
CS202 6- 1

Introduction to C++

Operator Overloading

Topic #6

CS202 6- 2

 Intro to Operator Overloading

 Copy Constructors, Issues of Memberwise Copy

 Constant Objects and Constant Member Functions

 Friend Functions

 When to define operators as Members vs. Non-
Members

 Lvalue vs. Rvalue Expressions

 Return by Value vs. Return by Reference

CS202 6- 3

 Designing Effective User Defined Data
Types

 How to design User Defined Types that
behave as expected

 Practical Rules for Operator Overloading

CS202 6- 4

Copy Constructors

 Shallow Copy:

 The data members of one object are copied into the
data members of another object without taking any
dynamic memory pointed to by those data members
into consideration. (“memberwise copy”)

 Deep Copy:

 Any dynamic memory pointed to by the data
members is duplicated and the contents of that
memory is copied (via copy constructors and
assignment operators -- when overloaded)

CS202 6- 5

Copy Constructors

 In every class, the compiler automatically supplies both
a copy constructor and an assignment operator if we
don't explicitly provide them.

 Both of these member functions perform copy
operations by performing a memberwise copy from
one object to another.

 In situations where pointers are not members of a class,
memberwise copy is an adequate operation for copying
objects.

 However, it is not adequate when data members point
to memory dynamically allocated within the class.

CS202 6- 6

Copy Constructors

 Problems occur with shallow copying when we:

 initialize an object with the value of another
object: name s1; name s2(s1);

 pass an object by value to a function or when
we return by value:

name function_proto (name)

 assign one object to another:

s1 = s2;

CS202 6- 7

Copy Constructors

 If name had a dynamically allocated array of characters
(i.e., one of the data members is a pointer to a char),

 the following shallow copy is disastrous!

smith

ptr

length=10

clone

ptr

length=10

'\0'

S

u

e

S

m

i

t

h

n a m e sm it h ("Su e Sm it h "); / / on e a r g con st r u ct or u se d

n a m e clon e (sm it h); / / d e fa u lt cop y con st r u ct or u se d

CS202 6- 8

Copy Constructors

 To resolve the pass by value and the initialization
issues, we must write a copy constructor whenever
dynamic member is allocated on an object-by-object
basis.

 They have the form:

class_name(const class_name &class_object);

 Notice the name of the “function” is the same name as
the class, and has no return type

 The argument’s data type is that of the class, passed as
a constant reference (think about what would happen if this was passed

by value?!)

CS202 6- 9

Copy Constructors

//name.h interface
class name {
public:
name(char* = ""); //default constructor
name(const name &); //copy constructor
~name(); //destructor
name &operator=(name &); //assignment op

private:
char* ptr; //pointer to name
int length; //length of name including nul char

};

#include "name.h" //name.c implementation
name::name(char* name_ptr) { //constructor
length = strlen(name_ptr); //get name length
ptr = new char[length+1]; //dynamically allocate
strcpy(ptr, name_ptr); //copy name into new space

}
name::name(const name &obj) { //copy constructor
length = obj.length; //get length
ptr = new char[length+1]; //dynamically allocate
strcpy(ptr, obj.ptr); //copy name into new space

}

CS202 6- 10

Copy Constructors

 Now, when we use the following constructors for
initialization, the two objects no longer share memory
but have their own allocated

n a m e sm it h ("Su e Sm it h "); / / on e a r g con st r u ct or u se d

n a m e clon e (sm it h); / / d e fa u lt cop y con st r u ct or u se d

smith

ptr

length=10

clone

ptr

length=10

'\0'

S

u

e

S

m

i

t

h

'\0'

S

u

e

S

m

i

t

h

CS202 6- 11

Copy Constructors

 Copy constructors are also used whenever passing an
object of a class by value: (get_name returns a ptr to a char for
the current object)

int main() {
name smith("Sue Smith"); //constructor with arg used

//call function by value & display from object returned
cout <<function(smith).get_name() <<endl;
return (0);

}

name function(name obj) {
cout <<obj.get_name() <<endl;
return (obj);

}

CS202 6- 12

Copy Constructors

 Using a copy
constructor avoids
objects “sharing”
memory -- but causes
this behavior

 This should convince us
to avoid pass by value
whenever possible --
when passing or
returning objects of a
class!

ptr

length=10

'\0'

S

u

e

S

m

i

t

h

program stack

ptr

length=10

ptr

length=10

return address

• • •

• • •

smith

call by value

return by value

'\0'

S

u

e

S

m

i

t

h

'\0'

S

u

e

S

m

i

t

h

CS202 6- 13

Copy Constructors

 Using the reference operator instead, we change the
function to be: (the function call remains the same)

name &function(name &obj) {
cout <<obj.get_name() <<endl;
return (obj);

}

ptr

length=10

'\0'

S

u

e

S

m

i

t

h

program stack

return address

• • •

• • •

smith

call by reference

return by reference

reference

reference

CS202 6- 14

Operator

Overloading

Introduction to C++

CS202 6- 15

What is..Operator Overloading

 Operator Overloading:

 Allows us to define the behavior of operators when
applied to objects of a class

 Examine what operators make sense for a “new data
type” we are creating (think about data abstraction
from last lecture) and implement those that make
sense as operators:

 input_data is replaced by >>

 display is replaced by <<

 assign or copy is replaced by =

CS202 6- 16

Operator Overloading

 Operator Overloading does not allow us to alter the
meaning of operators when applied to built-in types

 one of the operands must be an object of a class

 Operator Overloading does not allow us to define new
operator symbols

 we overload those provided for in the
language to have meaning for a new type of
data...and there are very specific rules!

CS202 6- 17

Operator Overloading

 It is similar to overloading functions

 except the function name is replaced by the
keyword operator followed by the operator’s
symbol

 the return type represents the type of the
residual value resulting from the operation

– rvalue? -lvalue?

– allowing for “chaining” of operations

 the arguments represent the 1 or 2 operands
expected by the operator

CS202 6- 18

Operator Overloading

 We cannot change the....

 number of operands an operator expects

 precedence and associativity of operators

 or use default arguments with operators

 We should not change...

 the meaning of the operator
(+ does not mean subtraction!)

 the nature of the operator (3+4 == 4+3)

 the data types and residual value expected

 whether it is an rvalued or lvalued result

 provide consistent definitions (if + is overloaded, then +=

should also be)

CS202 6- 19

Understanding the Syntax

 This declaration allows us to apply the subtraction
operator to two objects of the same class and returns an
object of that class as an rvalue.

 The italics represent my recommendations, if followed,
result in behavior that more closely matches that of the
built-in types.

 Since the predefined behavior of the subtraction
operator does not modify its two operands, the formal
arguments of the operator- function should be specified
either as constant references or passed by value.

class_name operator- (const class_name &operand_1,
 const class_name &operand_2);

Return type Function name Formal arguments

CS202 6- 20

Operator Overloading

 An overloaded operator's operands are defined the
same as arguments are defined for functions.

 The arguments represent the operator's operands.
 Unary operators have a single argument and binary

operators have two arguments.
 When an operator is used, the operands become the

actual arguments of the "function call".
 Therefore, the formal arguments must match the data

type(s) expected as operands or a conversion to those
types must exist.

 I recommend that unary operators always be
overloaded as members, since the first argument must
be an object of a class (except....as discussed in class)

CS202 6- 21

Operator Overloading

 The return type of overloaded operators is also defined
the same as it is for overloaded functions.

 The value returned from an overloaded operator is the
residual value of the expression containing that
operator and its operands.

 It is extremely important that we pay close attention to
the type and value returned.

 It is the returned value that allows an operator to be
used within a larger expression.

 It allows the result of some operation to become the
operand for another operator.

 A return type of void would render an operator useless
when used within an expression. (I suggest that we
never have an operator return void!)

CS202 6- 22

Operator Overloading

 Binary operators have either a single argument if they
are overloaded as members (the first operand
corresponds to the implicit this pointer and is therefore
an object of the class in which it is defined)

 Or, binary operators have two operands if they are
overloaded as non-members

 (where there is no implicit first operand)
 In this latter case, it is typical to declare the operators as

friends of the class(es) they apply to -- so that they can
have access privileges to the private/protected data
members without going thru the public client interface.

CS202 6- 23

As Non-members

 Overloading operators as non-member functions is like
defining regular C++ functions.

 Since they are not part of a class' definition, they can
only access the public members. Because of this, non-
member overloaded operators are often declared to be
friends of the class.

 When we overload operators as non-member functions,
all operands must be explicitly specified as formal
arguments.

 For binary operators, either the first or the second must
be an object of a class; the other operand can be any
type.

CS202 6- 24

Operator Overloading

 All arithmetic, bitwise, relational, equality, logical, and
compound assignment operators can be overloaded.

 In addition, the address-of, dereference, increment,
decrement, and comma operators can be overloaded.

 Operators that cannot be overloaded include:
:: scope resolution operator
. direct member access operator
.* direct pointer to member access operator
?: conditional operator
sizeof size of object operator

 Operators that must be overloaded as members:
= assignment operator
[] subscript operator
() function call operator
-> indirect member access operator
->* indirect pointer to member access operator

CS202 6- 25

Guidelines:

 Determine if any of the class operations should be
implemented as overloaded operators: does an
operator exists that performs behavior similar in nature
to our operations? If so, consider overloading those
operators. If not, use member functions.

 Consider what data types are allowed as operands,
what conversions can be applied to the operands,
whether or not the operands are modified by the
operation that takes place, what data type is returned
as the residual value, and whether the residual value is
an rvalue (an object returned by value), a non-
modifiable lvalue (a const reference to an object), or a
modifiable lvalue (a reference to an object).

CS202 6- 26

Guidelines:

 If the first operand is not an object of the class in all
usages: (e.g., +)

 overload it as a friend non-member

 As a non-member, if the operands are not modified by
the operator (and are objects of a class)

 the arguments should be const references

 If the first operand is always an object of the class: (+=)

 overload it as a member

 As a member, if the operator does not modify the
current object (i.e., data members are not modified)

 overload it as a const member

CS202 6- 27

Guidelines:

 If the operator results in an lvalued expression

 the return type should be returned by referenced

 for example -= results in an lvalued expression

 If the operator results in an rvalued expression

 the return type should be returned by reference if
possible but usually we are “stuck” returning by
value (causing the copy constructor to be invoked
when we use these operators..........)

 for example - results in an rvalued expression

CS202 6- 28

Guidelines: (example)

 As a member, operator - could be overloaded as:

 As a non-member, operator - resembles:

class class_name {
 public:
 class_name operator- () const;
};

Return type The operand

is not modified

class class_name {
 public:
 class_name operator- (const class_name &op_2) const;
};

Return type Second operand

is not modified

Second

operand

First operand

is not modified

CS202 6- 29

Efficiency Considerations

 Temporary objects are often created by implicit type
conversions or when arguments are returned by value.

 When an operator and its operands are evaluated, an
rvalue is often created.

 That rvalue is a temporary on the stack that can be used
within a larger expression. The lifetime of the
temporary is from the time it is created until the end of
the statement in which it is used.

 While the use of temporaries is necessary to protect the
original contents of the operator's operands, it does
require additional memory and extra (and sometimes
redundant) copy operations.

CS202 6- 30

Efficiency Considerations

 Whenever we overload the arithmetic or bitwise
operators, we should also overload the corresponding
compound assignment operators.

 When we do, it is tempting to reuse the overloaded
arithmetic or bitwise operators to implement the
compound assignment operator.

//assumes the + operator is overloaded for string class
inline string &string::operator+=(char * s) {
*this = *this + s; //concatenate a literal
return (*this); //return modified current object

}

Don’t Program this Way!

CS202 6- 31

Efficiency Considerations

 While the code on the previous slide looks clean and
simple, it has serious performance drawbacks.

 This is because it creates a temporary string object from
the argument, creates a second temporary object as a
result of the concatenation, and then uses the copy
constructor to copy that temporary back into the
original object (*this).

 If the object was a large object, this simple operation
could end up being very expensive!

CS202 6- 32

Building

a Class

Introduction to C++

CS202 6- 33

String Class Example

 Let’s build a complete class using operator overloading
to demonstrate the rules and guidelines discussed

 We will re-examine this example again next lecture
when discussing user defined type conversions

 The operations that make sense include:

= for straight assignment of strings and char *’s

>> and << for insertion and extraction

+ and += for concatenation of strings and char *’s

<, <=, >, >=, !=, == for comparison of strings

[] for accessing a particular character in a string

CS202 6- 34

Overloading = Operators

 Whenever there is dynamic memory allocated on an
object-by-object basis in a class, we should overload the
assignment operator for the same reasons that require
the copy constructor

 The assignment operator must be overloaded as a
member, and it doesn’t modify the second operand (so
if it is an object of a class -- it should be a const ref.)

 The assignment operator can be chained, so it should
return an lvalued object, by reference

 It modifies the current object, so it cannot be a const
member function

CS202 6- 35

Overloading = Operator
class string {
public:
string(): str(0), len(0) {}; //constructor
string(const string &); //copy constructor
~string(); //destructor
string & operator = (const string &); //assignment
•••

private:
char * str;
int len;

};

string & operator = (const string & s2) {
if (this == &s2) //check for self assignment
return *this;

if (str) //current object has a value
delete [] str; //deallocate any dynamic memory

str = new char [s2.len+1];
strcpy(str,s2.str);
len = s2.len;
return *this;

}

CS202 6- 36

Overloading <<, >> Operators

 We overload the << and >> operators for insertion into
the output stream and extraction from the input
stream.

 The iostream library overloads these operators for the
built-in data types, but is not equipped to handle new
data types that we create. Therefore, in order for
extraction and insertion operators to be used with
objects of our classes, we must overload these operators
ourselves.

 The extraction and insertion operators must be
overloaded as non-members because the first operand
is an object of type istream or ostream and not an object
of one of our classes.

CS202 6- 37

Overloading <<, >> Operators
 We know from examining how these operators behave

on built-in types that extraction will modify the second
operand but the insertion operator will not.

 Therefore, the extraction operation should declare the
second operand to be a reference.

 The insertion operator should specify the second
operator to be a constant reference.

 The return value should be a reference to the object
(istream or ostream) that invoked the operator for
chaining.

cin >> str >>i;

cout << str <<i;

ostream &operator<<(ostream &, const string &);
istream &operator>>(istream &, string &);

Residu al v alu e is th e

sam e type as th e first

operan d

(m odifiable lv alu e)

>> m odifies

th e secon d

operan d!

Th e first operan d

are objects cin or

cou t

CS202 6- 38

Overloading >>, << Operators

 It is tempting when overloading these operators to
include prompts and formatting.

 This should be avoided. Just imagine how awkward
our programs would be if every time we read an int or
a float the extraction operator would first display a
prompt. It would be impossible for the prompt to be
meaningful to all possible applications.

 Plus, what if the input was redirected from a file?
Instead, the extraction operator should perform input
consistent with the built-in types.

 When we read any type of data, prompts only occur if
we explicitly write one out (e.g., cout <<"Please enter...").

CS202 6- 39

Overloading >>, << Operators
class string {
public:
friend istream & operator >> (istream &, string &);
friend ostream & operator << (ostream &, const string&);
•••

private:
char * str;
int len;

};

istream & operator >> (istream &in, string &s) {
char temp[100];
in >>temp; //or, should this could be in.get?!
s.len = strlen(temp);
s.str = new char[s.len+1];
strcpy(s.str, temp);
return in;

}

ostream & operator << (ostream &o, const string& s){
o << s.str; //notice no additional whitespace sent....
return o;

CS202 6- 40

Overloading +, +=Operators

 If the + operator is overloaded, we should also
overload the += operator

 The + operator can take either a string or a char * as the
first or second operands, so we will overload it as a
non-member friend and support the following:
 string + char *, char * + string, string + string

 For the += operator, the first operand must be a string
object, so we will overload it as a member

 The + operator results in a string as an rvalue temp

 The += operator results in a string as an lvalue

 The + operator doesn’t modify either operand, so string
object should be passed as constant references

CS202 6- 41

Overloading +, += Operators
class string {
public:
explicit string (char *); //another constructor
friend string operator + (const string &, char *);
friend string operator + (char *, const string &);
friend string operator + (const string&, const string&);
string & operator += (const string &);
string & operator += (char *);
•••

};
string operator + (const string &s, char *lit) {

char * temp = new char[s.len+strlen(lit)+1];
strcpy(temp, s.str);
strcat(temp, lit);
return string(temp);

}

 This approach eliminates the creation of a temporary
string “object” in the + function by explicitly using the
constructor to create the object as part of the return
statement. When this can be done, it saves the cost of
copying the object to the stack at return time.

CS202 6- 42

Overloading +, += Operators
class string {
public:
explicit string (char *); //another constructor
friend string operator + (const string &, char *);
friend string operator + (char *, const string &);
friend string operator + (const string&, const string&);
string & operator += (const string &);
string & operator += (char *);
•••

};
string operator + (const string &s,const string &s2) {

char * temp = new char[s.len+s2.len+1];
strcpy(temp, s.str);
strcat(temp, s2.str);
return string(temp); //makes a temporary object

}
string & string::operator += (const string & s2) {

len += s2.len;
char * temp = new char[len+s2.len+1];
strcpy(temp, str);
strcat(temp, s2.str);
str = temp; //copy over the pointer
return *this; //just copying an address

}

CS202 6- 43

Overloading +, += Operators
 Alternative implementations, not as efficient:

string operator + (const string &s, char *lit) {
string temp;
temp.len = s.len+strlen(lit);
temp.str = new char[temp.len+1];
strcpy(temp.str, s.str);
strcat(temp.str, lit);
return temp;

}

Don’t do the following....
string & string::operator += (const string & s2) {

return *this=*this+s2; //Extra unnecessary deep copies
}

CS202 6- 44

Overloading +, += Operators
 If the + operator was overloaded as a member, the first

operand would have to be an object of the class and we
should define the member as a const because it doesn’t
modify the current object (i.e., the first operand is not
modified by this operator!

string string::operator + (char *lit)const { //1 argument
char * temp = new char[len+strlen(lit)+1];
strcpy(temp, str);
strcat(temp, lit);
return string(temp); //makes a temporary object

}

 Defining member functions as const allows the operator to
be used with a constant object as the first operand.
Otherwise, using constant objects would not be allowable
resulting in a syntax error.

CS202 6- 45

Relational/Equality Operators

 The next set of operators we will examine are the
relational and equality operators

 These should be overloaded as non-members as either
the first or second operands could be a non-class object:
string < literal, literal < string, string < string

 Neither operand is modified, so all class objects should
be passed as constant references.

 The residual value should be a bool, however an int
will also suffice, returned by value.

 If overloaded as a member -- make sure to specify them as a

const member, for the same reasons as discussed earlier.

CS202 6- 46

Relational/Equality Operators
class string {
public:
friend bool operator < (const string &, char *);
friend bool operator < (char *, const string &);
friend bool operator < (const string &, const string &);

friend bool operator <= (const string &, char *);
friend bool operator <= (char *, const string &);
friend bool operator <= (const string &,const string &);

friend bool operator > (const string &, char *);
friend bool operator > (char *, const string &);
friend bool operator > (const string &, const string &);

friend bool operator >= (const string &, char *);
friend bool operator >= (char *, const string &);
friend bool operator >= (const string &,const string &);

friend bool operator != (const string &, char *);
friend bool operator != (char *, const string &);
friend bool operator != (const string &,const string &);

friend bool operator == (const string &, char *);
friend bool operator == (char *, const string &);
friend bool operator == (const string &,const string &);

CS202 6- 47

Relational/Equality Operators
bool operator < (const string & s1, char * lit) {
return (strcmp(s1.str, lit) < 0);

}

bool operator < (const string & s1, const string & s2) {
return (strcmp(s1.str, s2.str) < 0);

}

Then, you could implement the > either of the following:

bool operator >= (char * lit, const string & s1) {
return (strcmp(lit, s1.str) >= 0);

}

or,

bool operator >= (char * lit, const string & s1) {
return (s1 < lit);

}

Which is better?

CS202 6- 48

Overloading [] Operator

 The subscript operator should be overloaded as a
member; the first operand must be an object of the class

 To be consistent, the second operand should be an
integer index. Passed by value as it isn’t changed by the
operator.

 Since the first operand is not modified (i.e., the current
object is not modified), it should be specified as a
constant member -- although exceptions are common.

 The residual value should be the data type of the
“element” of the “array” being indexed, by reference.

 The residual value is an lvalue -- not an rvalue!

CS202 6- 49

Overloading [] Operator
class string {
public:
char & operator [] (int) const;
•••

};

char & string::operator [] (int index) const {
return str[index];

}

 Consider changing this to add
 bounds checking

 provide access to “temporary” memory to
ensure the “private” nature of str’s memory.

CS202 6- 50

Function Call Operator

 Another operator that is interesting to discuss is the (),
function call operator.

 This operator is the only operator we can overload with
as many arguments as we want. We are not limited to
1, 2, 3, etc. In fact, the function call operator may be
overloaded several times within the same scope with a
different number (and/or type) of arguments.

 It is useful for accessing elements from a multi-
dimensional array: matrix (row, col) where the []
operator cannot help out as it takes 2 operands always,
never 3!

CS202 6- 51

Function Call Operator

 The function call operator must be a member as the
first operand is always an object of the class.

 The data type, whether or not operands are modified,
whether or not it is a const member, and the data type
of the residual value all depend upon its application.
Again, it is the only operator that has this type of
wildcard flexibility!

 return_type class_type::operator () (argument list);

 For a matrix of floats:

float & matrix::operator () (int row, int col) const;

CS202 6- 52

Increment and Decrement

 Two other operators that are useful are the increment
and decrement operators (++ and --).

 Remember these operators can be used in both the
prefix and postfix form, and have very different
meanings.

 In the prefix form, the residual value is the post
incremented or post decremented value.

 In the postfix form, the residual value is the pre
incremented or pre decremented value.

 These are unary operators, so they should be
overloaded as members.

CS202 6- 53

Increment and Decrement

 To distinguish the prefix from the postfix forms, the
C++ standard has added an unused argument (int) to
represent the postfix signature.

 Since these operators should modify the current
object,they should not be const members!

 Prefix: residual vlaue is an lvalue
counter & counter::operator ++ () { //body }
counter & counter::operator -- () { //body }

 Postfix: residual value is an rvalue, different than the
current object!

counter counter::operator ++ (int) { //body }
counter counter::operator -- (int) { //body }

CS202 6- 54

A List

Data Type

Introduction to C++

CS202 6- 55

List Class Example

 Let’s quickly build a partial class using operator
overloading to demonstrate the rules and guidelines
discussed

 We will re-examine this example again next lecture
when discussing user defined type conversions

 The operations that make sense include:

= for straight assignment of one list to another

>> and << for insertion and extraction

+ and += for concatenation of two lists & strings

!=, == for comparison of lists

[] for accessing a particular string in a list

++ for iterating to the next string

CS202 6- 56

Class Interface
class node; //node declaration
class list { //list.h
public:
list(): head(0){}
list (const list &);
~ list();
list & operator = (const list &);
friend ostream & operator << (ostream &, const list &);
friend istream & operator >> (istream &, list &);
friend list operator + (const list &, const list &);
friend list operator + (const list &, const string &);
friend list operator + (const string &, const list &);
list & operator += (const list &);
list & operator += (const string &);
bool operator == (const list &) const;
bool operator != (const list &) const;
string & operator [] (int) const;
string & operator ++ (); //prefix
string operator ++ (int); //postfix
•••

private:
node * head, *ptr, *tail; //discuss pro‟s con‟s

};

CS202 6- 57

Copy Constructor
//List Class Implementation file: list.c

class node { //node definition
string obj;
node * next;

};

list::list (const list & l) {
if (!l.head)
head = ptr = tail = NULL;

else {
head = new node;
head->obj = l.head->obj;

node * dest = head; //why are these local?
node * source = l.head;
while (source) {
dest->next = new node;
dest = dest->next;
dest->obj = source->obj; //what is this doing?

}
dest->next = NULL;
tail = dest; ptr = head;

}
}

CS202 6- 58

Assignment Operator
list & list::operator = (const list & l) {
if (this == &l) return *this; //why not *this == l?
//If there is a list, destroy it
node * current;
while (head) {
current = head->next;
delete head;
head = current;

}
if (!l.head)
head = ptr = tail = NULL;

else {
head = new node;
head->obj = l.head->obj;

node * dest = head; //why are these local?
node * source = l.head;
while (source) {
dest->next = new node;
dest = dest->next;
dest->obj = source->obj; //what is this doing?

}
dest->next = NULL;
tail = dest; ptr = head;

}
}

CS202 6- 59

Destructor, Insertion
list::~list() {
node * current;
while (head) {
current = head->next;
delete head; //what does this do?
head = current;

}
ptr = tail = NULL;

}

ostream & operator << (ostream & out, const list & l) {
node * current = l.head; //how can it access head?
while (current) {
out <<current->obj <<„ „; //what does this do?
current = current->next;

}
return out;

}

CS202 6- 60

>> Operators
 What interpretation could there be of the >> operator?

 we could insert new “strings” until a \n is next in the
input stream to wherever a current ptr (influenced by
++ and -- operators)

 we could deallocate the current list and replace it with
what is read in

 we could tack on new nodes at the end of the list

 others?

CS202 6- 61

>> Operators
istream & operator >> (istream & in, list & l) {

node * current = l.tail;
if (!current) { //empty list starting out

l.head = current = new node;
in >>l.head->obj;

l.tail = l.ptr = l.head;
l.head->next = NULL;

}

node * savelist = l.tail->next;
char next_char;
while ((next_char = in.peek()) != „\n‟ &&

next_char != EOF) {
current->next = new node;
current = current->next;
in >>current->obj; //what does this do?
}
current->next = savelist; ptr = current;

if (!savelist) l.tail = current;
return in;

}

CS202 6- 62

+ Operators
list operator + (const list & l1, const list & l2) {
//remember, neither l1 nor l2 should be modified!
list temp(l1); //positions tail at the end of l1
temp += l2; //how efficient is this?
return temp;
}

Or, should we instead:
list operator + (const list & l1, const list & l2) {
list temp(l1); //positions tail at the end of l1
if (!temp.head) temp = l2;
else {
node * dest = temp.tail;
node * source = l2.head;
while (source) {
dest->next = new node;
dest = dest->next;
dest->obj = source->obj;
source = source->next;

}
dest->next = NULL; temp.tail = dest;
temp.ptr = temp.head;
} return temp;

}

CS202 6- 63

+= Operators
list & list::operator += (const list & l2) {
//why wouldn‟t we program this way?
*this = *this + l2;
return *this;

}

Or, would it be better to do the following?

list & list::operator += (const list & l2) {
if (!head) *this = l2; //think about this...
else {
node * dest = tail;
node * source = l2.head;
while (source) {
dest->next = new node;
dest = dest->next;
dest->obj = source->obj;
source = source->next;

}
dest->next = NULL; tail = dest; //ptr = temp.head; yes?
} return *this;

}

CS202 6- 64

== and != Operators
Notice why a “first” and “second” shouldn’t be data

members:

bool list::operator == (const list & l2) const {
node * first = head;
node * second = l2.head;
while (first && second && first->obj == second->obj) {
first = first->next;
second = second->next;

}
if (first || second) return FALSE;
return TRUE;

}

Evaluate the efficiency of the following:

bool list::operator != (const list & l2) const {
return !(*this == l2);
}

CS202 6- 65

[] Operator
string & list::operator [] (int index) const {
node * current = head;
for (int i=0; i< index && current; i++)
current = current->next;

if (!current) {
//consider what other alternatives there are
string * temp = new string; //just in case
return *temp;

}
return current->obj;

}

 Notice how we must consider each special case (such as an
index that goes beyond the number of nodes provided in
the linked list

CS202 6- 66

++ Operators: Prefix & Postfix
string & list::operator ++ () { //prefix
if (!ptr || !(ptr->next)) {
//consider what other alternatives there are
string * temp = new string; //just in case
return *temp;

}
ptr = ptr->next;
return ptr->obj;

}
string operator ++ (int){ //postfix
string temp;
if (!ptr) {
temp = “\0”; //what does this do?
return temp; //and this?

}
temp = ptr->obj; //and this?
ptr = ptr->next; //and this?
return temp; //and this?

}

