CS 510 Semantics Assignment 1 Due Thursday, January 19, 2005

James Hook

January 10, 2005

Problems

- 1. Tennent, exercise 2.4. Read part (a) as "If there exists any (i.e., some) $i \in I$ such that $A_i = \emptyset$, then $\prod_{i \in I} A_i = \emptyset$." (As given in the text, the problem is ambiguous: "for any" could be understood as meaning "for all.")
- 2. Tennent, exercise 2.9
- 3. Tennent, exercise 3.3 c
- 4. Tennent, exercise 3.5. Justify your answer using semantic equations.
- 5. Tennent, exercise 3.7. Hint for part (a): Use mathematical induction. As the basis, show graph $c_0 \subseteq$ graph c_1 . For the induction step, show that the hypothesis

graph
$$c_i \subseteq$$
 graph c_{i+1}

(equivalently, whenever $c_i(s')$ is defined then $c_{i+1}(s') = c_i(s')$) entails the conclusion

graph $c_{i+1} \subseteq \text{graph } c_{i+2}$

(equivalently, whenever $c_{i+1}(s)$ is defined then $c_{i+2}(s) = c_{i+1}(s)$).

Restatement of part (b): Prove that if (s, s') and (s, s'') are both in $\bigcup_{i \in N} \operatorname{graph} c_i$, then s' = s''.

Suggested Tennent, exercise 2.1. You only need to consider the rules for implication and absurdity. In addition, please show the classical absurdity rule below is also valid:

 $\frac{\begin{bmatrix} A \Rightarrow \mathbf{absurd} \end{bmatrix}}{A}$