CS 581: Theory of Computation Fall 2009 Mid-term exam James Hook

This is a closed-notes, closed-book exam.

- 1. PDA construction
 - (a) Construct a PDA accepting the language

 $A = \{w | w \text{ has an equal number of } a \text{'s and } b \text{'s}\}\$

- (b) Justify your construction
- (c) Illustrate a computation of your machine on the string aabbba.
- 2. Not Regular

Consider the language

 $A = \{w | w \text{ has an equal number of } a$'s and b's $\}$

Use this language to demonstrate three techniques for showing that A is not regular.

- (a) Show A is not regular using the pumping lemma.
- (b) Show A is of infinite index.
- (c) Show A is not regular by using closure properties and the fact that $\{a^ib^i|i\geq 0\}$ is not regular.
- 3. Shuffle Let $A,B\subseteq \Sigma^{\star}$ be languages. Define the *shuffle* of A and $B,\,A\odot B$ as follows:

$$A \odot B = \{x_1 y_1 \cdots x_k y_k \mid x_1 \cdots x_k \in A \text{ and } y_1 \cdots y_k \in B, x_i, y_i \in \Sigma^*\}$$

For example, $\{000\} \odot \{111\}$ includes the strings 000111, 111000, 101010, 010101, 011100,

Define the *shuffle closure* of A, A^{\otimes} , as follows:

$$\begin{array}{rcl} A^{\odot^0} & = & \{\epsilon\} \\ A^{\odot^{n+1}} & = & A^{\odot^n} \odot A \\ A^{\otimes} & = & \bigcup_{i \geq 0} A^{\odot^i} \end{array}$$

- (a) Show the regular sets are closed under shuffle (\odot) .
- (b) Show the regular sets are *not* closed under shuffle closure (\otimes).