
September 4th, 2008 X Developer's Summit Ian Romanick 
<ian.d.romanick@intel.com>

GLSL Support in MesaG

Current state
– What parts are good

– What parts are not so good

– What parts are really miserable 

Where we want to be
– What is the ideal worldW

How we're getting there
– Work being done now

– Work being done later



September 4th, 2008 X Developer's Summit Ian Romanick 
<ian.d.romanick@intel.com>

GoodG

Many shaders work on real hardware
– We're shipping on i915 and i965 for some time



September 4th, 2008 X Developer's Summit Ian Romanick 
<ian.d.romanick@intel.com>

GoodG

Language extensions allow many language 
intrinsics to be written in GLSL

– __constructor allows constructor functions

– __operator allows operator overloading to 
decompose complex operators (i.e., matrix 
multiplications) into simpler operations

● Dramatically simplifies type checking

– __asm allows in-line assembly to implement 
operators

● Here assembly means ARB_fragment_program



September 4th, 2008 X Developer's Summit Ian Romanick 
<ian.d.romanick@intel.com>

Not So GoodN

Assumes only hardware type is vec4
– Each integer operation is converted to a floating 

point operation followed by a rounding operation 
very early 

Language intrinsics are recompiled at run-time
– Tokenized off-lineT

Missing some GLSL 1.20 language features
– GLSL 1.30 support not even started



September 4th, 2008 X Developer's Summit Ian Romanick 
<ian.d.romanick@intel.com>

Really BadR

One-off parser generator
– Parser generator code isn't in main source treeP

Linker can't support multiple compilation units on 
the same shader target

– Various other bugs related to this missing featureV

ARB_fragment_program is the IR

– Really bad fit for lots of real hardware



September 4th, 2008 X Developer's Summit Ian Romanick 
<ian.d.romanick@intel.com>

Infrastructure We WantI

Sensible parser infrastructure
– Allow others fix bugs or add language featuresA

Back-end independent IR
– Most real hardware doesn't look much like 
ARB_fragment_program

– DirectX uses our current approach for HLSL, and 
drivers have to de-compile and recompile the 
assembly...fail



September 4th, 2008 X Developer's Summit Ian Romanick 
<ian.d.romanick@intel.com>

Language Features We WantL

A compliant linker
– Multiple compilation units at each shader target has 

been a required feature since day-1 

Real integer support
– Allow hardware with real integers to use themA

Full GLSL 1.20 and 1.30 support
– Unsigned integers and integer bit twiddling

– switch-statements



September 4th, 2008 X Developer's Summit Ian Romanick 
<ian.d.romanick@intel.com>

Work Being Done NowW

GLSL work being done for the last month or 
so...around various travel



September 4th, 2008 X Developer's Summit Ian Romanick 
<ian.d.romanick@intel.com>

Parser InfrastructureP

Parser re-written using flex and bison
– All 1.20 core language features supported

– Preprocessor still to be implemented

– Generates a tree-based AST that looks a lot like 
what GCC uses



September 4th, 2008 X Developer's Summit Ian Romanick 
<ian.d.romanick@intel.com>

Back-End Independent IRB

AST is converted to middle-level intermediate 
representation (MIR)

– Work-in-progress

– Encodes a reduced subset of language features
● “Flattened” expressions, for-loops, if-statements



September 4th, 2008 X Developer's Summit Ian Romanick 
<ian.d.romanick@intel.com>

Back-End Independent IRB

MIR is translated to existing IR
– Work-in-progress...mostly hand-waving at this point

– Possible to generate hardware instructions directly 
from MIR without ever touching existing IR



September 4th, 2008 X Developer's Summit Ian Romanick 
<ian.d.romanick@intel.com>

Back-End Independent IR

GLSL ARB_fp, etc.

MIR ARB_fp-like IR

Hardware



September 4th, 2008 X Developer's Summit Ian Romanick 
<ian.d.romanick@intel.com>

Back-End Independent IRB

Language intrinsics compiled to MIR off-line
– Fake link-phase combines intrinsic MIR to 

translation unit being compiled



September 4th, 2008 X Developer's Summit Ian Romanick 
<ian.d.romanick@intel.com>

Compliant LinkerC

Linker operates on MIR
– Code is generation happens after linking

– Additional in-lining, constant propagation, etc. 
occurs after linking



September 4th, 2008 X Developer's Summit Ian Romanick 
<ian.d.romanick@intel.com>

Work Not Being Done NowW

GLSL infrastructure work will continue on into next 
year...at least



September 4th, 2008 X Developer's Summit Ian Romanick 
<ian.d.romanick@intel.com>

GLSL 1.30G

Some new language features aren't being 
implemented yet

– New integer operators (e.g. bit twiddling)

– switch-statements



September 4th, 2008 X Developer's Summit Ian Romanick 
<ian.d.romanick@intel.com>

Additional Shader StagesA

Geometry shaders not yet supported
– Additional shader stages may be added soon, these 

aren't supported yet either



September 4th, 2008 X Developer's Summit Ian Romanick 
<ian.d.romanick@intel.com>

Code-Generator GeneratorC

Real multiple-target compilers use code-generator 
generators

– Don't want to generate machine code from existing 
low-level IR...it's a bad fit for most hardware

– Hand-writing code generators is tedious



September 4th, 2008 X Developer's Summit Ian Romanick 
<ian.d.romanick@intel.com>

Assembly Shaders to MIRA

Support for additional assembly extensions
– Direct implementation is not a good fit on some 

hardware

– Some apps (e.g. those that use Cg) prefer to use 
assembly shaders

– GL_NV_vertex_program3 on R500 hardware for 
free feels like winning



September 4th, 2008 X Developer's Summit Ian Romanick 
<ian.d.romanick@intel.com>

Assembly Shaders to MIR

GLSL ARB_fp, etc.

MIR ARB_fp-like IR

Hardware



September 4th, 2008 X Developer's Summit Ian Romanick 
<ian.d.romanick@intel.com>

Assembly Shaders to MIR

GLSL ARB_fp, etc.

MIR SSA, other
low-level IR

Hardware



September 4th, 2008 X Developer's Summit Ian Romanick 
<ian.d.romanick@intel.com>

Fin


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22

