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Abstract

Programmers of message-passing codes for clusters of workstations face a daunting challenge in understand-

ing the performance bottlenecks of their applications. This is largely due to the vast amount of performance data

that is collected, and the time and expertise necessary to use traditional parallel performance tools to analyze that

data.

This paper reports on our recent efforts developing a performance tool for MPI applications on Linux clusters.

Our target MPI implementations were LAM/MPI and MPICH2, both of which support portions of the MPI-2 Stan-

dard. We started with an existing performance tool and added support for non-shared file systems, MPI-2 one-

sided communications, dynamic process creation, and MPI Object naming. We present results using the enhanced

version of the tool to examine the performance of several applications. We describe a new performance tool

benchmark suite we have developed, PPerfMark, and present results for the benchmark using the enhanced tool.

1 Introduction

Developing efficient parallel programs for medium to large scale Linux clusters is a challenging task. A primary

difficulty is dividing the work and data needed to compute a solution into distinct processes that can be run on sepa-

rate computers. This division needs to take into account not onlycomputational correctness, but also needs to mini-

mize communication overhead. Communication between processes on separate nodes of a cluster is costly because

the nodes do not share memory. As the number of cluster nodes increases, it is becomes increasingly difficult for the

software engineer to maintain a clear understanding of the state of the application at any given moment during execu-

tion.

Improving this development process is important for several reasons. First of all, Linux clusters are rapidly gain-

ing popularity as supercomputing platforms. They are useful for testing software intended for more expensive spe-

cialized supercomputers, as well as for production use. Second, there is a significant lack of software tools, including

parallel performance tools, to help programmers on supercomputers complete their work efficiently and correctly.

The scientists dependent upon the results of programs run on these platforms need such tools, so that they can develop

applications more quickly, and spend less time optimizing their code. Third, the problems being solved using Linux

clusters are important and include: DNA analysis, drug design, global weather prediction, nuclear simulations, and

molecular modeling.

We are addressing this need by strengthening the parallel performance tool base for MPI programmers on Linux

clusters. Parallel applications for Linux clusters are commonly developed using a message-passing library such as

MPI [28]. MPI defines an interface; there are many commercial and free implementations available. We have

extended an existing parallel performance tool, Paradyn [18] to support performance analysis of applications devel-

oped with either of two freely-available MPI implementations: MPICH and LAM [12, 4]. Our goal is availability of

a single performance tool that supports all MPI features, including the newer MPI-2 Standard features, for the Linux

platform. In this paper, we present results for all MPI-1 and selected MPI-2 features.

Major efforts have been undertaken to develop supercomputing-caliber Linux clusters by the Department of

Energy and the National Science Foundation (NSF). In June of 2003, the MCR Linux cluster at Lawrence Livermore

National Laboratory (LLNL), running with commodity processors, was ranked as the third fastest system in the world

with a peak computing speed of 11 teraflops [30]. The TeraGrid is an NSF-funded project to build the world’s first

supercomputing grid. The primary computational units of this system are Linux clusters [29]. Reasons reported for

the increased use of Linux clusters include: the low price/performance ratio when using commodity or near-commod-

ity parts; the open-source nature of the operating system; and the overall increased availability and manageability of

the system as compared to proprietary systems [9, 3].

The increased use of Linux clusters for parallel applications has led to an urgent need for improved software sup-

port tools. The National Science Foundation finds the need for support software for users to be urgent and recom-
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mends that more work be done to develop software tools for supercomputing platforms [22]. The researchers in the

Linux Project at LLNL report that there is a need for system software to support Linux clusters [9]. Baden points out

the multitude of difficulties that scientific programmers have on these types of systems; theymust manage shared-

memory, parallelism, locality in the application, processes, and message-passing. He points out that the lack of soft-

ware tools to help with these problems hinders efficient implementations of application programs [2]. The need for

software tools is especially great for Linux clusters because the nodes of a Linux cluster are distinct complete com-

puters, and, in general, are not designed for the purpose of clustering. Because of this, there is a need for software to

make the nodes of a cluster act as one computing machine.

The Message Passing Interface (MPI) emerged as a standard in 1994 as MPI-1 and was widely accepted by the

scientific programming community. In 1997, another version of MPI was released that extends the functionality of

the original interface. This version is called MPI-2. Some of the new features this version provides for are parallel

file access, dynamic process creation, and one-sided communications. Among the freely-available MPI implementa-

tions, complete support for the MPI-2 Standard has not yet been achieved. However, LAM 7.0.4 has support for most

of MPI-2 and the current beta release of MPICH2 supports a substantial portion. There is little performance tool sup-

port for these new features, likely because the MPI implementations had not yet provided for them until recently, so

there wasn’t much demand. Interest in performance tuning MPI-2 features will likely increase now that the freely-

available MPI implementations provide support for the standard. Application programmers may adopt the new fea-

tures as the performance of their programs can be increased. For instance, NASA’s Goddard Space Flight Center

reported a 39% improvement in throughput after replacing MPI-1.2 non-blocking communication with MPI-2 one-

sided communication in a global atmospheric modeling program [24].

Our goal is to strengthen the parallel performance tool base for MPI programmers on Linux clusters. To achieve

this, we chose to increase the level of support for MPI in an existing parallel performance tool, Paradyn [18]. Para-

dyn is a run time profiling tool developed at the University of Wisconsin that utilizes dynamic instrumentation to

insert and delete measurement instructions at run time [15].

We chose Paradyn instead of creating our own new tool because the source code for Paradyn is freely available

and is well-documented, its mechanism for creating new metrics and resource constraints is extensible, and it already

supported MPICH on Linux clusters with shared filesystems. Paradyn’s Performance Consultant module automati-

cally searches for performance bottlenecks in user programs. This is ideal for long-running programs, because it

eliminates the need for manually searching through execution trace visualizations for potential performance prob-

lems. Paradyn is convenient for the application programmer, because the application does not need to be recompiled

in order for performance measurement to be possible. Its use of dynamic instrumentation can dramatically decrease

the amount of data that must be collected over the course of the program, as the decision on what to instrument can be

made dynamically. Performance measurement instructions only need to be inserted in code sections where a perfor-

mance problem is suspected.

In the following section we summarize related research. Section 3 contains a discussion of issues for perfor-

mance tool developers. Section 4 describes the changes we made to Paradyn for the new functionality. Section 5 pre-

sents results from a variety of tests we conducted to verify the enhanced tool’s performance measurements. We

conclude and discuss future work in Section 6.

2 Related Work

Parallel performance tools fall into two main categories: post-mortem analysis tools and dynamic instrumenta-

tion tools. Post-mortem tools that measure MPI applications include: Jumpshot, Vampir, SeeWithin/Pro, Paraver,

mpiP, Pablo, TAU, KOJAK, Prophesy, and PE Benchmarker [34, 21, 5, 25, 32, 26, 17, 33, 31, 23]. All of these tools

allow the user to analyze detailed performance data ofMPI programs at the end of the program’s execution. Feed-

back is given to the user through either a visualization of the execution trace (Jumpshot, Vampir, Paraver), post-mor-

tem performance analysis (SeeWithin/Pro, mpiP, KOJAK, Prophesy), or both (Pablo,TAU, PE Benchmarker). In

general, these tools suffer from a scalability limit caused bythe tool’s generation of unmanageably large trace files.

An exception is mpiP, which uses profiling information to perform its analysis of the MPI program. Dynamic instru-

mentation is the insertion and removal of instrumentation instructions during program execution [15]. This greatly

reduces the total amount of data collected during each measured application run. Dynamic instrumentation tools

include DPCL, TAU, Paradyn, SIGMA, DynaProf, Autopilot, KOJAK, and PE Benchmarker [8, 17, 18, 7, 20, 27,

33, 23]. Of the available performance tools, Jumpshot, KOJAK, Vampir, Paraver, SeeWithin/Pro, mpiP, Pablo, Para-

dyn, and TAU can be used to measure MPI applications on Linux clusters.
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We found several tools that support MPI-2 features of MPI. TAU supports performance measurement of mixed-

language programs, which means that a user could measure the performance of a program with source files written in

a combination of C, C++, and Fortran 90. Vampir supports MPI-I/O and provides trace information of the MPI-I/O

operations and statistics such as operation count, bytes read/written, and transmission rate. However, Vampir is a

post-mortem viewer of performance data, and as such does not allow the flexibility of run time performance viewing.

It also does not provide any automated performance diagnosis. Pablo supports the MPI-I/O features of MPI-2. Pablo

utilizes source code instrumentation, so the user cannot change what performance data is collected at run time as can

be done with Paradyn. Also, Pablo MPI-I/O support has not been tested on the Linux platform. Prophesy has some

MPI-2 support. Prophesy’s goal is performance prediction of applications on different systems using performance

data from multiple program runs. This contrasts with that of Paradyn: automated performance diagnosis at run time.

We believe that a full implementation of our enhanced version of Paradyn will greatly improve the performance tool

support available for MPI applications on Linux clusters.

3 Issues for MPI-2 Performance Tool Developers

The MPI-2 Standard introduces a number of new features. The most important new functionalities of MPI-2 that

are of interest to performance tool developers are: dynamic process creation, remote memory access (RMA), MPI-I/

O, thread support, the ability to name MPI objects, and language mixing. The first four of these features are likely to

have performance impacts on MPI programs, potentially positive and negative. The last three features are important

in that they may effect the internal structure of performance tools used for MPI programs. We discuss each of these

features in turn and point out the topics of interest to performance tool developers.

Dynamic process creation is an important feature for two reasons: spawn operations could represent significant

performance bottlenecks; and tools cannot determine the number of application processes until run time. An MPI

spawn operation includes process creation overhead. Also, the operation is collective over two sets of processes, the

parent group of processes and the child group of processes, so there is a potential synchronization overhead. We

believe that MPI programmers will want to know the specific performance costs to their programs from these opera-

tions. Performance tools need to be able to detect the newly spawned processes at run time in order to measure them

with the rest of the application.

RMA allows the exchange of data between processes in such a way that only one process needs to specify the

sending and receiving parameters. This is helpful for programs that may have data access needs that change at run

time. It saves all involved processes from having to do computation to discover the new data access parameters.

Only one process needs to know the parameters and can perform the data exchange operation on its own. This form

of message passing is achieved by separating the synchronization from the communication. There are two types of

remote memory operations. One is active target, which means that data moves from one process’s memory to the

memory of another, and both processes are explicitly involved in the synchronization. This is similar to message

passing except all data transfer information is provided by one process only, and the second process participates only

in synchronization. The other is passive target, which means that data moves from the memory of one process to the

memory of another process, and only the origin process is explicitly involved in transfer. This is similar to a shared

memory model. The use of RMA can improve the communication performance of some programs. However, the

RMA interface is quite flexible, so it is possible the programmer could use a suboptimal combination of the functions

provided. Also, the fact that the interface contains collective operations means that synchronization bottlenecks can

occur. Examples of RMA synchronization methods are shown in Figure 1. MPI programmers who use this feature

will be interested in optimizing the communication performance of their programs.

File I/O has traditionally been a performance bottleneck for programs. MPI programmers can improve perfor-

mance by utilizing the parallel file I/O operations included in MPI-2. MPI-I/O does not refer to terminal I/O (stdout,

stdin, stderr), but to file access. The interface allows MPI processes to access shared files collectivelyor individually.

The MPI-I/O interface is extensive, allowing the programmer to find the best combination of file operations for the

program. In addition, there are many options for the Info argument for this feature. These flexibilities increase the

chances that a less than optimal combination could be chosen. Programmers will desire performance measurement

for MPI-I/O to help find the best combinations of file operations and access settings.

Additional features that require consideration from the perspective of performance tool internal structure are:

thread support, the naming of MPI objects, and language mixing. The addition of thread support means that perfor-

mance tools for MPI programs must support multi-threaded applications. The ability to name MPI objects is of

importance, because the performance tool should display the user defined names for MPI objects in the user interface.
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Figure 1: RMA Synchronization
This figure shows different remote memory access synchronization patterns. The top left figure shows three processes that are collec-

tively creating a new RMA window. It illustrates the synchronization overhead that could occur if a process were late in executing

MPI_Win_create. The top right figure shows the simplest form of RMA active target synchronization, using MPI_Win_fence.
We see that if Process B is late executing the fence, then processes A and C may incur synchronization waiting time as a result. The

diagram in the bottom left shows the second form of active target synchronization. Although the MPI Standard is flexible in itsspecifi-

cation of which of these routines will be blocking, synchronization overhead can occur. The bottom right diagram shows RMA passive

target synchronization. Synchronization waiting time can occur because a MPI_Win_unlock is not allowed to return until all of its
data transfers have completed at both the origin and the target.

This will facilitate user’s interpretation of the performance data. Language mixing could have an effect on how the

programs are instrumented, especially for those that do automated source-level instrumentation. Performance tools

will need to support programs with source files written in different languages.

4 Implementation

In this section, we describe the implementation of our changes to Paradyn. First we describe our starting point,

the functionality already included in Paradyn at the start of our efforts. Next, we detail changes made to enhance sup-

port of MPI-1 level features. Finally, we describe the implementation for MPI-2 features. We show the results of our

enhanced version in Section 5.

We started our project with an unmodified copy of Paradyn version 4.0 from the Paradyn Group download site

(http://www.paradyn.org). This version already included support for MPICH 1.2.4 ch_p4 on Linux clusters. Paradyn

is an automated parallel performance tool developed at the University of Wisconsin. Paradyn is a profiling tool that

employs dynamic instrumentation to insert performance measurement instructions into programs at run time. Para-

dyn is scalable in that the profile data it collects is kept in a pre-set amount of memory. If Paradyn collects more data

than will fit in the allocated memory, it aggregates the data that it has already collect into a smaller space and then

continues to collect data into the newly freed space.

Paradyn consists of a front end process to collect and visualize data and search for performance bottlenecks; and

daemons that run on each machine node, inserting and deleting instrumentation into the application processes, and

collecting and forwarding performance data. A Paradyn daemon is assigned one or more processes. A Paradyn user

can either request data for specific metrics, or can run an automated search for performance problems using the Per-

formance Consultant module. Either approach results in new instrumentation being inserted into the application,

specified by metric-focus pairs, where the metric specifies what to measure, and the focus specifies what parts of the

application (which processes, or functions, or synchronization objects) to include in the measurement. Resources are

the building blocks for foci. Examples of resources include functions, processes, machine nodes, and message tags.
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Application resources are organized into a tree structure called the Resource Hierarchy. The root of the tree is the

Whole Program. The next level in the hierarchy consists of three general categories: Code, Machine, and SyncOb-

ject. Beneath these are more specific subcategories. For example, the children of SyncObject are types of synchroni-

zation objects such as Message and Barrier. A particular resource is uniquely identified by traversing the tree from

the root to the particular resource. As an example, an MPI communicator ‘X’ would be identified by /SyncObject/

Message/X, because it is a synchronization object associated with message passing.

Users are able to modify and extend Paradyn’s functionality through its Paradyn Configuration Language (PCL)

and Metric Description Language (MDL). The PCL allows users to modify Paradyn’s default behavior by specifying

daemon and process attributes, defining visualizations of performance data, and changing the value of default con-

stants within Paradyn. In order to define new metrics, MDL, a sub-language of PCL, is used. The MDL can also

define resource constraints, which are used to restrict the metric to a particular resource.

4.1 Changes to Support MPI-1 Features

Our first goal was to correctly measure both LAM and MPICH MPI-1 applications on our Linux cluster. We

added support for non-shared filesystems, LAM and some additional support for MPICH. For support of non-shared

file systems, we altered the daemon definition by the addition an optional attribute that specifies the MPI implementa-

tion (i.e. LAM or MPICH). We also eliminated an intermediate step in the way Paradyn starts MPI processes on

Linux. Originally, Paradyn generated a custom script that would be executed by mpirun. This script would then start

the Paradyn daemons, which would start the actual MPI processes. There was overhead in parsing machine files and

determining from user arguments tompirun where the MPI processes would be started. To avoid this, we eliminated

the Paradyn generated script from the steps. This required adding new command line arguments to the Paradyn dae-

mon and changing the default way that the Paradyn daemon handled the MPI process’s file descriptors. Results of our

enhanced version are presented in Section 5.

4.1.1 MPICH Specific Changes

To support non-shared filesystems and the newer MPICH version 1.2.5 ch_p4mpd, we added code to process the

-m and -wdir arguments to mpirun. These arguments specify a machine file and working directory, respectively.

We changed Paradyn’s metric definition file to take into account MPICH’s profiling interface. The MPI Specifi-

cation requires that every MPI routine be accessible with a PMPI prefix. For example,MPI_Send must also be call-

able by the name PMPI_Send. The purpose of this is to provide a mechanism by which users can write profiling

wrapper routines for the MPI functions. By default, the MPICH implementation uses weak symbols to support this

requirement. The use of weak symbols means that a program is able to override an external identifier already defined

in a library; the linker will not complain that there is more than one definition of an external symbol. The MPICH

implementation uses a directive to tell the compiler that, for example, PMPI_Send is a weak symbol for

MPI_Send. When the user callsMPI_Send in their application, it resolves to the definition for PMPI_Send.
However, when the user links in the MPI profiling library, that library has a definition for MPI_Send. In this case,

when the user calls MPI_Send, it resolves to the strong symbol for MPI_Send in the profiling library. The

MPI_Send in the profiling library is a wrapper that does some performance measurement and then calls

PMPI_Send. A user can override MPICH’s default behavior and make two copies of the library by giving the--
disable-weak-symbols argument to configure during compilation.

When MPICH is installed using the default configuration, the symbols for the MPI routines in the binary image

of an MPICH program resolve to their PMPI counterparts. The MPI metrics definitions in Paradyn 4.0 did not

account for this completely. The metric definitions included the profiling function names for Fortran programs, but

not for programs written in C/C++.

4.1.2 LAMSpecific Changes to Support MPI-1

LAM has a comparatively robust and flexible set of arguments to mpirun that allow the user to specify where

the MPI processes should be started. The machines and processors in the system are defined in a startup file that is

given to lamboot. The nodes are indexed in the order they are listed in the machine file.

We implemented support for three commonly used ways to specify the number of MPI processes to be started:

1. By direct CPU count: For direct CPU count, the command line argument -np n argument simply denotes that n

processes be started on the first n processors.

2. By node specification: For node specification, there are two options. The user can give the argument N to

mpirun, which means to run one copy of the process on each node in the LAM session. The user can also des-
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ignate a subset of the nodes using a LAM specific notation of the form nR[,R]*, where R denotes a range of

nodes within the defined number of nodes, [0, num_nodes). For example, the user could specify n0-2,4, which
would start an MPI process on nodes 0,1,2, and 4.

3. By processor specification: For processor specification, there are two options. The command line argumentC
tells LAM to start one MPI process on every processor in the LAM session. The user can also indicate a subset

of processors by using a notation like the one for selecting nodes. The specification is of the formcR[,R]*,
where this time, R denotes a range of processors within the defined numberof CPU’s [0, num_cpus). It is also

possible for the user to give a mixture of node and processor specifications on the command line.

4.2 Support for MPI-2 Features

Our goal is complete performance tool support of MPI-2 features on the Linux platform. We have made strides

to achieving that goal by implementing support for RMA, dynamic process creation, and MPI object naming into

Paradyn.

4.2.1 One-sided Communication

We added a new type of synchronization object to Paradyn’s Resource Hierarchy for RMAWindows, /SyncOb-

ject/Window. RMA windows are created at run time, so we added code to Paradyn to dynamically instrument the

function MPI_Win_create to detect new windows. Upon detection of the newly created RMA window, it is added

as a new resource in Paradyn’s Resource Hierarchy under /SyncObject/Window. We insert the instrumentation into

the MPI program at the function return of MPI_Win_create. At this point, we can collect the identifier given to

the RMA window by the MPI implementation. We give the new RMA window a slightly more complex identifier in

Paradyn to ensure its uniqueness in the Resource Hierarchy. The reason for this is that the MPI implementation may

choose to reuse a window identifier after a previously existing window using that same identifier has been deallocated

with MPI_Win_free. We represent an RMA window in the Resource Hierarchy by ‘N-M’, where N is the identi-

fier given to the window by the MPI implementation, and M is a number that makes the pair unique. We also detect

when an RMA window is freed withMPI_Win_free. The MPI_Win_free function is instrumented to mark the

RMA window as retired in the Resource Hierarchy.

In addition, we defined metric definitions for RMA specific metrics (See Table 1). The metrics were created to

measure performance specifically related to MPI one-sided communications. We also created a resource constraint

for the metrics. The constraint allows the user to extract performance information related to just one RMA window,

by choosing it as a focus in the Resource Hierarchy. We introduce four types of metrics for performance measure-

ment of RMA operations: active target synchronization metrics, passive target synchronization metrics, general syn-

chronization metrics, and data transfer metrics. Examples of metric definitions and the resource constraint are shown

in Figure 2.

We selected the functions for active target synchronization waiting time based on the possibility that they could

block, waiting on a state change of another process. MPI_Win_fence could incur synchronization waiting time as it

is a collective call. Also, the MPI-2 Standard states that it will usuallyact as a barrier routine, which means that the

synchronization overhead could be particularly high. The MPI-2 Standard says that the function MPI_Win_wait

will block until all outstanding MPI_Win_complete calls have been issued, and as a result could add to the synchro-

nization waiting time, so it is incorporated into the active target metrics. The function MPI_Win_start could cause

synchronization waiting time, because it is allowed to block until matchingMPI_Win_post calls have been executed

on each process in the target group. In fact, any of the routines,MPI_Win_start, MPI_Win_complete, MPI_Put,

MPI_Get, or MPI_Accumulate are allowed to block until the corresponding MPI_Win_post has been issued on the

target processes. Thus, any of them could contribute to synchronization waiting time. However, the data transfer rou-

tines, MPI_Put, MPI_Get, and MPI_Accumulate are not included in the active target metrics even though they

could contribute to synchronization time. They are included with the general RMA metrics found in Table 1. The

reason for this is that it is impossible to distinguish between a data transfer routine being used in active target syn-

chronization versus passive target synchronization just by looking at the function arguments.

The passive target metrics give the wall clock time spent in the passive target RMA routines shown in column 3

per unit time. The functions MPI_Win_lock, MPI_Win_unlock, MPI_Put, MPI_Get , or MPI_Accumulate

could all incur synchronization waiting time. However, the data transfer routines are not included in passive target

metrics. They are included instead in the general RMA synchronization metrics, because the data transfer routines

can be used in both passive target and active target synchronization. The MPI-2 Standard requires that

MPI_Win_unlock not return until the data transfer is complete at both the origin and target. The Standard also says
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This table shows the metric definitions that we created for performance measurement of MPI-2 programs with Paradyn. With these,the

user can get a count of the number of RMA operations, bytes transferred by those operations, and the synchronization overhead

incurred as a result of RMA operations.

that MPI_Win_lock or the data transfer routine could block until the lock is acquired at the target. For these reasons,

these functions could both contribute to passive target synchronization waiting time.

The metrics for general RMA synchronization wall clock time include the passive target and active target synchro-

nization routines, MPI_Win_create, and MPI_Win_free. MPI_Win_create is collective and thus carries the pos-

sibility of synchronization overhead. The MPI-2 Standard states that MPI_Win_free requires a barrier

synchronization; thus it will incur synchronization waiting time. Also, the data transfer routines are included in the

general RMA metric as they could contribute to either passive target or active target synchronization.

The data transfer metrics measure RMA operation counts and the number of bytes transferred by them. The met-

ric definitions for the data transfer metrics include the routines MPI_Put, MPI_Get, and MPI_Accumulate.

4.2.2 Dynamic Process Creation

The major difficulty in supporting MPI_Comm_spawn is knowing where the MPI implementation starts the new
processes. The MPI Forum chose to define MPI_Comm_spawn in such a way that it does not define a platform-
independent interface to a process manager. Instead, they allow the user to provide hints about where to start the pro-

cesses via reserved keys in the info argument. However, an MPI implementation is free to ignore the keys if it
chooses. An implementation may also define its own info keys, and use them to direct where the new processes
will be started. For instance, LAM defines thelam_spawn_file key to be the name of a file that contains a LAM
application schema, which has all the information that is needed for the LAM daemon to know where to start the new

processes. If the user does not provide any hints to the spawn call, then the spawned processes will be started in some

MPI implementation dependent way.

For these reasons, there is no implementation independent way to determine where the new processes have

started based on the arguments to the MPI_Comm_spawn call itself. We designed two methods to implement sup-
port for MPI spawn operations, intercept and attach.

The intercept method intercepts the call to MPI_Comm_spawn and replaces the user-provided command argument

with “paradynd.” We also replace the argv argument with values for the Paradyn daemon, which give it information

about how to contact the Paradyn front end and what MPI process to start. The other arguments are left intact. This

way the MPI implementation will start the Paradyn daemons according to its policies. The Paradyn daemons then

Metric Description MPI Functions

rma_put_ops A count of the number of Put operations per unit time. MPI_Put

rma_get_ops A count of the number of Get operations per unit time. MPI_Get

rma_acc_ops A count of the number of Accumulate operations per unit time. MPI_Accumulate

rma_ops A count of the number of Put, Get, and Accumulate operations per unit

time.

MPI_Put MPI_Get 
MPI_Accumulate

rma_put_bytes Number of bytes put per unit time. MPI_Put

rma_get_bytes Number of bytes gotten per unit time. MPI_Get

rma_acc_bytes Number of bytes accumulated in the target process. MPI_Accumulate

rma_bytes Sum of RMA byte count metrics. MPI_Put MPI_Get 
MPI_Accumulate

at_rma_sync_wait Wall clock time spent in active target RMA synchronization routines

during time interval.

MPI_Win_fence  
MPI_Win_start 
MPI_Win_complete  
MPI_Win_wait

pt_rma_sync_wait Wall clock time spent in passive target RMA synchronization routines

during time interval.

MPI_Win_lock 
MPI_Win_unlock

rma_sync_wait Wall clock time spent in RMA synchronization routines during time

interval.

MPI_Win_fence 
MPI_Win_create 
MPI_Win_free 
MPI_Win_start 
MPI_Win_complete 
MPI_Win_wait 
MPI_Win_lock 
MPI_Win_unlock MPI_Put 
MPI_Get MPI_Accumulate

rma_sync_ops A count of the number of RMA synchronization operations per unit

time.

Table 1: RMAMetrics
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Figure 2: RMA Metric Definition and Constraint Examples
This figure shows examples of metric definitions and a resource constraint that we added to Paradyn for the performance measurement

of MPI-2 programs. On the top left is the metric definition for rma_put_ops. It specifies that the counter mpi_rma_put_ops sho uld be

incremented each time a call to MPI_Put is executed. The top right box shows the metric definition for rma_sync_wait. It starts a timer

at the beginning of each RMA synchronization routine and stops it at the routine’s exit, measuring the wall clock time spent in RMA

synchronization. On the bottom left is the metric definition for rma_put_bytes. It specifies that at the function entry ofMPI_Put, a
call to MPI_Type_size will be made with the MPI_Type argument to MPI_Put The size of that type is returned in the variable

bytes. The number of bytes transferred by MPI_Put is bytes multiplied by the count argument to MPI_Put. On the bottom
right is the resource constraint for RMA windows. It specifies that for each MPI_Win function, at function entry, the MPI_Win argu-
ment will be examined with DYNINSTWindow_FindUniqueId to see if Paradyn recognizes that window as a resource. If so, a flag

is set to specify that the particular resource is active. In the interest of space, only the entries forMPI_Put and MPI_Get are shown.
The constraint in its entirety contains entries for all MPI_Win functions.

start the MPI processes that the user specified. While this approach is simple, it has the drawback of adding overhead

to the spawning operation. If the user wanted to measure the performance cost of spawning operations, this method

would inflate the measured values. It also starts a new Paradyn daemon for each new process, which is not strictly

necessary. We implemented the intercept method by making a library that contains wrapper functions for MPI_Init

and MPI_Comm_spawn, using the MPI profiling interface. The wrapper for MPI_Init gathers the information neces-

sary for the startup of the Paradyn daemon. The MPI_Comm_spawn wrapper generates new command and argv argu-

ments for the Paradyn daemon and then calls PMPI_Comm_spawn with those arguments. Paradyn detects the newly

spawned processes and incorporates them into the Resource Hierarchy.

The attach method lets the call to MPI_Comm_spawn proceed without interference, discovers where the newly

spawned processes were created, and then attaches a Paradyn daemon to the new processes. This method has the

advantage of adding less overhead to the spawning operation compared to the intercept method. However, it has

higher implementation complexity because we now need to determine where the new processes were started. One

metric mpi_rma_put_ops {
  name              "rma_put_ops";
  units             ops;
  aggregateOperator sum;
  style             EventCounter;
  flavor            { mpi };
  unitsType         unnormalized;

  constraint moduleConstraint;
  constraint procedureConstraint;
  constraint mpi_WindowConstraint;

  base is counter {
   foreach func in mpi_put {
    append preInsn func.entry constrained 
(* mpi_rma_put_ops++; *)
    }
  }
}

metric mpi_rma_syncWait {
  name              "rma_sync_wait";
  units             CPUs;
  aggregateOperator sum;
  style             EventCounter;
  flavor            { mpi };
  unitsType         normalized;
  constraint procedureConstraint;
  constraint moduleConstraint;
  constraint mpi_syncObjConstraint;
  constraint mpi_WindowConstraint;
  base is wallTimer {
    foreach func in mpi_rma_sync {
      append  preInsn func.entry  constrained
      (* startWallTimer(mpi_rma_syncWait); *)
      prepend preInsn func.return constrained
       (* stopWallTimer( mpi_rma_syncWait); *)
    }
    foreach func in mpi_all_calls { }
  }
}

  metric mpi_rma_put_bytes {
  name              "rma_put_bytes";
  units             bytes;
  aggregateOperator sum;
  style             EventCounter;
  flavor            { mpi };

  constraint moduleConstraint;
  constraint procedureConstraint;
  constraint mpi_WindowConstraint;

  counter bytes;
  counter count;

  base is counter {
    foreach func in mpi_put{
      append preInsn func.entry constrained
        (* MPI_Type_size($arg[2], &bytes);
           count = $arg[1];
           mpi_rma_put_bytes += bytes * count;
         *)
    }
  }
}

constraint mpi_WindowConstraint /SyncObject/Window 
is counter {
  foreach func in mpi_get{
    prepend preInsn func.entry
      (* if (DYNINSTTWindow_FindUniqueId($arg[7]) == 
$constraint[0])
                 mpi_WindowConstraint = 1;
       *)
    append preInsn func.return
      (* mpi_WindowConstraint = 0; *)
  }
  foreach func in mpi_put{
    prepend preInsn func.entry
      (* if (DYNINSTTWindow_FindUniqueId($arg[7]) == 
$constraint[0])
             mpi_WindowConstraint = 1;
       *)
    append preInsn func.return
      (* mpi_WindowConstraint = 0; *)
  }.....
  // includes rest of MPI_Win routines
  }
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way to support the attach method in Paradyn would be to use the MPI Debugging Interface [6] to get information

about the new processes. The purpose of the interface is to allow debuggers to get detailed information about MPI

application objects, such as communicators and message queues through the interface. Paradyn could insert instru-

mentation at the function exit of the call to MPI_Comm_spawn to query the interface for the new process information.

The interface has a global variable MPIR_proctable that holds information about every process in the application.

It also has a function to query for new processes that have been added to the application by spawning operations.

Unfortunately, as of this writing, neither LAM nor MPICH2 support the dynamic process creation parts of the debug-

ging interface.

We consider our existing support for dynamic process creation in Paradyn to be a first effort. We feel that a better

solution would be to detect the spawn operation using dynamic instrumentation, then attach to the newly created pro-

cesses using information such as that provided by the MPI Debugging Interface, should it become available.

4.2.3 Naming of MPI Objects

The MPI-2 Standard allows a programmer to give user-friendly names to RMA windows, MPI communicators,

and MPI datatypes. We implemented support for the naming of RMA windows and MPI communicators into Para-

dyn.

When a new resource, such as a process, communicator, or RMAwindow is discovered byParadyn at run time, a

new Paradyn resource object is created for it and a display representation of the resource is shown in the user inter-

face. To support MPI-2 object naming, we implemented a way for the Paradyn daemon to communicate updated

information about resources to the front end. This updated information could include a user-defined name for a

resource or a notification that a resource has been deallocated. In the case that the new information is a user-defined

name, the daemon sends an update report to the front end for that resource. The front end then updates the display of

the resource hierarchy to reflect the name change. In the case that the resource has been deallocated, the Paradyn dae-

mon sends an update report to the front end indicating that the resource is retired. This causes the resource to be

“grayed out” in the display of the resource hierarchy and removes it from being a candidate bottleneck in the Perfor-

mance Consultant’s search.

5 Results

To test our enhanced version of Paradyn, we conducted a variety of tests for MPI-1 and MPI-2 features. We com-

pared Paradyn’s measurements against programs with known behavior, the findings of other performance tools, and

benchmark programs.

We show diagrams that are a condensed form of the PC’s findings. In them, only hypotheses that tested true for

at least one of the MPI implementations are shown. In some cases, a mapping is made between what is shown in the

diagram and what was displayed in thePC window. We indicate this with a †. For instance, instead of printing a par-

ticular machine’s hostname, we would show ‘node 1 †.’

Some results in this section report values of metric-focus pairs as measured by Paradyn. Performance measure-

ments are collected by Paradyn in the following way. Paradyn keeps track of performance data in array of predefined

size. Each element of the array is called a bin and contains performance data collected over an interval of time. In

order to accommodate long running programs, Paradyn dynamically ‘folds’ the bins whenever thearraybecomes full.

The values from two neighboring bins are combined, and the new bin represents twice the time period. In this way,

half of the array storage is freed to collect more performance data. Over time, the granularity of the measurements

decreases. The granularity of the bins starts out at 0.2 seconds. For our experiments, the granularity of the bins

ranged from 0.2 to 0.8 seconds. Because of the combination of the bins over time , some amount of error is intro-

duced into the performance data. To reduce error, we eliminated the first and last bins from the calculations. This is

because we cannot know exactly when in the time interval represented by the end-point bins that the data collection

actually began or ended.

5.1 MPI-1 Features

We tested our measurement of MPI-1 applications by comparing our results to those obtained with MPICH’s

MPE profiling libraries [34] and the gprof profiler [11]. For the comparison tests, we developed a test suite based on

the Grindstone PVM test suite [16], called PPerfMark. For the tests we used LAM/MPI 7.0 with the sysv RPI and

MPICH 1.2.5 with the ch_p4mpd device.
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5.1.1 PPerfMark

PPerfMark is based on the Grindstone Test Suite for Parallel Performance Tools [16]. We converted the tests

from PVM to MPI. We used the PPerfMark programs that measure communication bottlenecks and computational

bottlenecks. The test details are shown in Table 2.

We show a summary of the PPerfMark results in Tables 2 and 3. Each program is listed along with a ‘pass’ or

‘fail’ and a summary of our findings during testing. More detailed test results are given in the subsections to follow

and are labelled by program name. Note, that in most cases, it was necessary to increase the number of iterations of

the program to allow adequate time for Paradyn to complete its diagnosis. The table clearly shows that Paradyn is

able to find the synchronization and computation bottlenecks in LAM programs. The exception is the program sys-

tem-time. The default Paradyn metrics do not include system time, thus Paradyn did not find bottlenecks in the pro-

gram.

The following sections show our results for the MPI-1 PPerfMark programs.

5.1.2 Small-Messages

For the program small-messages, the following parameters were used: 10,000,000 iterations, 4 byte message

size, 6 processes, 2 each on three nodes. The program run under LAM/MPI took approximately 515 seconds. Figure

3 shows the condensed form of the output from the Performance Consultant for LAM/MPI and MPICH. We see that

the Performance Consultant found that for both LAM/MPI and MPICH ExcessiveSyncWaitingTime is true, and

drilled down into the function Gsend_message, and even further to find MPI_Send. This is what we would expect

to see for this program given that the clients all send messages to the server process. For LAM/MPI, the Performance

Consultant was able to discover the communicator and message tag on which the communication was taking place.

Program Characteristics Result Details

Small-

messages

This program sends many small messages between several pro-

cesses. The process with rank 0 acts as the server and the other

processes act as clients.

Pass Paradyn showed the clients spending too

much time in MPI_Send.

Big-message This program sends very large messages between two processes.

The bottleneck is the overhead associated with setting up and

sending a very large message.

Pass Paradyn showed that the program spent

most of its time sending and receiving mes-

sages. It also counted the number of bytes

transferred.

Wrong-way This program simulates the problem where one process expects to

receive messages in a certain order, but another process sends

them in a different order than is expected.

Pass Paradyn identified that the program was

spending too much time in send and receive

operations.

Intensive-

server

This program simulates an overloaded server. Again, the process

with rank 0 acts as the server and the other processes are the cli-

ents. Each of the clients repeatedly sends a message to the server

and then waits for a reply. The server wastes time before replying,

simulating a busy server.

Pass Paradyn found that the program was spend-

ing much time in MPI_Barrier because
processes were late getting to the barrier. It

found the program had a computational

bottleneck.

Random-

barrier

This program is like the intensive-server program except that no

one process is the bottleneck. On each iteration through a loop a

random process is chosen to waste time while the other processes

wait in MPI_Barrier.

Pass Paradyn correctly showed that the program

was spending too much time in

MPI_Barrier. Paradyn did not find a
computational bottleneck unless the CPU

threshold constant was lowered.

Diffuse-

procedure

This program demonstrates a bottleneck that is distributed over

the processes in the MPI application. ThebottleneckPro-
cedure consumes the majority of the time for the application.
Each of the processes in the application take turns “being the bot-

tleneck” while the others wait in MPI_Barrier.

Pass Paradyn found that the program was spend-

ing much time in MPI_Barrier because
processes were late getting to the barrier. It

also showed that the program had a compu-

tational bottleneck.

System-time This program spends most of its time executing in system calls. Fail Paradyn showed all hypotheses as false.

Paradyn does not have default metrics spe-

cifically for system time.

Hot-proce-

dure

This program has a bottleneck in a single procedure, calledbot-
tleneckProcedure that uses most of the program’s time.
There are also several irrelevantProcedures that use
hardly any of the program’s time.

Pass Paradyn correctly found that the each pro-

cess was CPUBound in the functionbot-
tleneckProcedure.

Table 2: PPerfMark MPI-1 Program Characteristics
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Figure 3: Paradyn PC Output for Small-Messages
This figure shows a condensed form of the Performance Consultant output for small-messages. It compares the output for LAM/MPI

and MPICH. In it we see Paradyn determined that ExcessiveSyncWaitingTime is true for both MPI implementations and drilled down

through the functionGsend_message to MPI_Send. For LAM/MPI, it also identified the communicator that the processes are
using for the message-passing. For MPICH, the Performance Consultant found that ExcessiveIOBlockingTime is true. This is a result

of the inner workings of MPICH’s communication routines, which make heavy use of read and write system commands to pass
messages.

Figure 4: Paradyn Histogram Small-Message with LAM/MPI, Server Process Message Bytes Sent and

Received
This is a histogram from Paradyn showing the message bytes sent and received for the server process. We see that the server did not

send any messages, but received many. The average bytes/second of messages received by the server was 386,910.809. Multiplying

this by the number of seconds the program ran gives 386,910.809 * 515 = 199,259,066 total bytes received at the server. Note: The col-

ors in this screenshot were altered for printing purposes.
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For MPICH, the program is found to have ExcessiveIOBlockingTime. This may be because the MPICH ch_p4mpd

device does not currently have SMP support. Instead of using shared memory operations to optimize communication

between processes on the same machine, it uses traditional socket communication. The send and recv functions are

included in Paradyn’s I/O metric definitions, so ExcessiveIOBlockingTime tests true.

To further ensure that Paradyn was correctly working with this program, we counted message bytes that were

passed between the processes. By inspecting the program itself and its per process output, we know that each client

process sent 10,000,000 messages at 4 bytes each, for a total of 40,000,000 bytes, and that the server process received

50,000,000 messages, for a total of 200,000,000 bytes.

Figure 4 is a screenshot of the histogram that Paradyn generated showing the byte counts for the server process

and one client process for LAM/MPI. We exported the data that Paradyn gathered while making the histogram and

calculated the number of bytes that were sent and received throughout the course of the program. Our calculations

on the data showed that the average bytes/second of messages received by the server was 386,910.809 and that the

average number of bytes/second sent by the client was 77,526.34. Multiplying these by the number of seconds the

program ran, gives 199,259,066 total bytes received at the server, and 39,925,890 total bytes sent by one client. Some

amount of error is expected in these values as the performance data bin granularity for these experiments was 0.8 sec-

onds.

5.1.3 Big-message

The next set of tests were done with the program big-message. The parameters we used for this program were:

1000 iterations, 100,000 byte message size, and 2 processes, one per node. The results we gathered for this program

were consistent with the program’s behavioral description. In Figure 5, we show the condensed Paradyn Consultant

output for big-message with LAM/MPI and MPICH. The Performance Consultant had identical findings for both

MPI implementations. We see that ExcessiveSyncWaitingTime is true and that the Performance Consultant drilled

through both Gsend_message and Grecv_message to the MPI functions MPI_Send and MPI_Recv. It also deter-

mined the communicator on which the excessive communication was taking place.

Figure 5: Paradyn PC Output for Big-Messages
Here were show the condensed Performance Consultant output for big-message with LAM/MPI and MPICH. We see that Excessive-

SyncWaitingTime is true for both implementations and that the PC has drilled down through the functions Gsend_message and

Grecv_message to MPI_Send and MPI_Recv. It also found the communicator associated with the communication bottleneck.
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Figure 6: Paradyn Histogram Big-Message with LAM/MPI,Message Bytes Sent and Received
This figure shows the histogram that Paradyn generated for point-to-point message bytes sent and received for one process with L AM/

MPI. We calculated the average bytes sent per second to be 5,800,820.4 and the average bytes received per second to be 5,800,482.79.

Multiplying these by the number of seconds the program ran, 68.6, gives 397,936,279.44 total bytes sent and 397,913,119.394 total

bytes received. Note: The colors in this screenshot were altered for printing purposes.

In addition, we measured the message byte count for big-message. By inspecting the program source, we know

that each process sent and received 1000 messages. They received 400,000,000 bytes total and sent 400,000,000

bytes total. From the per process output we know that the program ran for approximately 68.6 seconds. In Figure 6,

we show the histogram from Paradyn of point-to-point message bytes sent and received for one of the processes. We

exported the data that Paradyn collected to create the histogram. Then, we calculated the average bytes sent per sec-

ond to be 5,800,820.4 and the average bytes received per second to be 5,800,482.79 for that process. Multiplying

these by the number of seconds the program ran, gives 397,936,279.44 total bytes sent and 397,913,119.394 total

bytes received. These figures are slightly lower than the 400,000,000 reported by the processes. The performance

data bin size for this experiment was 0.2 seconds.

5.1.4 Wrong-way

The next program we used for testing was wrong-way. The parameters we used were: 18,000 iterations and 1000

messages. Again, we see that Paradyn was able to find the bottlenecks. In Figure 7, we show the condensed Perfor-

mance Consultant output for wrong-way. We see that ExcessiveSyncWaitingTime is true and that Gsend_message

and Grecv_message are the bottlenecks for both LAM/MPI and MPICH. Also, for both MPI implementations, the

Performance Consultant finds message-passing to be consuming excessive synchronization time. For MPICH, the

Performance Consultant drilled down through Gsend_message and Grecv_message to find PMPI_Send and
PMPI_Recv as synchronization bottlenecks.

We also used Paradyn to measure the number of bytes that were sent between the processes for wrong-waywith

LAM/MPI. We see from looking at the process output and from inspecting the program source that 18,000,000 mes-

sages were sent and 18,000,000 messages received. Since 4 bytes were sent in each message, this gives a total of
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Figure 7: Paradyn PC Output forWrong-Way
Here we see the Performance Consultant has discovered that ExcessiveSyncWaitingTime is true and that the functions

send_message and recv_message are the bottlenecks for both MPICH and LAM/MPI. It further drilled down to find

MPI_Send and MPI_Recv.

Figure 8: Paradyn HistogramWrong-Way with LAM/MPI,Message Bytes Sent and Received
This is a histogram showing the bytes sent by process 0 and the bytes received by process 1. We performed calculations on the d ata that

Paradyn generated and found that process 0 averaged sending 956,779.2 bytes per second and that process 1 received 944,582.7 byt es

per second. Multiplying these by the number of seconds that the program ran, 74.6, gives 71,375,728 bytes sent and 70,465,869 b ytes

received. Note: The colors in this screenshot were altered for printing purposes.
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Figure 9: Paradyn PC Output for Random-Barrier
This is the condensed Performance Consultant output for random-barrier. It shows that Paradyn finds too much time is being spen t in

MPI_Barrier, and that the program is CPU-bound. This agrees with the program’s behavioral description. The Performance Con-

sultant is able to pinpoint the function waste_time as the computation bottleneck.

72,000,000 bytes sent and received. The process output also shows that the wall clock time for the program run was

approximately 74.6 seconds. Figure 8 shows the histogram that Paradyn generated to display the bytes sent and

received for LAM/MPI. We exported the data that Paradyn collected and calculated that process 0 sent an average of

956,779.2 bytes per second, and that process 1 received 944,582.7 bytes per second. Multiplying these by the number

of seconds that the program ran gives 71,375,728 bytes sent and 70,465,869 bytes received. The performance data

bin size for this experiment was 0.2 seconds.

5.1.5 Random-barrier

Random-barrier was designed to simulate a program that has a load imbalance that moves to different proceses

during execution. The parameters we used for the program runs were: 800 iterations and six processes, two each on

three nodes. We set the compile-time constant TIMETOWASTE equal to 5, which specifies a relative amount of time

that the bottleneck process will waste. Paradyn was able to correctly identify the bottlenecks for this program. Figure

9 shows a condensed form of the Performance Consultant’s analysis of the program with LAM/MPI and MPICH.

The Performance Consultant found that ExcessiveSyncWaitingTime is true and drilled down to find MPI_Barrier
as the bottleneck.

For MPICH, it drilled down to expose some of the inner workings of the MPICH implementation, showing that

PMPI_Barrier is implemented as a collective communication operation with PMPI_Sendrecv. Also for
MPICH, the Performance Consultant was able to identify the communicator and message tag on which the excessive

message passing was taking place. For both implementations, the program was found to be CPU bound, and discov-

ered to be so in the function waste_time. Due to the random nature of this program, not every process was found
to be CPU bound in waste_time. This is because that a particular processmay not be designated by the program
to be the “time waster” at the point when the Performance Consultant was measuring the CPU usage of that process.
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Figure 10: Paradyn PC Output for Intensive-Server
This shows the condensed form of the Performance Consultant’s output for the intensive-server program run with LAM/MPI and

MPICH. For both implementations, we see that the hypothesis ExcessiveSyncWaitingTime is true and that the PC drilled down through

Grecv_message to discover MPI_Recv as the bottleneck. It was also able to determine the communicator for the bot-

tleneck. For LAM/MPI, further refinement was possible and the message tag on which the communication was taking place was found.

For both, the Performance Consultant showed that CPUBound was also true, but did not refine the hypothesis further.

We also used Paradyn to generate histograms of the synchronization time spent in these programs. Figure 18 is

from runs with LAM/MPI and MPICH. The figure in the back left is for MPICH, while the one for LAM/MPI is in

the foreground. Each show that the time spent in synchronization is approximately equal across all the processes in

the MPI program. We exported the data that Paradyn collected and found that for the LAM/MPI run, the average

inclusive synchronization wait time was 61%, while the same measurement for the MPICH run was 62%.

We ran another test to verify the amount of synchronization time that was spent in this program. We used the

MPE libraries to generate a log of the events that occurred in the program. Figure 17 shows the Statistical Preview

window from Jumpshot-3. Because of file size limitations, we had to shorten the run time of the program to be able

to produce a usable log file. For this run we used 80 iterations,TIMETOWASTE = 5, and four processes, two each

on two nodes. The figure shows that of the four processes in the MPI program approximately three of them were exe-

cuting in MPI_Barrier at any given time. This agrees with Paradyn’s findings and with the program’s behavioral
description.

5.1.6 Intensive-server

The next program we used for testing was intensive-server. The parameters we used for the runs were: 10,000

iterations, TIMETOWASTE = 1, and 6 processes, two each on three nodes. Paradyn was able to find the bottleneck

in this program. Figure 10 shows the condensed form of the Performance Consultant’s findings for LAM/MPI and

MPICH. We see that ExcessiveSyncWaitingTime is true and that the Performance Consultant drilled down through

Grecv_message to show MPI_Recv as the bottleneck. It was also able to determine the communicator upon which

the excessive communication was taking place. For LAM/MPI, the Performance Consultant found the message tag

on which the communication occurred. For both MPI implementations, the hypothesis CPUBound was also found to

be true, although the root of the bottleneck was not discovered.

Figure 11 shows histograms generated by Paradyn when measuring inclusive synchronization waiting time for a

run of intensive-server with LAM/MPI. The top left diagram shows a client process using nearly all of its time in

synchronization in the function Grecv_message, which is represented by the red line in that diagram. It also
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Figure 11: Paradyn Histograms Intensive-Server with LAM/MPI, Inclusive Synchronization Time for

a Client Process and Server Process
These are histograms generated by Paradyn showing the inclusive synchronization waiting time for a client process and server process

in the intensive-server program with LAM/MPI. The top left diagram shows that the clients are spending nearly all of their time in

Grecv_message, represented by the red line, and hardly any time in Gsend_message, shown in the blue-green line. Calcula-

tions on the data collected by Paradyn tell that an average of 0.997976 of the CPU time for a client process was spent in

Grecv_message. In contrast, on average, only 0.000027 of a client’s CPU time was spent inGsend_message. The diagram in

the bottom right shows the synchronization time for the server process. We see that the server does not spend much time in

Gsend_message or Grecv_message. The average inclusive synchronization waiting times were 0.000249 and 0.000181 for

Grecv_message and Gsend_message, respectively.Note: The colors in this screenshot were altered for printing purposes.

shows that virtually none of its time is spent in synchronization in the function Gsend_message, shown by the blue-

green line in the diagram. This is what we expect, because the intensive-server program is set up to mimic clients

waiting for response from an overloaded server. The diagram in the bottom left is synchronization time for the server

process. Here we see that the server process is not spending overly much time in synchronization, which is what we

would predict, given the program’s behavioral description.

Figures 12 and 13 further uphold Paradyn’s findings. They are Jumpshot-3 output for intensive-server run with

LAM/MPI and linked with the MPE libraries. We shortened these runs to avoid any log file size problems. The

parameters were: 10 iterations, TIMETOWASTE = 1, and three processes, one each on three nodes. Figure 12 shows
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Figure 12: Jumpshot-3 Statistical Preview for Intensive-Server with LAM/MPI
This is a screenshot of the Statistical Preview window generated by Jumpshot-3 for the intensive-server program run with LAM/MPI

and linked with the MPE libraries. From it, we can see that of the three processes in the MPI program, at any given time, approximately

two of them were executing in MPI_Recv.

Figure 13: Jumpshot-3 Time Lines Window for Intensive-Server with LAM/MPI
This figure is theTime Lines Window from Jumpshot-3 for the intensive-server program run with LAM/MPI and linked with the MPE

libraries. It gives further evidence of the behavior of this program. We have used the zoom feature of the program to make details of

the communication in the program visible. It shows that the server process, Process 0, spends hardly any time in synchronization oper-

ations, while the client processes, processes 1 and 2, are spending most of their time in MPI_Recv.
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Figure 14: Paradyn PC Output for Diffuse-Procedure
This figure shows the condensed form of the Performance Consultant’s findings for the diffuse-procedure program run with LAM/MPI

and MPICH. For both, we see that ExcessiveSyncWaitingTime is true and that the bottleneck isMPI_Barrier. It also shows that the

program is CPU bound in the functionbottleneckProcedure.

the Statistical Preview window for this program run. From it, we can see that of the three processes in the pro-

gram, at any given time, approximately two of them are in MPI_Recv. Figure 13 is a small portion of Jumpshot-3’s

Time Lines Window that illustrates that the server process, process 0, is not spending much time in communication

operations, but that the clients, processes 1 and 2, are spending a large portion of their time in MPI_Recv and hardly

any in MPI_Send.

5.1.7 Diffuse-procedure

The next program studied was diffuse-procedure. The parameters we used for this run were: 2000 iterations and

4 processes, two each on two nodes. Figure 14 shows the condensed form of the Performance Consultant’s analysis

of the program run with LAM/MPI and MPICH. For both implementations, the Performance Consultant found the

hypothesis ExcessiveSyncWaitingTime to be true and drilled down to find MPI_Barrier as the bottleneck. With the

threshold for CPU usage set to 0.2, it found that the program was CPU bound, and found the bottleneck to be in the

function bottleneckProcedure. For MPICH, the Performance Consultant showed that MPI_Barrier is imple-

mented as a collective communication, with PMPI_Sendrecv.

We set the threshold for CPU usage to 0.2 because if we did not, the Performance Consultant did not find a com-

putational bottleneck. Figure 15 shows a histogram of the CPU inclusive time for three procedures across the whole

application. The three procedures are bottleneckProcedure, irrelevantProcedure0, and

irrelevantProcedure1. The histogram shows that approximately1 CPU’s worth of the program’s time is spent

in bottleneckProcedure. If we divide 1 by the number of processes in the application, 4, we get 0.25. This

means that only about 25% of a process’s time is spent in this function. That is why the Performance Consultant did

not consider it to be a computational bottleneck until we set the threshold to be 0.2. The creators of the Grindstone

Test Suite described the program by saying that thebottleneckProcedure used 50% of the program’s
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Figure 15: Paradyn Histogram Diffuse-Procedure with LAM/MPI, CPU Inclusive for Three

Procedures
This is a Paradyn generated histogram showing CPU inclusive time for three procedures across the whole MPI program. From it we

can see that the program is spending more of its time in the bottleneckProcedure and hardly any time in the irrelevant-
Procedures.

time when using four processes. We found that if we ran the program with only two processes that the Performance

Consultant found the bottleneckProcedure to be CPU bound without changing the CPU usage threshold. In this

case, the procedure was using ~50% of the program’s time.

The last test for this program, in Figure 16, shows the Time Line window from Jumpshot-3 for a 10 iteration 3

process run of diffuse-procedure. We had to change the parameters for this run because the trace files got too large.

Here Paradyn’s synchronization findings are confirmed. The program is indeed spending much time in

MPI_Barrier.

5.1.8 System-time

The next program used for testing was system-time. The parameters used for the program run was: 10,000 itera-

tions and four processes, two each on two nodes. Paradyn did not pass this test, because Paradyn does not have met-

rics for measuring the system time of a program. The Performance Consultant found that all top-level hypothesis

tested false. The findings for system-time with MPICH are exactly the same as those for LAM/MPI.

5.1.9 Hot-Procedure

Hot-procedure is designed to simulate a program with a computational bottleneck in one procedure. The param-

eters we used for this program were: 1,000,000 iterations and four processes, two each on two nodes. Figure 20

shows the condensed form of the Performance Consultant’s findings for this program for LAM/MPI and MPICH.

Both were found to have excessive CPU usage in the function bottleneckProcedure.
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Figure 16: Jumpshot-3 Time Lines Window for Diffuse-Procedure with LAM/MPI
This is a screenshot of the Time Lines Window generated by Jumpshot-3 for the diffuse-procedure program run with LAM/MPI and

linked with the MPE libraries. This shows that overall, each of the processes in the application are spending approximately thesame

amount of time inMPI_Barrier, even though at a specific point in the program the distribution might not be balanced.

Figure 17: Jumpshot-3 Statistical Preview for Random-

Barrier with LAM/MPI
This is a screen shot of the statistical preview window in Jumpshot-3 for random-

barrier when compiled with the MPE libraries. This figure shows that of the four

processes in the MPI program approximately three of them were executing in

MPI_Barrier at any given time.

To verify that Paradyn is correctly measuring the CPU time for the functions in this program, Figure 19 shows a

portion of the output from the gprof profiler generated by a non-MPI version of the hot-procedure program on Linux:

It shows that all of the irrelevantProcedures indeed take up none of the program’s time and that the computa-

tional bottleneck is in bottleneckProcedure.
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Figure 18: Paradyn Histograms Random-Barrier, Inclusive Synchronization Time
These are histograms generated by Paradyn showing the sync_wait_inclusive metric for all six processes in the programs for LAM/MPI

and MPICH. The histogram for MPICH is in the back left, while the one for LAM/MPI is in the foreground. They both show that th e

programs are spending a significant portion of time in synchronization operations and that the time is spread out over all processes in

the programs. The average sync_wait_inclusive time over all processes for LAM/MPI is 61%, and 62% for MPICH.

Figure 19: Gprof Analysis of Hot-Procedure
This is gprof output for the hot-procedure program. It shows that thebottleneckProcedure is indeed a computational bottleneck,
consuming 100% of the program’s total running time. The second and third columns of data confirms this, saying that all 46.19 seconds

of running time were spent in the bottleneckProcedure. The fourth column shows us that each of the functions was called an
equal number of times. However, theirrelevantProcedures took 0 microseconds for each call, while the bottleneckPro-
cedure took 46190 µs.

time   seconds   seconds    calls  us/call  us/call  name
100.00     46.19    46.19     1000 46190.00 46190.00  bottleneckProcedure
0.00     46.19     0.00     1000     0.00     0.00  irrelevantProcedure
0.00     46.19     0.00     1000     0.00     0.00  irrelevantProcedure1
0.00     46.19     0.00     1000     0.00     0.00  irrelevantProcedure10
0.00     46.19     0.00     1000     0.00     0.00  irrelevantProcedure11
0.00     46.19     0.00     1000     0.00     0.00  irrelevantProcedure12
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Figure 20: Paradyn PC Output for Hot-procedure and ssTwod
On the left, we show the condensed Performance Consultant output for the hot-procedure program with LAM/MPI and MPICH. For

both, the hypothesis CPUBound tested true and the Performance Consultant drilled down to find the source of the bottleneck, bot-
tleneckProcedure. The figure on the right shows the Performance Consultant’s findings for the ssTwod program. It found that
ExcessiveSyncWaitingTime is true and drilled down to find MPI_Sendrecv and MPI_Allreduce to be bottlenecks

5.1.10 Sstwod

For our final MPI-1 test of Paradyn we use a toy program developed in Using MPI: Portable Parallel Program-

ming with the Message-Passing Interface[13]. The book discusses the program as an example for performance tun-

ing message-passing. It is known to have a communication bottleneck in the function exchng2, as that function is
the focus of the optimization lesson in the book. In Figure 20, we show the condensed Performance Consultant’s

findings for this program. Paradyn is able to find the bottlenecks in this program. It found ExcessiveSyncWaiting-

Time to be true and drilled down through the functionexchng2 to find MPI_Sendrecv to be a bottleneck. It also
found a synchronization bottleneck inMPI_Allreduce.

5.1.11 MPI-1 Summary

Our testing shows that Paradyn correctly instruments and measures the performance of the MPI-1 features of

LAM and MPICH for the majority of programs. We verified Paradyn’s results by using test programs with known

behavior. We compared what we expected to see, given the program’s description, with what Paradyn generated. We

also compared the results that Paradyn generated for MPICH programs against what was generated for LAM pro-

grams. Last, we used other performance tools and compared their results with those that Paradyn gave.

5.2 MPI-2

We tested our implementation of support for MPI-2 in Paradyn by measuring the performance of programs with

known behavior and by comparing our results against benchmark programs. We designedMPI-2 programs for PPer-

fMark to test our implementation. Descriptions of these programs and test result details are shown inTable 3. In the

following sections we give detailed test results for selected programs. For the MPI-2 tests we used LAM/MPI 7.0.4

with the sysv RPI and MPICH2 0.96p2 beta with the sock channel and mpd process manager.
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5.2.1 RMA

We tested our implementation of support for RMA in Paradyn with several programs. First, we used programs

that we developed for the PPerfMark for RMA. Second, we used the Performance Consultant to find the bottlenecks

in a toy program Oned from Using MPI-2: Advanced Features of the Message-Passing Interface [14]. This is a simi-

lar program to the ssTwod program we used for MPI-1 testing, except that it uses RMA for communication. Last, we

compared Paradyn’s measurements of the RMA metrics against those gathered by the ASCI Purple Presta Stress Test

Benchmark [1].

5.2.1.1 PPerfMark

The programs we developed for the PPerfMark for RMA are simple programs that allow us to easily know the

behavior of the programs. In this way, we are able to say whether or not Paradyn was able to correctly measure the

RMA performance metrics of the programs. The results of our tests are shown in Table 3. We implemented pro-

grams to test active target synchronization. We have not yet implemented the passive target test programs because

neither LAM nor MPICH2 support passive target synchronization as of this writing.

Here we give details of the test results for the program winScpwSync, which uses the active target synchroniza-

tion routines: MPI_Win_start, MPI_Win_complete, MPI_Win_Post, and MPI_Win_wait. An artificial
bottleneck is inserted into the the process with rank 0 by having it call the functionwaste_time between its succes-
sive calls to MPI_Win_wait and MPI_Win_post. This causes the other ranks to wait in the synchronization rou-
tines MPI_Win_start or MPI_Win_complete. Paradyn was able to identify the bottlenecks. For both
MPICH2 and LAM, it found that rank 0 was CPU bound in the function waste_time, which is what we expect
since that is the artificial bottleneck. The other ranks were found to have excessive synchronization waiting time in

active target synchronization routines: MPI_Win_start or MPI_Win_complete. The differences in the find-
ings are due to differences in the MPI implementations. The MPI-2 Standard does not specifywhich of these routines

will be blocking; it is up to the MPI implementor to decide what is most efficient. For both implementations, Paradyn

discovered the RMA window upon which the excessive synchronization took place. Paradyn’s findings are what we

expect given the program’s behavioral description.

Program Description Result Details

allCount This program uses a known number of Puts, Gets, and

Accumulates to transfer a known amount of data to

and from an RMA window.

Pass Paradyn was able to count the number of RMA opera-

tions and the bytes that were transferred by them.

winCreate-

Blast

This program creates and deallocates a large number

of RMA windows very quickly.

Pass Paradyn detected and incorporated all windows into

the Resource Hierarchy.

winFence-

Sync

This program usesMPI_Win_fence for synchroni-

zation. An artificial bottleneck is introduced in rank 0,

which makes it late to the fence operation.

Pass Paradyn showed that ranks except rank 0 were spend-

ing too much time inMPI_Win_fence. Rank 0 was

found to be CPU bound in waste_time.

winScp-

wSync

This is similar to winFenceSync, except that Start/

Complete, Post/Wait synchronization is used.

Pass Paradyn found that all ranks but rank 0 were spending

too much time in synchronization. Rank 0 was found

to be CPU bound.

spawnCount This program spawns a known number of child pro-

cesses. The child processes simply exit.

Pass Paradyn was able to detect and incorporate all new

processes into the Resource Hierarchy.

spawnSync This program spawns children and then sends a known

number of messages on an intracommunicator

between the parent and child processes. An artificial

bottleneck is introduced in the parent process.

Pass Paradyn showed that the child processes were spend-

ing too much time in MPI_Recv and that the parent

process was CPU bound. It was also counted the num-

ber of messages and the bytes transferred.

spawnWin-

Sync

This program spawns child processes and then sets up

an RMA window over an intracommunicator between

the parent and child processes. There is an artificial

bottleneck in the parent process.

Pass Paradyn showed that the child processes were waiting

in MPI_Win_fence and that the parent process was

CPU bound. Paradyn counted the number of RMA

operations and bytes transferred.

Table 3: PPerfMark MPI-2 Program Characteristics
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Figure 21: Performance Consultant Findings for winScpwSync for LAM and MPICH2
This figure shows the Performance Consultant’s findings for the PPerfMark program winScpwSync. We see that the PC determined

that ExcessiveSyncWaitingTime was true, found it to be due to active target synchronization on an RMA window, and determined the

responsible RMA window. It also found that the program was CPU bound for the process with rank 0. These findings correspond to

the program’s behavioral description.

5.2.1.2 Oned

Here we show the results for running the Oned program with Paradyn’s Performance Consultant. For both

MPICH and LAM, the Performance Consultant discovered the bottleneck to be synchronization waiting time in

MPI_Win_fence in the function exchng1. This is the known communication bottleneck of the program. An

interesting difference between the results for the implementations are that LAM had a bottleneck in the synchroniza-

tion object Barrier, because it implements MPI_Win_fence with a call to MPI_Barrier.

5.2.1.3 Presta

A test of our implementation of RMA support in Paradyn was to compare Paradyn’s measurements of RMA met-

rics against those obtained by the Presta Benchmark program, rma [1]. Presta’s rma measures the throughput of the

MPI_Put and MPI_Get operations and the time per RMA operation for unidirectional MPI_Put, unidirectional

MPI_Get, bidirectional MPI_Put, and bidirectional MPI_Get. For our testing, we used command line arguments to

rma that specified two MPI processes would do remote memory operations of 1024 bytes with 3000 operations per

epoch and 200 epochs. In Paradyn, we selected each process as a focus for the metrics: rma_put_ops, rma_get_ops,

rma_put_bytes, and rma_get_bytes and generated Paradyn histograms for each process.
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Figure 22: Paradyn Performance Consultant Findings for Oned
This figure shows the Performance Consultant’s findings for the Oned program for LAM and MPICH. It discovered the bottleneck to

be MPI_Win_fence in the functionexchng1, which is the known communication bottleneck of the program.

For these experiments, the granularity of the performance data bins was 0.4 seconds. To obtain comparable data

from Paradyn’s output, we multiplied the values in each bin by the amount of time each bin represented and summed

these values to get the total number of operations or bytes transferred. The throughput was calculated by dividing the

total bytes by an estimate of the running time of the operation. The running time for a particular operation was esti-

mated by counting the number of bins with data for that operation and multiplying that by the amount of time each

bin represented. To reduce error in our estimate of time, we eliminated the first and last bins from the calculations.

This is because we cannot know exactly when in the time interval represented by the end-point bins that the data

transfer actually began or ended. Per operation time was calculated by taking the estimated running time and divid-

ing it by the number of operations.

The data collected from the operation count metrics, rma_put_ops and rma_get_ops, were directly comparable

with expected results, derived from knowing the input parameters to the rma program and source code inspection. We

determined whether differences in the measurements were statistically significant by inspecting the confidence inter-

val of the mean of the differences of the two sets of measurements. We found that the differences between the opera-

tion counts for Presta and Paradyn were not statistically significant, except for the bidirectional Get test. We are

currently investigating the reason for this difference.

With the data collected from the byte and operation counting metrics we were able to calculate throughput and

per operation time to compare with the measurements reported by the rma program. For LAM, the differences

between the throughput and per operation time as calculated by Presta and Paradyn were not statistically significant.

For MPICH2, the differences for the most part were not statistically significant. The exceptions were per operation

time for unidirectional put and throughput for unidirectional get. In both cases, however, the relative difference in

measurements was small, approximately 0.6%.
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Figure 23: Paradyn’s Resource Hierarchy Before and After a Spawn Operation
The figure shows Paradyn’s Resource Hierarchy for the spawnSyncWin program. The screenshot on the left shows the Resource Hier-

archy before MPI_Comm_spawn was executed. The screenshot on the right shows the Resource Hierarchy after the spawn. Note that

three new processes have been added and the RMA Window which the child and parent groups of processes created has been detected.

We also see that the friendly names that were given to communicators and RMA windows appear here. The reason that ParentChild-

Window appears under Message with the other communicators is that LAM’s MPI_Win structure contains a communicator that is cre-

ated when the window is created. LAM stores RMA window names in the communicator structure. The Parent&Child is an

intracommunicator created between the parent and child processes. The toParentGroup communicator is the intercommunicator given

to the child processes by MPI_Comm_get_parent.

5.2.2 Dynamic Process Creation

We tested our implementation of support for dynamic process creation with the programs we developed for the

PPerfMark. Our current method of support using the PMPI interface is successful in detecting spawn operations and

incorporating the new processes into Paradyn’s Resource Hierarchy. Paradyn is able to measure the performance of

the new processes. We give evidence of these statements here. For these tests, we use only the LAM implementation

of MPI. This is because MPICH2 0.96p2 beta does not yet fully support dynamic process creation.

Figure 23 shows screenshots of Paradyn’s display of the Resource Hierarchy before and after

MPI_Comm_spawn executes in spawnSyncWin. The left figure is the Resource Hierarchybefore the spawn opera-

tion. The figure on the right is the Resource Hierarchy after the spawn. We see that Paradyn successfully detected

and incorported the newly spawned processes. It also detected the RMA window upon which the parent and child

groups of processes transfer information.

We used the programs spawnSync and spawnSyncWin to test Paradyn’s performance measurement of the child

processes. In Figure 24, we show the Performance Consultant’s findings for these programs. The PC was able to

determine the correctly program’s bottlenecks in accordance with the programs’ behavioral descriptions. The dia-

gram on the left shows spawnSync, which is a program that passes messages between the parent and children, with an

artificial computational bottleneck in the parent. We see that there was excessive synchronization waiting time for

the child processes, due to message passing in the function childFunction. We also see that the parent was

found to be CPU bound in the function parentFunction. The diagram on the right shows the PC’s analysis of

spawnSyncWin. The child processes were found to have excessive synchronization waiting time due to one-sided

communication on the window named ParentChildWin in MPI_Win_fence. There was also excessive synchroni-

zation time due to message passing, which is because LAM uses MPI_Isend/MPI_Waitall in its implementation

of MPI_Win_fence. The program was found to be CPU bound in the parent process in parentFunction.

5.2.3 Naming ofMPI Objects

We tested our implementation of support for the naming of MPI communicators and RMA windows while we

tested other functionality. We found it helpful to set names for these objects so that we could easily choose the appro-

priate synchronization object in the resource hierarchy for focus selection. It also facilitated our understanding of the
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Figure 24: Performance Consultant Findings for spawnSync and spawnSyncWin and LAM
The diagram on the left shows the Performance Consultant’s findings for the spawnSync program. The PC was able to determine tha t

the hypothesis ExcessiveSyncWaitingTime was true, and drilled down to find the synchronization bottleneck was due to message pass-

ing in the childFunction. The PC also found that CPUBound was true and that it occurred in the parent process in the function

parentFunction. The diagram on the right shows the PC’s findings for spawnSyncWin. We see that the ExcessiveSyncWaitingTime is

true and is due to message passing and one-sided communication. The PC determined the RMA window upon which the excessive syn-

chronization took place, parentChildWin. Note that the friendly name of the RMA window was detected by Paradyn and displayed in

the PC window. It also found that CPUBound was true in the parent process in the function parentFunction.

Performance Consultant’s findings. The right screenshot of Figure 23 shows the resource hierarchy displaying some

names that we gave to MPI communicators and windows.

6 Conclusions

We have described our work enhancing the Paradyn performance tool to provide support for MPICH and LAM/

MPI on Linux clusters. The additional functionality we have developed includes support for non-shared file systems,

the LAM implementation, RMA, dynamic process creation, and MPI object naming. We have presented results that

show the effectiveness of this new performance tool, including small applications, a benchmark program, plus a per-

formance test suite we have developed, called PPerfMark.

We are continuing to implement support for the remaining MPI-2 features and to develop additional programs for

the PPerfMark test suite. We are also performing a case study using our enhanced Paradyn to characterize perfor-

mance changes in an atmospheric modeling program when MPI-1 communication is replaced with MPI-2 one-sided

data transfer routines. We are working with the Paradyn group to incorporate the changes made in this project into

the next release of Paradyn.
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