
CS 581: Theory of Computation
Fall 2010

Mid-term exam
James Hook

This is a closed-notes, closed-book exam.

1. PDA construction [25 points]

(a) Construction
Given the alphabet {(,), [,]} build a PDA that recognizes strings with
properly nested balanced parentheses and braces. That is, it should
accept (), [], [()], and ([]), but it should reject ([)].

(b) Justify your construction.

(c) Illustrate a computation of your machine on the string “([()][])”.

2. Not Context Free [25 points]

Show that the language {w#t | w is a substring of t, where w, t ∈ {a, b}?}
is not context free.

3. Minimization [25 + 25 points]

The Myhill Nerode theorem guarantees the existence of a minimal size
DFA for any Regular Language. In this problem we explore algorithms to
calculate a minimal DFA from an arbitrary DFA.

There are two basic approaches to the minimization problem. One is
to start with (possibly) too many states, and combine them if they are
redundant. The other is to start with (possibly) too few states, and divide
them as necessary. The two questions below explore aspects of these two
strategies.

The following two questions (labeled parts a and b), while top-
ically related, are independent. They may be attempted inde-
pendently.

(a) Size of test [25 points]
The algorithm that tests for redundant states is possible because
there is an upper bound on the length of stings that must be checked
to verify indistinguishability.
Given that A is recognized by some DFA M , can you bound the
size of the strings you must test to show that two strings are in-
distinguishable? That is, can you determine a value n such that:
∀z.|z| ≤ n → xz ∈ A ↔ yz ∈ A implies ∀z.xz ∈ A ↔ yz ∈ A?
Prove your result.

1

(b) Partition refinement [25 points]
Notational aside. A partition of a set is a set of disjoint sets, called
parts, the union of which is equal to the set.
The alternative algorithm begins by partitioning the states into two
sets (parts), the final states and the non-final states. It then itera-
tively refines the partition, dividing parts of the partition into new
parts as necessary. The necessity of a division is witnessed by testing
the states in a part of a partition to see if they are all mapped to the
same parts. In particular, if for some input symbol a, some states
in part S transition into part R and some states transition into part
T , then the partition must be refined by dividing part S into those
elements that map to R and those elements that map to T . (The
algorithm requires several easily verified assumptions, including that
there be at least one string in the language and one string not in the
language and that all states in the initial machine are reachable.)
Consider the non-optimal machine to recognize binary numbers con-
gruent to 0 mod 3 constructed as follows:

M = 〈{0, 1, . . . , 5}, {0, 1}, δ, 0, {0, 3}〉
δ(q, a) = 2 ∗ q + amod 6

i. Test parts [10 points]
Explore the algorithmic idea by testing the initial partition A =
{0, 3}, B = {1, 2, 4, 5}. For each symbol in the alphabet, test
each part to see if it is “good”, that is, it contains no “bad
pairs” of states p, q where p, q ∈ S (for some part S), δ(p, a) = p′,
δ(q, a) = q′, and p′ ∈ T and q′ 6∈ T for a partition part T .

ii. Refine [10 points]
How can the partition be refined to eliminate the bad pairs with-
out introducing any unnecessary parts in the partition?

iii. Finish [5 points]
Does this refinement contain any bad pairs? Can you recover the
optimal 3 state machine from this?

2

