
CS 581:  Introduction to the 
Theory of Computation!

Lecture 1!

James Hook!
Portland State University!

hook@cs.pdx.edu!
http://www.cs.pdx.edu/~hook/cs581f10/ !



Welcome!!



Contact Information!

•  Jim Hook!
•  Office:  FAB 120-05!
•  Phone:  503 725 5540!
•  Email:  hook@cs.pdx.edu!
•  Office hours:  Tuesdays, 2 - 4pm (no 

arrivals after 3:30 please) or by 
appointment!

•  TA: TBA!



Assumptions:!
1.  Students have been exposed to the 

concepts of !
1.  regular expressions, !
2.  context free grammars, and !
3.  programming in a general purpose language. !

2.  They have applied these concepts to solve 
problems such as lexical analysis, parsing, 
and code generation.!

3.  Students are familiar with discrete 
mathematics, including sets, sequences, 
induction and elementary graph theory.!



Course Objectives!

 Introduce students to the classic results in 
theoretical computer science that classify 
problems according to the machines that 
can solve them and the resources required 
by those machines. This includes basic 
results relating to computable functions, 
decidability, and complexity theory.!

Master basic proof techniques used in these 
results including induction, diagonalization, 
and reduction.!

Illuminate the relationship between logic and 
computation.!



Collaboration Policy!

Unless explicitly instructed otherwise, please 
hand in solutions that you prepared 
individually without directly consulting 
other sources or notes. !

Never represent the work of others as 
your own work.!



Collaboration Policy (cont)!

You may meet with other students to discuss 
homework problems, but please discard all 
notes from these sessions. !
–  Do not consult notes from discussions with other 

students or other solutions when preparing your 
solution.!

–   Do not provide other students with access to 
your solution. !



Collaboration Policy (cont)!
•  If you require resources other than the 

book to solve a problem please identify 
those resources with proper citations (but, 
as for collaborations, set the source aside 
and do not consult it directly when 
preparing your solution). !

•  When selecting other resources, give 
priority to original sources, texts, and 
lecture notes. !

•  Do not consult sample solutions specific to 
the problems assigned.!



Collaboration Policy (cont)!

•  No exam problems are to be discussed 
until all students have handed in their 
exams.!

•  Students are responsible to keep their 
exam answers to themselves. Allowing 
a solution to be copied is as serious a 
breach of academic integrity as 
copying.!



Academic Integrity!

•  Violations of academic integrity will 
be taken seriously!

•  There will be an in-class penalty!
•  I will invoke the appropriate 

university mechanism!



Exams!

•  There will be two exams:!
– Mid-term, October 27, 2010, in-class!
– Final, !

• Monday, December 6, 2010, !
• 5:30 - 7:20pm, !
•  in-class, comprehensive!



Grading!

•  All grading will be on a curve!
•  After applying the curve to normalize 

the scales, grades will be combined as 
follows:!
– 30%  Homework!
– 30%  Midterm!
– 40%  Final!



Grading!
•  Assigning letter grades!

–  First cut!
•  Greater than mean plus standard deviation is an A!
•  Less than mean minus standard deviation is a C!

–  Refinement!
•  Look for clusters; if grades differ by an insignificant 

amount, round to the higher grade!
•  Assign A-, B, B- based on clusters!
•  B- and C are functionally equivalent; neither can be 

applied towards graduation!
–  Discretion!

•  I will use my judgment to make minor adjustments!



End of Course Mechanics!



How hard is a problem?!

•  Does “oo” occur in “Hook”?!
•  Is 17 prime?!
•  Is there a winning strategy for tic-

tac-toe?!
•  Will foo.c ever dereference a null 

pointer?!



Static (finite) problems are 
uniformative !

•  All these have yes or no answers that I 
can build into a program!
– Does “oo” occur in “Hook”?!
– Is 17 prime?!
– Is there a winning strategy for tic-tac-toe?!
– Will foo.c ever dereference a null pointer?!

•  How do we generalize these to problems 
too big to just memorize?!



Problems to Languages 1!
•  Does “oo” occur in “Hook”?!

–  { x | “oo” occurs in x }!
•  Is 17 prime?!

–  {n | n is prime}!
•  Is there a winning strategy for tic-tac-toe?!

– No obvious generalization; problem too specific!
•  Will foo.c ever dereference a null pointer?!

–  {p.c | p.c does not dereference a null pointer}!



Problems to Languages:!
Solving problem = language membership !
•  Does “oo” occur in “Hook”?!

– Is “Hook” in the language !
{ x | “oo” occurs in x }!

•  Is 17 prime?!
– Is 17 in the set {n | n is prime} ?!

•  Will foo.c ever dereference a null 
pointer?!
– Is foo.c in the set of C programs that do not 

dereference a null pointer?!



More Languages!

•  Binary numbers congruent to 2 mod 3!
– {10,101,1000,1011,…}!

•  Correct sums in decimal !
{<x,y,z> | x+y = z}!
– {<1,1,2>, <2,3,5>, …}!

•  Syntactically Correct C programs!
•  Balanced parenthesis!

– {(), ()(), (()), (()()), … }!



Classifying Problems!
“Map of the world”!
•  Define classes of 

problems !
– Machines recognize!
– Grammars generate!

•  Develop techniques 
to classify problems 
by machines!

 substring


 ≅ 2 mod 3


 Balanced 
Parentheses


 Correct Sums 
in decimal


 Memory safe 
C programs




First Model:  Finite Automata!

•  Cartoon:!

10

01 0

1

• Start State

• Final State

• Transition labels




First Model:  Finite Automata!

•  Cartoon:!

10

01 0

•  Examples:  Which 
of the following are 
accepted?

• 000

• 10

• 101

• 111

• 100

• 1011


• What is the 
language?


1



First Model:  Finite Automata!

•  Cartoon:!

≈0


≈1


≈2


10

01 0

• How many states?

• What is the input 
alphabet


1



Cartoon to Mathematical 
Structure!

•  Cartoon:!

≈0


≈1


≈2


10

01 0

A (deterministic) finite 
automaton (DFA) M is a �
5-tuple

  M = <Q, Σ, δ, q0, F>�
where�
  Q is a finite set (states)

  Σ is a finite set (alphabet)

  δ: Q×Σ  → Q (transition)

  q0  ∈ Q (initial state)

  F  ⊆ Q (final states)
1



Cartoon to Mathematical 
Structure!

•  Cartoon:!

0


1


2


10

01 0

M2 mod 3 = <Q, Σ, δ, q0, F>�
where�
  Q = {0,1,2}

  Σ = {0,1}

  δ(q,a) = 2*q+a mod 3

  q0  = 0

  F  = {2}


1



Acceptance!

•  M accepts the string w = w1w2…wn if 
there exists a sequence of states!
  r0, r1, r2, … , rn !
such that!
1.  r0 = q0 !
2.  ri+1 = δ(ri,wi+1)  for all i, 0 <= i < n !
3.  rn ∈ F!



M2 mod 3 accepts 101!

•  Calculation:!
– r0 = 0!
– r1 = 2*0 + 1 mod 3 = 1!
– r2 = 2*1 + 0 mod 3 = 2!
– r3 = 2*2 + 1 mod 3 = 2!

•  Since r3 ∈ F (i.e. 2 ∈ {2})!
this satisfies the definition !
of acceptance for M2 mod 3 !

M2 mod 3 = <Q, Σ, δ, q0, F>!
where!
  Q = {0,1,2}!
  Σ = {0,1}!
  δ(q,a) = 2*q+a mod 3!
  q0  = 0!
  F  = {2}!



Regular languages "!

•  L(M) = { w | M accepts w }!
•  A language A is regular if A = L(M) for 

some finite automaton M!
•  The language !

“binary numbers congruent to 2 mod 3” 
is a regular language because it is !
L(M2 mod 3), and M2 mod 3 is a DFA!



Classifying Problems!

“Map of the world”!
Regular 
Languages!

Examples of other 
regular 
languages?!

 ≅ 2 mod 3




Extending the model!

•  What if we allow multiple possible 
transitions on the same symbol?  !

0,1


1 0,1
 0,1




Extending the model!

•  How should this machine behave?!

0,1


1 0,1
 0,1


•  Examples:!
•  100!
•  111000!
•  111!
•  0000!



Nondeterminism !

•  If we can win we do win!

0,1


1 0,1
 0,1




Changing the Model!
•  A (deterministic) nondeterministic finite automaton 

(DFA NFA) M is a !
5-tuple!

•    M = <Q, Σ, δ, q0, F>!
where!
  Q is a finite set (states)!

•    Σ is a finite set (alphabet)!
•    δ: Q×Σ  -> P(Q) (transition)!
•    q0  is in Q (initial state)!
•    F  subset of Q (final states)!



Nondeterminism !

M = <Q, Σ, δ, q0, F>!
where!
 "Q = {a,b,c,d}!

"Σ = {0,1}!
  " "q0  = 0!
  " "F  = {d}!

a
 b
 d


0,1


1
c


0,1
 0,1


δ! 0! 1!

a! {a}! {a,b}!

b ! {c}! {c}!

c! {d}! {d}!

d! {}! {}!



NFA Acceptance!

•  M accepts the string w = w1w2…wn if 
there exists a sequence of states!
  r0, r1, r2, … , rn !
such that!
1.  r0 = q0 !
2.  ri+1 = δ(ri,wi+1)  for all i, 0 <= i < n !
3.  rn is in F!



NFA Acceptance!

•  M accepts the string w = w1w2…wn if 
there exists a sequence of states!
  r0, r1, r2, … , rn !
such that!
1.  r0 = q0 !
2.  ri+1 ∈δ(ri,wi+1)  for all i, 0 <= i < n !
3.  rn is in F!



NFA vs. DFA?!

•  Can NFAs describe more languages 
than DFAs?  !



Comparing two models!

•  To answer the question is X the same 
as Y we have two strategies!
– No:  Show an X that isn’t a Y (or v.v.)!

•  produce a counter example!
– Yes:  Show that:!

•  every X is a Y!
•  every Y is an X!

– Often we will give constructions (or algorithms) 
that build an X out of Y (or v.v.)!



NFA vs. DFA?!

•  Can NFAs describe more languages 
than DFAs?  !

•  Clearly if A = L(M) for a DFA M, then 
A = L(M) for a similar NFA!
– Why?!

•  What about the other direction?  Can 
every language recognized by an NFA 
be recognized by a DFA?!



Simulating an NFA on 101!

a
 b
 d


0,1


1
c


0,1
 0,1


a
 b
 d


0,1


1
c


0,1
 0,1


a
 b
 d


0,1

1

c

0,1
 0,1


a
 b
 d


0,1


1
c


0,1
 0,1




Strategy!

•  Track the set of states!
– {a}!
– {a,b}!
– {a,c}!
– {a,b,d}!

a
 b
 d
c


a
 b
 d
c


a
 b
 d
c


a
 b
 d
c




DFA state:  set of NFA 
states!

•  Since the powerset of a finite set is 
finite, we can use sets of states of 
the NFA as states of the DFA that 
will simulate it!

•  Each transition will now be 
deterministic because there is always 
a well defined set of reachable states!

•  Which states should be final?!



Formalizing!

•  Claim:  If A = L(M) for an NFA M, then 
A = L(M’) for a DFA M’.!

•  Proof:  Given M = <Q, Σ, δ, q0, F>, 
construct M’ = <P(Q), Σ, δ’, {q0}, F’> 
where !
"δ’(R,a) "= ∪r∈Rδ(r,a)!
"F’ "" "= {R | R∩F ≠ ∅}!



Are we there yet?!

•  We have the construction of M’ from 
M!

•  We haven’t shown L(M) = L(M’)!
•  Need !

– w∈L(M) ⇒ w∈L(M’)!
– w∈L(M’) ⇒ w∈L(M)!

•  Why?!



Show w∈L(M) ⇒ w∈L(M’)!

•  Proof resources?!
– Construction of M’!
– Definition of 

acceptance for DFAs 
and NFAs !

•  Need to show if M 
can accept w then 
M’ must accept w !

•  Is it plausible?!

Given M = <Q, Σ, δ, q0, F>, 
construct M’ = <P(Q), Σ, δ’, {q0}, F’> 
where "δ’(R,a) "= ∪r∈Rδ(r,a)!

"F’ ""= {R | R∩F ≠ ∅}!

M accepts the string w = w1w2…wn if 
there exists a sequence of states!
  r0, r1, r2, … , rn !
such that!

1.  r0 = q0 !
2.  ri+1 = δ(ri,wi+1)  !

  for all i, 0 <= i < n !
3.  rn ∈ F!



Show w∈L(M) ⇒ w∈L(M’)!

•  Basic idea:  !
– If M can get from 

state p to state q 
reading w, !

– then M’ will move 
from {p} to a state 
R containing q on 
input w !

Given M = <Q, Σ, δ, q0, F>, 
construct M’ = <P(Q), Σ, δ’, {q0}, F’> 
where "δ’(R,a) "= ∪r∈Rδ(r,a)!

"F’ ""= {R | R∩F ≠ ∅}!

M accepts the string w = w1w2…wn if 
there exists a sequence of states!
  r0, r1, r2, … , rn !
such that!

1.  r0 = q0 !
2.  ri+1 = δ(ri,wi+1)  !

  for all i, 0 <= i < n !
3.  rn ∈ F!



Notational asside!

•  “from state p to state q reading w”!
• δˆ(p, w) = q !
•  For DFAs !

– δˆ(p, ε) = p !
– δˆ(p, w1 w) = δˆ(δ(p, w1), w)!

•  For NFAs !
– δˆ(p, ε) = {p}!
– δˆ(p, w1 w) = ∪q∈δ(p, w1)δˆ(q, w) !



Show w∈L(M) ⇒ w∈L(M’)!

•  Basic idea:  !
– If q ∈ δˆ(p, w) !
– then q∈ R, where !

R = δ’ˆ({p}, w)!

•  Basic idea:  !
– If M can get from 

state p to state q 
reading w, !

– then M’ will move 
from {p} to a state 
R containing q on 
input w!



Show w∈L(M) ⇒ w∈L(M’)!

•  Claim:  !
– If q ∈ δˆ(p, w) !
– then q∈ R, where !

R = δ’ˆ({p}, w)!
•  Proof:  By induction on the length of w !

– Basis:  w = ε!
In this case q = p, R={p}, and the 
condition holds by definition!



Show w∈L(M) ⇒ w∈L(M’)!

•  Claim:  !
– If q ∈ δˆ(p, w) !
– then q∈ R, where R = δ’ˆ({p}, w)!

•  Step:  w = w1y!
Assume the property holds for y to show 
for w.!
q ∈ δˆ(p, w1y)  = ∪r∈δ(p, w1)δˆ(r, y)!
Hence for some r’ ∈δ(p, w1), q ∈ δˆ(r’, y)!
By induction, q ∈ R’, where R’ = δ’ˆ({r’}, y)!



Show w∈L(M) ⇒ w∈L(M’)!
•  Step:  w = w1y!

Assume the property holds for y to show for w.!
q ∈ δˆ(p, w1y)  = ∪r∈δ(p, w1)δˆ(r, y)!
Hence for some r’ ∈δ(p, w1), q ∈ δˆ(r’, y)!
By induction, q ∈ R’, where R’ = δ’ˆ({r’}, y)!

•  Recall we are trying to show !
"q∈ R, where R = δ’ˆ({p}, w1y)!

which is equivalent to!
"q∈ R, where R = δ’ˆ(δ’({p}, w1),y)!
"q∈ R, where R = δ’ˆ(δ(p, w1),y)!

•  Problem:  mismatch between {r’} and δ(p, w1)!
•  Must generalize claim to apply induction!



Show w∈L(M) ⇒ w∈L(M’)!

•  Claim (generalized):  !
– If q ∈ δˆ(p, w) !
– then p ∈ S implies q∈ R, where R = δ’ˆ(S, 

w)!
•  Proof:  By induction on the length of w !

– Basis:  w = ε!
In this case q = p, R=S, and the condition 
holds by reflexivity, p ∈ S implies p ∈ S!



Show w∈L(M) ⇒ w∈L(M’)!
•  Claim (generalized):  !

–  If q ∈ δˆ(p, w) !
–  then p ∈ S implies q∈ R, where R = δ’ˆ(S, w)!

•  Step:  w = w1y!
Assume the property holds for y to show for w.!
q ∈ δˆ(p, w1y)  = ∪r∈δ(p, w1)δˆ(r, y)!

•  Hence for some r’ ∈δ(p, w1), q ∈ δˆ(r’, y)!
By induction, r’ ∈ S’ implies q ∈ R’, where !
R’ = δ’ˆ(S’, y)!



Show w∈L(M) ⇒ w∈L(M’)!
•  Step:  w = w1y!

Assume the property holds for y to show for w.!
q ∈ δˆ(p, w1y)  = ∪r∈δ(p, w1)δˆ(r, y)!

Hence for some r’ ∈δ(p, w1), q ∈ δˆ(r’, y)!
By induction, r’ ∈ S’ implies q ∈ R’, where R’ = δ’ˆ(S’, y) !

•  Recall we are trying to show !
"p∈ S implies q∈ R, where R = δ’ˆ(S, w1y)!

rewriting R!
"R = δ’ˆ(δ’(S, w1),y)!
"R = δ’ˆ(δ(p, w1) ∪X ,y)!

•  Since p∈ S implies r’ ∈ δ(p, w1) ∪X , we can apply 
induction to conclude q∈ R, as required!



Using the Claim!

– By definition of acceptance for M!
• w∈L(M) implies there are states r0, r1, … rn 
satisfying acceptance conditions!

– by the claim !
•  there are states of M’ R0, R1, …, Rn !
where R0 = {q0}, ri ∈ Ri!

– since rn  ∈ F and rn∈ Rn, Rn∩F≠∅!
– Hence Rn∈F’, establishing the acceptance 

conditions for M’!



Are we there yet?!

•  We have the construction of M’ from 
M!

•  We haven’t shown L(M) = L(M’)!
•  Need !

– w∈L(M) ⇒ w∈L(M’)!
– w∈L(M’) ⇒ w∈L(M)!

•  Why?!

✔




w∈L(M’) ⇒ w∈L(M)!

•  Must show that if the deterministic 
simulation includes a final state, then 
the nondeterministic machine could 
have made choices that reach it!

•  Claim:  q ∈R, where R=δ’ˆ(S,w) 
implies there exists p ∈S . q 
∈δˆ(p,w)!

•  Proof:  By induction on w !



w∈L(M’) ⇒ w∈L(M)!

•  Claim:  q ∈R, where R=δ’ˆ(S,w) 
implies there exists p ∈S such that !
q ∈δˆ(p,w)!

•  Proof:  By induction on w !
•  Basis:  w = ε!

In this case R = S.   Pick p = q to 
satisfy the claim!



w∈L(M’) ⇒ w∈L(M)!

•  Claim:  q ∈R, where R=δ’ˆ(S,w) implies 
there exists p ∈S . q ∈δˆ(p,w)!

•  Step:  w = w1y!
R = δ’ˆ(S,w)!
R = δ’ˆ(S, w1y)!
R = δ’ˆ(δ’(S, w1), y)!

•  By induction, there is a p’ in δ’(S, w1) 
such that q ∈δˆ(p’,y)!



w∈L(M’) ⇒ w∈L(M)!
•  Claim:  q ∈R, where R=δ’ˆ(S,w) implies 

there exists p ∈S such that q ∈δˆ(p,w)!
•  Step:  w = w1y!

•  By induction, there is a p’ in δ’(S, w1) 
such that q ∈δ’ˆ(p’,y)!
By definition, δ’(S, w1) = ∪r∈Sδ(r,a)!
Hence, for some particular r ∈S, p’ must 
be in δ(r,a).  !

•  Take p to be this r.!



w∈L(M’) ⇒ w∈L(M)!
•  Claim:  q ∈R, where R=δ’ˆ(S,w) implies there exists p ∈S 

such that q ∈δˆ(p,w)!
•  Step:  w = w1y!

•  Take p to be this r.!
Verify that p has the property desired as follows:!
q ∈δˆ(p,w)!
q ∈δˆ(p, w1y)!
q ∈∪s∈δ(p, w1)δˆ(s, y) !

q ∈δˆ(r, y) ∪ X    (for some set X, r as previous slide)!

But this last line is a consequence of the induction hypothesis, 
since we have demonstrated q ∈δˆ(r, y) !

This proves the claim.!



Applying the Claim!
•  To show w∈L(M’) ⇒ w∈L(M), consider w∈L(M’).  !
•  By definition of acceptance this means there is a 

sequence of states R0, R1, …, Rn satisfying the 
conditions.  !

•  By definition of M’ and condition 1, R0={q0}.  !
•  Similarly Rn∩F is not empty.  !
•  Consider rn∈Rn∩F, which will satisfy acceptance 

condition 3!
•  By repeated application of the claim, select a sequence 

of ri ∈Ri for each i.  !
•  By the claim these ri can be selected to satisfy 

acceptance condition 2 for M.  Furthermore, r0 = q0, 
satisfying condition 1 for M. !

•  This establishes w∈L(M), as required!



Are we there yet?!

•  We have the construction of M’ from 
M!

•  We haven’t shown L(M) = L(M’)!
•  Need !

– w∈L(M) ⇒ w∈L(M’)!
– w∈L(M’) ⇒ w∈L(M)!

•  Done!!

✔

✔




What have we proved?!

•  If a language is accepted by an NFA 
then it is regular (accepted by a DFA)!



Note!

•  The development in the book 
introduces ε-transitions at the same 
time as nondeterminism !

•  In this lecture we have omitted ε-
transitions !

•  How does this impact the proofs?!
•  We will use ε-transitions freely!


