the “best” or optimal multiplier coefficient can get a 

negative reinforcement when an auction is lost simply because the cost of serving a 

shipment is too high. This negative reinforcement for the “good” coefficient creates 

instability and tends to equalize the attractiveness of the different multiplicative 
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coefficients.  This problem worsens as the number of competitors is increased, 

causing a higher proportion of lost auctions, i.e. negative reinforcement. 

This research proposes a modified version of the stimulus response model 

with reinforcement learning that better adapts to TLPM bidding. Each multiplicative 

coefficient km  has an associated average profit value ( )i
j kmπ  that is equal to:

{1,..., }

{1,..., }

( ) ( )

( )
( )

i i
t t t k

t ji
j k i

t k
t j

s I m

m
I m

π
π ∈

∈

=
∑
∑

The aspiration level is defined as the average profit over all past auctions:

{1,..., }

( )i i
t t t

t ji
j

s I

j

π
ρ ∈=

∑

Therefore the average effective profit is defined as 1 1( ) ( )i i i
j k j k jmc mcπ π ρ− −= − . 

Probabilities are therefore updated using equation (6.5). 

1 1 1 1( ) (1 ( ) ) ( ) ( ) ( ) (6.5)i i i i i
j k j k j k j k j kmc mc mc I mc mcϕ λπ ϕ λπ− − − −= − +

With the latter formulation (6.5), a “good” multiplicative coefficient does not 

get a negative reinforcement unless its average profit falls below the general profit 

average. At the same time, there is learning even if the auction is lost. 

6.3.2. Observations of the Reinforcement Learning Model

Stimulus-response learning requires the least information (a minimum 

information setting as described in chapter 5 section 5.9) and can be applied to both 

first and second price auctions. The probability updating equations (6.2), (6.4), and 
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(6.5) are the same for first and second price auctions. Therefore the application of the 

reinforcement learning model does not change with the auction format that is being 

utilized in the TLPM.  Using this learning method, a carrier does not need to model 

neither the behavior nor the actions of competitors. The learning method is essentially 

myopic since it does not attempt to measure the effect of the current auction on future 

auctions. The method clearly fits in the category of no-knowledge/myopic carrier 

bounded rationality. 

Since the method is myopic, for the first price auction the multiplicative 

coefficients must be equal or bigger than one, i.e. 0 1mc ≥ . A coefficient smaller than 

one, generates only zero or negative profits. In a second price auction the 

multiplicative coefficients can be smaller than one and still generate positive profits 

since the payment is dependent on the competitors’ bids. 

In both types of auctions it is necessary to specify not just the set of 

multiplicative coefficients but the initial probabilities. If equation (6.4) is used it is 

also necessary to set the aspiration level. If equation (6.5) is used it is necessary to set 

the level of the initial profits but not the aspiration level. A uniform probability 

distribution is the classical assumption and indicates a complete lack of knowledge 

about the competitive environment. 

Summarizing, in reinforcement learning, the agent does not consider strategic 

interaction.  The agent is unable to model an agent play or behavior but his own. This 

agent is informed only by their past experiences and is content with observing the 

sequence of their own past actions and the corresponding payoffs. Using only his 

action-reward experience, he reinforces strategies which succeeded and inhibit 



195

strategies which failed. He does not maximize but moves in a utility-increasing 

direction, by choosing a strategy or by switching to a strategy with a probability 

positively related to the utility index. 

6.4. Fictitious Play

Fictitious play came about as an algorithm to look for Nash equilibrium in 

finite games of complete information (Brown, 1951). It is assumed that the carrier

observes the whole sequence of competitors’ actions and draws a probabilistic 

behavioral model of the opponents’ actions. The agent does not try to reveal his or her 

opponents’ bounded rationality from their actions although the agent may eventually 

know that opponents learn and modified their strategies too.  The agent models not 

behavior but simply a distribution of opponents’ actions. Players do not try to 

influence the future play of their opponents. Players behave as if they think they are 

facing a stationary, but unknown, distribution of the opponents’ strategies. Players 

ignore any dynamic links between their play today and their opponents’ play 

tomorrow. These assumptions are similar to the ones applied in chapter 4.

A player that uses a generalized fictitious play learning scheme assumes that his 

opponents' next bid vector is distributed according to a weighted empirical 

distribution of their past bid vectors. The method cannot be straightforwardly adapted 

to games with an infinite set of strategies (for example the real numbers in an 

auction). Two ways of tackling this problem are: a) the player divides the set of real 

numbers into a finite number of subsets, which are then associated with a strategy or 

b) the player uses a probability distribution, defined over the set of real number to 
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approximate the probabilities of competitors play.  In either case, the carrier must 

come up with a estimated stationary price function ξ . If a second price auction 

format is used in the TLPM, equation (4.1) from chapter 4 is used. 

1,.., 1,..,

*
( )arg max {[ ( ( , )) ( | 1) ( | 0) (1 ) ]}

(4.1)

i i

j N j N

i i i i i i i i
j j j j j j j j j jb E c s z I s I I s I I

b R

ξ ξ + +π π∈ − + = + = −

∈

If a first price auction format is used in the TLPM, equation (5.1) from chapter 

5 is used. 

1,.., 1,..,

*
( )arg max {[ ( ( , )) ( | 1) ( | 0) (1 ) ]}

(5.1)

i i

j N j N

i i i i i i i i
j j j j j j j j j jb E b c s z I s I I s I I

b R

ξ + +π π∈ − + = + = −

∈

The look-ahead depth is limited by the problem solving capabilities of the 

carrier. When the look-ahead depth is zero (myopic case) the fictitious play model of 

learning is similar to a repeated version of Friedman’s model of bidding (described in 

chapter 5 section 5.2). 

6.5. Automaton Interpretation 

The two previous sections have described reinforcement learning and 

fictitious play models of learning.  In section 2 it was mentioned that in a TL 

company, scheduling decisions can be made by a human being, a computerized 

decision support system, or a hybrid human/machine dispatcher. Reinforcement 

learning and fictitious play were originally conceived as human methods of learning. 
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However, they can also be used by machines or computerized systems. This section 

tries to link both views. 

An automaton is a self operating machine or mechanism. In a game context, 

an automaton is meant to be an abstraction of the process by which a player 

implements a given bounded rationality behavior. Rubenstein (1998) replaces the 

notion of a strategy with the notion of a machine called finite automaton. In 

Rubenstein’s model a finite automaton that represents player i  is a four-

tuple 0( , , b ,a )i i i iZ z , where iZ  is a finite set of machine states (from this constraint the 

adjective “finite”), 0
iz  is the initial state for carrier i , b :i iZ A→  is an output 

function that produces an action (given the state of the automaton), 

and a :i i i iZ A Z−× →  is a transition function that updates the state of the automaton 

(given the actions taken by the competitors in the previous period). The set of 

possible actions is denoted by A .

Adapting these concepts to this research, a TLPM automaton can be defined 

as an abstraction of the process by which a carrier implements a given boundedly 

rational behavior in a TLPM. A TLPM automaton can be defined by the eight-

tuple 0 0( , , , , , b , u ,a )i i i i i iZ z SξΞ  comprised by:

iZ  the set of possible states (private information states) ;

0
iz   the initial state for carrier i ;

Ξ  the set of possible price functions;

0
iξ  the initial price function  for carrier i ;

js S∈  the stimulus sent by marketplace;
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b :i iZ S R×Ξ× →  the bidding (output) function; 

u :i h× Ξ→Ξ  the update function (updates the price function ξ ∈ Ξ ) ; and

a :i i iZ S Z× →  the assignment function (assignment if an auction is won). 

A TLPM automaton would work in the following way: the initial state and 

price function are 0
iz  and 0

iξ  respectively, the automaton chooses a 

bid 0 0 1b ( , , )i i iz sξ when the first shipment arrives. If carrier i  wins, the assignment 

function updates the carrier’s status 0 1a ( , )i iz s . The price function is updated based on 

the information revealed after the auction 1 0u ( , )i ih ξ . When the second shipment 

arrives the same process is repeated but starting with the new state and price function 

1
iz  and 1

iξ  respectively. Once the initial conditions are set, the transitions, bidding, 

and updating are set by the arrival of shipments. A TLPM automata game takes place 

when a player cannot change the working of his machine during the course of the 

game. 

The two learning approaches described in this chapter, reinforcement learning 

and fictitious play, can be interpreted as the work of an automaton (which is valid in 

general for any learning strategy that seeks or uses no knowledge about the 

competitors’ behavior). Therefore, the simulation results presented in this or previous 

chapters can also be interpreted as the interaction or competition of TLPM automata 

(which may represent the behavior of human, computerized, or hybrid dispatchers). 

A boundedly rational behavior connects the status of the carrier and the 

system with the action or decision that the carrier takes. It is assumed in this research 



199

that for a given status, price function, and stimulus, an action has the same probability 

of being played; as if the decision process is wired-up and cannot change (data and 

information can change over time, but not the decision-making process). This is 

consistent (in the short-medium term) with the industry experience (Powell, 2002).

6.6. Bidding Factors and Marginal Cost Pricing in Second Price Auctions

In chapter 4, it was assumed (in auction analysis of algorithms) that carriers 

bid their best cost estimation. In chapter 2, it was shown that a significant 

characteristic of one-item second price auction is also value/cost bidding. That 

characteristic cannot be necessarily maintained in multiunit sequential auctions 

setting such as the TLPM marketplace. Actually, it was shown in chapter 4 that the 

static marginal cost is not an optimal strategy (adding or subtracting the opportunity 

costs using the 1FOOC technology provides better results). 

This chapter deals with boundedly rational learning in competitive no-

knowledge settings. Of the two learning methods proposed, only reinforcement 

learning can be applied to second price auctions2. In the TLPM context, the objective 

of reinforcement learning is to “learn” what the best bidding coefficient is; the 

bidding coefficient that maximizes a carrier’s profits. 

The reminder of this section addresses the following question:  in a TLPM 

second price auction environment can carriers be better off by using bidding factors? 

2 Fictitious play in a second price auction coincides with marginal cost bidding. Regardless of the price 

distribution, the expected profit is always optimized with marginal cost bidding.
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This question is answered using computational experiments. The auction settings 

utilized herein are similar to those described in chapter 3 and used in chapter 4. For 

consistency, all the simulations results shown in this chapter are obtained for 

shipments with medium time window width. 

In order to answer the question put forward earlier, the following simulation 

experiment is carried out. Two carriers using the same type of technology compete 

against each other using the same simulation setting used in chapter 4. However, 

while one carrier bids the marginal cost (called MC carrier) the other bids the 

marginal cost multiplied by a bidding factor (called BF carrier). Eleven different 

bidding factors are utilized, ranging from 0.5 to 1.5. The impact of these factors on 

carrier BF’s profits are depicted in FigureFigure 22. The profit levels of a BF carrier 

when the bidding factor is equal to 1.0 are used as the reference or base level – they 

correspond to 100% level. Both carriers are using the SFO technology (defined in 

chapter 4, section 4.7). 

The results depicted in Figure Figure 22 show that for low arrival rates the 

best bidding factor is 1.0, corresponding to simply bidding the marginal cost. For 

medium arrival rates the best bidding factor is 1.1.  For high arrival rates the best 

bidding factor is 1.3. Regardless of the arrival rate level, the “curve” is quite flat 

around the “optimal”. Furthermore, if the profits are connected the resulting curve is 

concave-shaped. 
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Figure 22 Profit Level for a BF Carrier
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Figure 23 Shipments Served by BF carrier

A possible explanation to the results of Figure 22 may be obtained by 

analyzing how profits are generated. Total profits can be expressed as the average 

profit obtained per shipment multiplied by the number of shipments served. Figures 

23 and 24 show the impact of bidding factors on number of shipments served and 

average shipment served profit respectively. Again, the number of shipments served 
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and average profit used as reference are those of a BF carrier when the bidding factor 

is equal to 1.0.  
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Figure 24 Average Profit per Shipment Won for a BF Carrier

It is clear from Figures 23 and 24 that, as expected, higher bidding factors 

increase the average profit per shipment won but decreases the number of shipments 

won. Vice versa, lower bidding factors decrease the average profit per shipment won 

but increases the number of shipments won. There are clearly two opposing forces at 

work when the bidding factor changes; this fact helps to explain the concave shape of 

the profit curve in Figure 22. 

At this point, it has not yet been explained why the low arrival rate “optimal” 

bidding factor is around 1.0 (marginal cost case), while the “optimal” bidding factors 

are shifted to the right for higher arrival rates. The answer to this matter lies in the 

relation between profit elasticity and shipment served volume elasticity. To 

understand why profit elasticity and shipment served volume elasticity changes with 
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the arrival rate is necessary to introduce Figures 25 and 26. Figure 25 and 26 illustrate 

the different fleet utilization rates of carriers MC and BF respectively. Fleet 

utilization rate is defined as the average vehicle utilization. Vehicle utilization is 

defined as the percentage of the time a vehicle is moving (i.e. not idle). 
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Figure 25 Fleet Utilization (MC Carrier)

With low arrival rates the utilization of the MC carrier is low (around 35% if 

the BF carrier uses a bidding factor equal to 1.0 - see Figure 25). Therefore when 

carrier BF increases his prices (utilizing higher bidding factors) carrier MC gains a 

significant percentage of the demand. This explains why in Figure 26 there is such an 

abrupt drop in demand (from 100 to 80%) when carrier BF moves from a bidding 

factor of 1.0 to 1.1. With higher arrival rates the fleet utilization of carrier MC is 

higher (at or over 70% - see Figure 25) and at very high utilization rates it is more 

difficult to accommodate or to inexpensively add new shipments. As fleet utilization 

grows the capacity to serve new shipments decreases, therefore on average the 

opportunity costs of serving additional shipments starts to be significant. Figure 26 is 
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the reverse mirror image of Figure 25. With high arrival rates carrier BF can rise 

prices substantially and still have a high fleet utilization; the increase in profits 

prevails over the decrease in shipments served. 
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Figure 26 Fleet Utilization (BF Carrier)

The explanation provided is plausible but not definitive. However, similar 

phenomena as the ones observed in Figures 22, 23, 24, 25, and 26 have been widely 

recognized in the economics-industrial organization literature. The incentives to 

increase prices as remaining market capacity decreases are contemplated in price-

capacity oligopoly models. For example, in the Edgeworth-Bertrand model of 

competition, pricing is at marginal cost levels when demand is low, however prices 

increase after a critical capacity utilization threshold is surpassed (Martin, 1993). 

Similar intuition was obtained from Benoit and Krishna (2001) model of capacity 

constrained auctions, with limited capacity it is advantageous to speculate (this model 

was analyzed in chapter 2 section 2.6). Even in fleet management, the idea of filtering 

out shipments or similarly increasing the “admission” price of shipments under very 
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high arrival rate conditions has been previously used (though not in a competitive 

environment). The Kim, Mahmassani, and Jaillet (2002) study indicates that a fleet 

dispatcher under very high arrival rates (over capacity) is better off filtering out some 

demands (not being too close to capacity). 

Similar results are also found when carriers use other technologies such as the 

naïve or 1FOOC. Figure 27 shows the profit changes when both carriers use naive 

technologies. Even when carriers have different technologies, similar results can be 

expected. Figure 28 shows the profit changes for the BF carrier using naïve 

technology against a MC carrier using SFO technology. 
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Figure 27 Profit Level for a BF Carrier (both carrier use naïve technology)

The question that motivated these simulations was: in a TLPM second price 

auction environment can carriers be better off by using bidding factors? The answer is 

yes, but only at high arrival rates. This answer provides additional insights into the 

applicability of auction analysis to online algorithms/technologies. The results 

confirm the notion that DVR technological leadership can be better exploited under 

low to moderate arrival rate conditions, where there is no incentive to adopt bidding 
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factors that are not one. If there is an incentive to adopt bidding factors that are higher 

than one, there is an incentive to restrain capacity or to increase prices (profits are 

increased without increasing fleet management efficiency). As reflected by the results 

of chapter 4, as the arrival rate grows the advantage of being more efficient decreases; 

in general, scarcity exposes the incompetent while abundance hides inefficiencies. 
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Figure 28 Profit Level for a BF Carrier (SFO vs. naïve technology)

6.7. Learning Methods Performance 

This section addresses the issue of learning performance of the two learning 

methods presented in this chapter. The previous section shows that bidding factors 

can be used to increase carriers’ profits in TLPM second price auctions with high 

arrival rates. Reinforcement learning could be used to “learn” which bidding factors 

produce a higher profits on average; as the auction results accumulates the most 

profitable bidding factors continuously increase their probability of being used. With 
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low arrival rates, there is nothing to learn but the fact that marginal cost bidding 

(bidding factor 1.0) is the best alternative. 

Learning can be expensive though. For example, in a second price auction the 

longer it takes a bidder to learn that underbidding (bidding below his marginal costs) 

is not a good strategy, the more the bidder loses potential profits. The importance of 

the right learning coefficient then becomes evident. If the learning coefficient λ  is 

too small learning is too slow; if λ  is too big it may lock the learning algorithm in an 

undesirable bidding factor too quickly. Another important element is the number of 

alternatives that the learning algorithm must choose from; as a general rule, the more 

the alternatives the smaller the λ .   

The speed of reinforcement learning can be quite slow in an auction setting 

like TLPM. The “optimal” bidding factor can be used and there is still roughly a 50% 

chance of losing (assuming two bidders with equal fleets and technologies). If the 

“optimal” bidding factor loses two or three times its chances of being played again 

may reduce considerably which hinders convergence to the “optimal” or even 

convergence at all. As discussed in section 6.3, this issue can be avoided using 

“averages” (ARL method). 

Figure 29 illustrates the relative performance of Average Reinforcement 

Learning (ARL) and Reinforcement Learning (RL) in a first price auction. Both 

learning methods select a bidding factor among 11 different possibilities, ranging 

from 1.0 to 2.0 in intervals of 0.1. The learning factor is 0.10λ = . Figure 29 shows 

the relative performance of ARL and RL after 500 auctions. 
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Figure 29 ARL vs. RL   (RL performance base of comparison)

It is clear that RLA obtains higher profits as the arrival rate increases. RL has 

a poorer performance because it cannot converge steadily to the “optimal” coefficient 

due to the reasons mentioned in the previous paragraph. The carrier RL tends to price 

lower (it keeps probing low bidding coefficients longer) and therefore serves a higher 

number of shipments. As shown in the previous section, as arrival rates increase after 

a critical point, a carrier can charge higher prices regardless of what the competitor is 

doing. 

In first price auctions reinforcement learning and fictitious play can be used. 

The latter uses more information than the former. Therefore, it is expected that a 

carrier using fictitious play must outperform a carrier using reinforcement learning. 

Figure 30 shows the relative performance of Fictitious Play (FP) and ARL after 500 

auctions. The ARL player is the same as in Figure 29. The FP carrier divides the 

possible competitors’ bids in 15 intervals (from 0.0 to 1.5 in intervals of width 0.1) 

and start with a uniform probability distribution over them. 
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Figure 30 ARL vs. FP   (RL performance base of comparison)

Clearly the FP carrier obtains higher profits across the board. The usage of a 

competitor past bidding data to obtain the bid that maximizes expected profits clearly 

pays off. In this case carrier ARL tends to bid less and serve more shipments, again, 

the difference diminished as the arrival rate increase. In the TLPM context even a 

simple static optimization provides better results than a search based on 

reinforcement learning. Not surprisingly, more information and optimization lead to 

better results. Therefore, if there is maximum information disclosure, carriers will 

choose to play fictitious play or a similar bidding strategy, especially since the 

complexity of FP (myopic) and ARL are not too different. 

6.8. Comparing Auction Settings

This section describes computational results obtained from TLPM competition 

with different sequential auction settings. Within the competitive no-knowledge 

assumptions stated at the beginning of the chapter, three basic auction settings are 
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compared: second price auction with marginal cost bidding, first price auction with 

reinforcement learning, and first price auction with fictitious play. 

Four different measures are used to compare the auction environments: 

carriers’ profits, consumer surplus, number of shipments served, and total wealth 

generated. To facilitate comparisons in all the four graphs that are presented 

subsequently, second price auctions with marginal cost bidding are used as the 

standard to measure up the two types of first price auction. All two carriers use SFO 

technologies.

Figure 31 illustrates the profits obtained by carriers. After the results of the 

previous section, it is not surprising that FP carriers obtain higher profits than ARL 

carriers. FP carriers use the obtained price information to their advantage. The highest 

carrier profit levels takes place with the second price auctions. These results do not 

alter or contradict theoretical results. With asymmetric cost distribution functions, 

Maskin and Riley (2002) show that there is not revenue ordering between 

independent value first and second price auctions. 

Figure 32 illustrates the consumer surplus obtained with the three auction 

types. Clearly, first price auction with reinforcement learning (minimum information 

disclosed) benefit shippers. Unsurprisingly, Figure 32 is almost the reverse image of 

Figure 31.



211

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

0.5 0.75 1 1.25 1.5

Arrival Rate

MC ARL FP

Figure 31 Carriers’ Profit level (Second Price Auction MC as base)
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Figure 32 Consumer Surplus level (Second Price Auction MC as base)

Figure 33 shows the number of shipments served with each auction setting. As 

expected, with second price auctions more shipments get served. Even in asymmetric 

auctions, it is still a weakly dominant strategy for a bidder to bid his value in a second 

price auction – recall that this property of one-item second price auction is 
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independent of the competitors’ valuations. Therefore, in the second price auction the 

shipment goes to the carrier with the lowest cost.  

In contrast, with ARL there is a positive probability that there are inefficient 

assignments since a higher cost competitor can use a bidding coefficient that results 

in a lower bid. Similarly with FP carriers, if the price functions are different (which is 

very likely since each carrier models the competitors’ prices), a lower cost carrier can 

be underbid by a higher cost carrier with a positive probability.  The results of Figures

32 and 33 are similar to the insights provided by the reverse auction model with 

elastic demand (chapter 2, section 4.6), where introducing higher price uncertainty 

decreases prices (carriers’ profits) but also decreases the probability of completing a 

potentially feasible transaction (number of shipments served).
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Figure 33 Number of Shipments Served (Second Price Auction MC as base)

Figure 34 shows the wealth generated with each auction setting. Predictably, 

with second price auctions more wealth is generated. It was already mentioned in 

chapter 3 that marginal cost bidding is a “price efficient” mechanism. As the arrival 
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rate increases the gap in total wealth generated tends to close up (Figure 34). 

Consistently, the lowest wealth generated corresponds to the case with FP bidders. 

Summarizing, under the current TLPM setting, carriers, shippers, and a social 

planner would each select a different auction setting. Carriers would like to choose a

second price auction. If first price auction are used, carriers would like to have

maximum information disclosure. More information allows players to maximize 

profits, though total wealth generated is the lowest. Shippers would like to choose a 

first price auction with minimum information disclosure; more uncertainty about 

winning leads carriers to offer lower prices. However, the uncertainty leads to a 

reduction in the number of shipments served. Finally, from society viewpoint the 

most efficient system is the second price auction. More shipments are served and 

more wealth is generated. 
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6.8.1. Auction Settings and DVR Technology Benefits

The final set of experiments looks at how auction settings impact the 

competitive edge that a more sophisticated DVR can provide. Figure 35 illustrates the

profit improvement of a carrier using a SFO technology over a carrier using the naïve 

technology. As expected, the second price auction better rewards a lower cost carrier. 

Again, this can be attributed to the lack of speculation about prices, which removes 

unnecessary speculation about competitors. This type of result also validates 

experimentally the second price auction as the best methodology (chosen in chapter 

4) for auction analysis of algorithms. 

Figure 35 Impact of Auction Type and Technology upgrading on Profits

6.9. Summary

Chapter 6 studied the bidding behavior of carriers in a competitive setting 

where carriers are unable to use causal models of competitors’ behaviors. 

Reinforcement learning and fictitious play, two learning methodologies for this type 

auction setting and assumptions are introduced and analyzed, as well as carrier 
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learning and behavioral assumptions. Simulation of different bidding and fleet 

management strategies was utilized to evaluate the performance of different auction 

settings.

Computational experiments indicate that auction setting and information 

disclosure matters. Maximum information disclosure allows carriers to maximize 

profits at the expense of shippers’ consumer surplus; minimum information disclosure 

allows shippers to maximize consumer surplus but at the expense of lowering the 

number of shipments served. Marginal bidding in second price auctions remains the 

most efficient incentive compatible auction mechanism, producing more wealth and 

more shipments served than first price auctions. It is demonstrated that under critical 

arrival rate there is no incentive to use bidding factors (no deviations from static 

marginal cost bidding).  Furthermore, second price auction TLPM is the mechanism 

that provides the highest reward to carriers with more sophisticated DVR technology. 
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Chapter 7: Contributions, Extensions, and Future Research

In this concluding chapter, the first section summarizes the main findings and 

contributions. The second section articulates the limitations and opportunities for 

future research. 

This research establishes a new type of problem environment in the area of 

Transportation Science and Operations Research, the TLPM (truckload procurement 

market), within which several specific problems are defined and formulated. 

Throughout the chapters, effort is made to properly position this new problem 

environment relative to the existing body of research. One salient characteristic of 

this research is that it uses sequential auctions to model an ongoing transportation 

market; therefore the problem is characterized as essentially dynamic. Market 

competition is used to study carriers’ technologies and decision making processes. In 

a broad sense, this research is about the decision making complexity that carriers face

in a competitive market, where decisions involve not only the management of the 

fleet but also the pricing of provided services

7.1. Contributions

The original contributions of this research are intertwined and distributed 

throughout the chapters. For clearer understanding and exposition, the contributions 

are grouped into three areas of research. In decreasing order of generality, the areas 

are: auctions, transportation marketplaces, and dynamic vehicle routing and pricing. 
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7.1.1. Auctions

This research uses sequential auctions in a novel environment with a 

novel commodity (TL services). Previous work in auctions is limited to homogenous 

or heterogeneous objects which are characterized by cost or value (and arrival time in 

some on-line auctions). The TLPM object traded in that market is characterized along 

multiple dimensions, such as arrival time, time windows, origin, destination, etc. 

Furthermore, bidders (carriers) do not know the real cost of servicing them. 

Calculating the optimal bid (or even the service cost) involves complex optimization 

problems that are beyond the usual capability of ordinary carriers. The 

characterization and comparison of the TLPM model in relation to standard auction 

models is performed in chapter 2. 

The TLPM problem is formulated as an incomplete multi-stage game under 

imperfect information in chapter 3.  The complexity of solution assuming rational 

bidders is discussed.  Furthermore, chapter 5 analyzes the complexity of TLPM 

bidding for first and second price auctions. It is concluded that second price auctions 

are not only equal or less computationally burdensome but also that in second price 

auction environments carriers have less incentive to utilize their scarce computational 

resources in estimating their competitors’ bids. In addition, it is shown in chapter 6 

that a second price auction TLPM is the mechanism that provides the highest reward 

to carriers with more sophisticated DVR technology. It is also the most efficient 

mechanism. 

The contribution to the characterization of auctions is two-fold. First, a 

considerably richer environment and auction object is considered. Second, the usual 
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assumptions of the archetypical rational bidder are relaxed, resulting in more realistic 

assumptions that help bridge theory-practice gaps in complex environments; auction 

theory must not be just about idealized models but should also be useful for practice 

and policy making. 

7.1.2. Transportation Marketplaces

Dynamic aspects are explicitly included in the TLPM problem environment, 

which fundamentally distinguishes this work from contributions in the area of 

combinatorial auctions for transportation (limited to a static approach). At the same 

time, fleet management operational aspects are fully incorporated, which sets this 

research apart relative to general procurement studies or to the analysis of shipper-

carrier relationships. Therefore, characterizing activities of the TLPM as a bi-level 

allocation problem, using prices/bids to allocate shipments among carriers and costs 

to allocate shipments to trucks, constitutes a contribution to the study of 

transportation marketplaces. 

Chapter 5 characterizes the competitive behavior of carriers as the result of 

carriers’ technology and their bounded rationality (intrinsic elements), auction rules, 

and the strategic setting (extrinsic elements). Chapter 6 circumscribes competition to 

a setting in which carriers are unable to discover or use competitors’ private 

information. The emphasis is on “learning” good bidding strategies based on previous 

experience and market prices. 

The contribution of chapters 5 and 6 is to provide an alternative framework to 

traditional models of behavior, equilibrium, decision-making, and analysis for 
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transportation carriers. Decision making and behavior are defined as an expression of 

the goals, and bounded rationality of the carrier as the type of pricing/bidding/fleet 

management problem that the carrier is able to tackle. Table 2 coupled with the 

appropriate learning mechanisms (for example reinforcement learning and fictitious 

play when aplicable) embody the approach to carrier behavior proposed in this 

research. 

The computational results of chapter 6 indicate the importance of market and 

auction design in the performance of the TL market. Computational experiments 

indicate that auction setting and information disclosure affect the performance of the 

marketplace. Maximum information disclosure allows carriers to maximize profit at 

the expense of shippers’ consumer surplus; minimum information disclosure allows 

shippers to maximize consumer surplus but at the expense of lowering the number of 

shipments served. Chapter 6 also studies the influence of learning (fictitious play and 

reinforcement learning) on market performance and technological asymmetries. 

Finally, a significant contribution is the quantification of the potential gains to 

carriers and shippers of service procurement through real time transportation markets. 

The economies of density, volume, and scope of transportation have long been 

articulated, though largely based on static settings. Computational experiments 

performed in chapter 4 show that the proposed usage of sequential second price 

auctions could provide a new tool to quantify the advantages of real-time competitive 

markets (as in wealth creation). The flexibility of the method allows the incorporation 

of new elements such as the effect of time windows, which were not considered in 

previous economic static analysis of transportation systems. 
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It is also shown in chapter 4 that economics of market integration are also 

incentive compatible, which may lead to resale markets for carrier companies that 

handle only private contracts. The advent and diffusion of information and 

communication technologies give rise to real opportunities for wealth generation in 

real time exchange. Economies of integration also have the benefit of keeping 

carriers’ decision problem complexity bounded to the same original level and (as 

already mentioned) incentive compatibility – assuming the market is truth revealing. 

7.1.3. Dynamic Vehicle Routing and Pricing

The performance evaluation of dynamic vehicle routing technologies is 

problematic. The existing evaluation paradigm (competitive analysis) does not 

possess all the desired characteristics of an evaluation tool, especially in a 

marketplace, as discussed in chapter 4. This research proposes a new methodology, 

auction analysis, to evaluate dynamic vehicle routing technologies. The methodology 

is particularly suitable when the technology is applied in a marketplace. Moreover, 

the methodology has adequate theoretical properties. Acceptance/rejection and 

minimal cost routing problems are special cases of auction analysis. In addition, the 

methodology fits nicely in the bounded rationality framework presented in chapter 5. 

In light of the experimental results of chapter 6, the values obtained with auction 

analysis can be considered adequate for sequential second price auctions and an upper 

bound for first price auctions (under no-knowledge assumptions)

The steps of a rational decision making process are applied to fleet 

management technologies and pricing problems in chapter 5. These steps can be 
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applied to dissect the sophistication of dynamic vehicle routing technologies. A new 

technology that better evaluates the consequences of current fleet and bidding 

decisions on future auctions is presented in chapter 4 (1FOOC technology). This 

technology outperforms static approaches and uses simulation to determine the profit 

impact of serving a shipment in the next auctions; these impacts can be interpreted as 

the opportunity costs (positive or negative) of serving a shipment. 

Chapter 5 links carriers’ technology, decision making, computational 

resources, bounded rationality, and problem selection to a family of pricing/fleet 

management problems. Furthermore, by assuming no-knowledge about the 

competition’s private values or bounded rationality, a TLPM automaton can represent 

the behavior, learning, and problem solving abilities of a carrier. As expressed in 

chapter 6, behavior with this level of sophistication can be expected in transportation 

marketplaces, though levels of sophistication may vary with the resources of the 

company. However, complexity levels the competitive playing field since it grows 

exponentially with problem size (number of trucks, shipments, competitors)

7.2. Limitations, Extensions, and Future Research Directions

This research presents a comprehensive study of the TLPM problem 

environment. However, as in any new problem, many important research avenues 

remain open. Balancing the breadth and depth of the topics covered in this research, 

the TLPM model considered is streamlined to its essential features and the treatment 

of TLPM issues are limited to the associated fundamental questions. Selected 

suggestions for future research are presented herein. First, suggestions that expand the 
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scope of the studied TLPM are presented; second, suggestions that deepen our 

knowledge in some selected topics are presented. Last, some reflections about general 

directions for future research are presented. 

7.2.1. Limitations

A key assumption made in the TLPM study was the sequential treatment of 

one-item auctions. It is clear that the complementary effects of two or more shipments 

are explicitly ignored in the auction design, even though the effects of complementary 

shipments may be indirectly present in some strategies (i.e. the 1FOOC strategy). If 

two or more shipments are bundled together, the new marketplace leads to the 

appealing concept of online-combinatorial auctions. This new type of sequential 

auction may present a new array of incentive compatibility issues for carriers and 

shippers, pricing issues, and trade-offs among bundle size, complexity, and the real 

time information arrival rate. 

The role of shippers is fairly limited. In this research, shippers do not use the 

information revealed by the sequential auctions to set reservation prices, nor do they 

try to maximize their profits (no learning or attempt to manipulate the market). What 

could the impact of shipper speculation on the transportation marketplace be?

Even though carriers and shippers are always assumed to be profit 

maximizers, the impact of explicitly gaming (cheating) the system is not analyzed 

(e.g.. shilling, the use of fake players by the carriers or shippers). How vulnerable are 

the presented sequential auction mechanisms to cheating or collusion?
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7.2.2. Extensions

A possible extension is the development of more sophisticated dynamic 

vehicle routing technologies. It was already mentioned that the 1FOOC technology 

might be improved by extending the look-ahead depth (two or more auctions ahead) 

or evaluating a larger set of fleet deployments. Both approaches would be 

challenging. Extending the look-ahead increases the complexity of the problem 

considerably. The development of efficient heuristics or approximate approaches, and 

the evaluation of deeper look-ahead advantages are natural extensions. On the other 

hand, it is equally challenging to develop methodologies that select alternative fleet 

deployments which favorably position the carrier for the upcoming auctions. 

The learning mechanisms proposed in chapter 6 are standard and well 

accepted. Reinforcement learning was adapted to the TLPM environment; a new 

method using average profit data improved the carrier’s performance. It is still an 

open challenge to improve on those learning mechanisms without substantially 

increasing the complexity of the learning problem. Knowledge acquisition about 

competitors appears to substantially increase the complexity of the problem. It may 

be worth exploring straightforward methods of knowledge acquisition and usage 

problems, as well as the trade-offs between knowledge acquisition and market 

performance. Pattern recognition techniques may provide an effective learning tool 

without compromising too many computational resources. 

The properties and characteristics of the proposed auction analysis of algorithms 

could be further evaluated and analyzed, possibly extending the concept to other 
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online problems. From the technological standpoint, what is the impact of 

information availability, competition, and market settings on encouraging 

technological development and adoption in a competitive marketplace?

7.2.3. Future Research Directions

Previous research ideas dealt with applications, limitations, and extensions of 

the core TLPM framework and associated problems. In an increasingly changing 

technological world, exploring issues that are likely to impact society and the 

economy is valuable.  The next paragraphs deal with the general direction of future 

research, which are loosely based on this research work as well as  on 

contemporaneous trends. 

As information and communication technologies become ubiquitous, the low 

cost of up-to-date information may enable economic agents (both human and 

automaton agents) to be better informed about their environment.  As the number of 

connections and agents in the system increases, it is expected that the rate of 

information arrival, events, and complexity will increase. At the same time, the 

concepts of static conditions and “full” optimization become less relevant. On the 

other hand, avoiding information overload and dealing effectively with complexity 

seem more relevant than ever before. 

An increasingly interconnected world, where decision makers deal with 

information overload and scarce resources (time, attention, and knowledge), requires 

the systematic incorporation of behavioral constraints in optimization problems. The 

application of operations research techniques and methods to complex transportation 
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problems will have to deal increasingly with agents’ limitations and behavioral 

aspects. 

As behavioral constraints are incorporated in optimization problems, the type 

of problem to solve (i.e. problem types as in Table 2) may itself become a decision 

dimension. Closer collaboration between operations research and behavioral sciences 

seems inevitable.  
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Appendix A: Online Matching Services

List of online matching services (March 2001). Source: 

www.landlinemag.com/Archives/2001/Mar2001/Your_Money/load_boards.html

www.expediteloads.com

www.dat.com

www.cargolinx.com

www.LoadScout.com

www.efreightservices.com

www.getloaded.com

www.truckwebusa.com

www.besttransport.com

www.truckit.com

www.freightlist.com

www.loadlinkonline.com

www.truckloadfreight.com

www.transportation.com

www.directfreight.com

www.internettruckstop.com

www.itruckers.com

www.drivernet.com

www.carrierpoint.com

www.nettrans.com

www.BeBrokerFree.com

www.loglink.net

www.americasloadsonline.com

www.backhaul.net

 www.cargofinder.com

www.dventerprises.com



227

www.eFlatbed.com

www.freightmarket.com

www.ifs.net

www.internetlog.com

www.freight-terminal.com

www.i-t-n.com

www.truckstop.com

www.linklogi.com

www.loadline.net

www.loadmatch.com

www.loadsource.com

www.loadxchange.com

www.moversconnect.com

www.nte.net

www.routelink.com

www.loaddock.com

www.loadingzone.com

www.theroad.com

www.transerv.com

www.cargox.com
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Appendix B: Acronyms

The format used in the alphabetical ordered list of acronyms is the following: 

acronym, description, page where first used, chapter.

1FOOC:  one (1) Fleet Optimal Opportunity Cost, page 115, chapter 4

3PL: Third Party Logistics, page 4, chapter 1

ARL: Average Reinforcement Learning, page 207, chapter 6

BF: Bidding Factor carrier, page 200, chapter 6

DVR: Dynamic Vehicle Routing, page 82, chapter 4

EDI: Electronic Data Interchange, page 7, chapter 1

MC: Marginal Cost carrier, page 200, chapter 6

FP: Fictitious Play, page 208, chapter 6

ICT: Information and Communication Technologies, page 1, chapter 1

JIT: Just In Time, page 6, chapter 1

RL: Reinforcement Learning, page 207, chapter 6

SFO: Static Fleet Optimal, page 114, chapter 4

SIPV: Symmetric Independent Private Values, page 27, chapter 2

TL: Truck Load, page 3, chapter 1.

TLPM: Truck Load Procurement Market, page 3, chapter 1

TSP: Traveling Salesman Problem, page 89, chapter 4
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