
Theory of Computation Homework 5: Solutions

December 5, 2004

This assignment is due on Tuesday, November 23, 2004.

1. In lecture I presented five schemas for defining primitive recursive func-
tions. They are as follows:

(a) [Zero] There is a constant function zero of every arity.

Zk(x1, . . . , xk) = 0

(b) [Successor] There is a successor function of arity 1.

S(x) = x + 1

(c) [Projection] There are projection functions for every argument posi-
tion of every arity.

P k
i (x1, . . . , xk) = xi where k > 0, i ≤ k

(d) [Composition (also called substitution)] The composition of the func-
tion f of arity k with functions g1, . . . gk, each of arity l, defines a
f ◦l

k [g1 . . . gk] of arity l satisfying:

f ◦l
k [g1 . . . gk](x1, . . . , xl) = f(g1(x1, . . . , xl), . . . , gk(x1, . . . , xl))

(e) [Primitive Recursion] The arity k function defined by primitive re-
cursion from a function g of arity k−1 and a function h of arity k+1
is indicated PRk[g, h]. It satisfies:

PRk[g, h](0, x2, . . . , xk) = g(x2, . . . , xk)
PRk[g, h](x + 1, x2, . . . , xk) = h(x, PRk[g, h](x, x2, . . . , xk), x2, . . . , xk)

In lecture we showed how to define addition by primitive recursion:

PR2[P 1
1 , S ◦31 [P 3

2 ]]

Using primitive recursion define:

1



(a) Multiplication
Answer: Using + to represent the addition function given above:

PR2[Z1,+ ◦32 [P 3
2 , P 3

3 ]]

(b) Bounded quantification (see M&Y)
Answer: There are two functions to be defined:

i. BEQ[P] = ∃x < y.P(x)
ii. BUQ[P] = ∀x < y.P(x)

The functions are defined via primitive recursion on y, so the order
of arguments is y first, x second. It helps to define if-then-else and
“boolean” functions (here I use 0 for false and 1 for true) first.

ITE = PR3[P 2
2 , P 4

3 ]
OR = ITE ◦23 [P 2

1 , S ◦ Z2, P 2
2 ]

AND = ITE ◦23 [P 2
1 , P 2

2 , Z2]
BEQ[P] = PR2[Z1,OR ◦32 [P ◦31 P 3

3 , P 3
2 ]]

BUQ[P] = PR2[S ◦11 Z1,AND ◦32 [P ◦31 P 3
3 , P 3

2 ]]

2. In the λ-calculus values are encoded by the control structures that analyze
them. Booleans, thus, are represented by the equivalent of if-then-else:

true = λt.λf.t false = λt.λf.f

(a) Using this representation define:
i. and

Answer: λa.λb.a (b true false) false = λa.λb.a b false
ii. or

Answer: λa.λb.a true (b true false) = λa.λb.a true b

iii. not
Answer: λa.a false true

(b) Over Church numerals the key is to use them as iterators. Recall the
definition of the successor function given in class:

λn.λs.λz.s(n s z)

Use this to define addition (we did this in class too) and multipli-
cation. See how the number n is represented by a loop that applies
its first argument n times to its second argument. In the successor
function above the first argument (s) gets applied one more time.
That is the essence of the successor function.
Answer:

plus = λx.λy.x succ y

times = λx.λy.x (λz.plus y z) 0

2



(c) Pairing and projection operators can be defined in the same manner.
The function below can construct pairs.

mkpair = λa.λb.λc.c a b

These pairs are analyzed by providing the correct projection function.
The first projection function is:

π1 = λp.p(λx.λy.x)

Define the second projection function (π2).
Answer:

π2 = λp.p(λx.λy.y)

(d) Define a function that maps 0 to the representation of the pair (0, 0),
and maps every other natural number n to (n, n− 1). Use this func-
tion to define the predecessor function.
Answer:

aux = λn.n(λp.mkpair(s(π1p))(π1p))(mkpair 0 0)

pred = λn.π2(aux n)

(e) Define the monus function, which returns the difference of two num-
bers if the difference is non-negative. If the difference is negative
monus should return zero. [Hint: use the predecessor function.]
Answer:

monus = λa.λb.b pred a

(f) Define an integer equality function.
Answer:

isZero = λn.n(λp.false) true

eq = λa.λb.and (isZero (monus a b))(isZero (monus b a))

(g) Argue convincingly that the factorial function given in class is defin-
able in the lambda calculus:

FACT = λfact .λn.if n = 0 then 1 else n ∗ fact(n− 1)

Answer: It has been demonstrated that natural numbers, multi-
plication, subtraction, booleans/if-then-else, and equality over the
natural numbers can be defined in the lambda calculus, so all the
pieces needed to define FACT are available.

(h) Illustrate a fragment of the computation of (Y FACT )(λs.λz.s(sz)).
(Recall that Y = λf(λx.f(xx))(λx.f(xx)))

3



Answer:

(Y FACT ) 2 = ((λf.(λx.f(x x))(λx.f(x x)))FACT ) 2
⇒β (λx.FACT (x x))(λx.FACT (x x)) 2
⇒β FACT ((λx.FACT (x x))(λx.FACT (x x))) 2
= FACT (Y FACT ) 2
= (λfact .λn.if n = 0 then 1 else n ∗ fact(n− 1))(Y FACT ) 2
⇒β (λn.if n = 0 then 1 else n ∗ (Y FACT )(n− 1)) 2
⇒β if 2 = 0 then 1 else n ∗ (Y FACT )(2− 1)
= . . .

3. (a) Show that all primitive recurisve functions are definable in the lambda
calculus by giving lambda terms for every schema. You may assume
any of the results of the previous problem, even if you didn’t solve
it. Illustrate your construction by showing the translation of the
addition function given in the first exercise.
Answer: Shorthand: xi−j means xi . . . xj , and λxi−j means λxi . . . λxj .

Zk = λx1−k.λs.λz.z

S = λn.λs.λz.s(n s z)
P k

i = λx1−k.xi

f ◦l
k g1−k = λx1−l.f (g1 x1−l) . . . (gk x1−l)

PR2[g, h] = λx1.λx2.π2(doPR g h x1 x2)
doPR = λg.λh.λx1.x1(λp.mkpair(S(π1p))(h(π1p)(π2p)x2))(mkpair 0 (g x2))

OR

PRk[g, h] = (Y (λf.λx1−k.(isZero x1) (g x2−k)(h(pred x1) (f(pred x1) x2−k) x2−k)))

Addition was defined above as PR2[P 1
1 , S ◦31 [P 3

2 ]]. The projections
are translated as follows:

P 1
1 = λx1.x1

P 3
2 = λx1.λx2.λx3.x2

The composition is therefore:

S ◦31 P 3
2 = λx1.λx2.λx3.(λn.λs.λz.s(n s z))((λx1.λx2.λx3.x2) x1 x2 x3)

⇒β λx1.λx2.λx3.(λn.λs.λz.s(n s z)) x2

⇒β λx1.λx2.λx3.λs.λz.s(x2 s z)

4



Putting it all together (using the Y formulation of PR):

plus = Y (λf.λx1.λx2.(isZero x1) x2

((λy1.λy2.λy3.λs.λz.s(y2 s z)) (pred x1) (f(pred x1) x2) x2)
⇒β Y (λf.λx1.λx2.(isZero x1) x2 (s ((f(pred x1) x2) s z)))
= Y (λf.λx1.λx2.(isZero x1) x2 (s (f(pred x1) x2)))

(b) Recall the minimization schema:
The function of arity k defined by minimization of a function f of
arity k + 1, written µf , satisfies:

µf(x1, . . . , xk) = the least x such that f(x, x1, . . . , xk) 6= 0 and
for all y < x, f(y, x1, . . . , xk) is defined and
equal to 0

Show that functions defined by minimization can be defined by the
lambda calculus.
Answer:

min f = min ′ f 0
min ′f = λx0−k.if f x0 = 0 then min′ f (x0 + 1) x1−k else x0

min ′ = Y MIN
MIN = λmin ′.λf.λx0−k.if f x0 = 0 then min′ f (x0 + 1) x1−k else x0

5


