
Subdomain (Partition) Testing

Dick Hamlet
Department of Computer Science

Portland State University
Portland, OR 97207 USA

+1 503 725 4036
hamlet@cs.pdx.edu

Abstract

In subdomain testing, the input space of the program being tested is divided using a criterion of ‘sameness,’
grouping input points such that it seems unnecessary to try many in the same group. These subdomains
are then sampled: it is required that each be covered by at least one test. There are a number of pitfalls
in this procedure because the points in a subdomain are never truly ‘the same’; nevertheless, the method is
the only imaginable way to systematize testing.

Key terms: test coverage, functional testing, structural testing, input partition, sampling, subdomain
homogeneity

1 Introduction

Software testing of any kind is a process of sampling. Each test case for a piece of software must be chosen
from a set of possibilities, here called the test domain. (See the formal definitions, to follow.) It is a basic fact
of practical testing that this domain is almost always hopelessly large, so that the number of test samples
possible during software development is a minuscule fraction of the possibilities. Thus the choice of test
cases is the critical factor in any testing activity. At the same time, once software has been released its users
proceed to sample the test domain, and may do so far more thoroughly than the developer could. A trivial
example will illustrate this unfortunate situation. Imagine a program that makes a numerical calculation
using two non-negative integer inputs. Further stipulate that the program correctly checks that its inputs
are integers in the range [0, 232

− 1], issuing a proper message otherwise. This confines the test domain to
about 264 values. (Without the stipulation, the test domain would be effectively unlimited, since it would
include unlimited strings for inputs, e.g., “2B or not 2B, that is the ?”. It is very often the case that
programs fail to check for valid input.) Suppose also that the developer has a collection of 104 integer test
cases for which the required results are known, and has time to execute and check these. Discount any
time required to fix problems that are encountered. (Again, the situation is idealized because typically no
such collection may exist, and weeks of test time may not be available; fixing problems could be a lengthy
operation.) Finally let this software be intended for the PC market with about 10 million users, each of
whom uses the program 100 times a week on average. Altogether the idealized situation differs from reality
in giving development testing a huge favorable bias. The test domain has about 4.3 billion points, of which
104, about .00023%, are tested, while usage is about 109 points/week, about 23% of the test domain. (It
is true that a great deal depends on exactly which elements of the test domain are tried and which used,
but that important subject will be raised later in Section 3.1.) Thus in this case some user hits almost
every point within a month of usage, while only a negligible fraction have been tested. Thus if there are any
problems with the software, it is quite likely that they will be seen by users but not by pre-release testers.

The quality of any pre-release testing effort can be measured in terms of user-experienced deficiencies:
good testing exposes problems so that they can be fixed before release; bad testing leads to damaging,
expensive problem reports from the field. Unfortunately, there is the complication of software quality: if the
software has very few deficiencies prior to test, then there is little distinction between good and bad testing.
No test will turn up much, and few problems will arise in the field. It is the common wisdom that the best
development aims for quality to be built in – that it is impossible to test quality into poorly designed or

1



badly constructed software. Nevertheless, from the testing viewpoint, test selection should seek to find as
many problems that users might see as possible.

To attack any problem whose magnitude or complication seems as overwhelming as test selection, the
best strategy is divide and conquer. Subdomain testing provides the ‘divide’; whether it conquers is another
issue. Subdomain testing has also been called ‘partition’ testing, because it divides the test domain into a
finite number of classes – subdomains. If these classes are disjoint and together exhaust the test domain, they
constitute a partition of it in the strict mathematical sense. Not all subdomain divisions are mathematical
partitions, so “subdomain testing” is preferred over “partition testing.” The essence of subdomain testing is
that after the test domain is divided, sampling is required in each subdomain. In the extreme case, a single
sample is taken in each subdomain. It is intuitively clear that if subdomains are defined haphazardly, there is
likely no difference between using the same number of test points in subdomains or using them without regard
for the subdomain boundaries. The attraction of subdomain testing comes in selecting the subdomains in a
purposeful way that will leverage the requirement to sample each into a significant advantage over haphazard
sampling of the whole test domain. Intuitively, subdomain testing makes it more difficult for the tester to
stupidly miss something in selecting test cases. Unfortunately, although many clever subdomain breakdowns
have been suggested, many of them intuitively valuable, it has not been rigorously established that any is
actually efficacious, even in limiting stupidity. Indeed, in mathematical comparison with random sampling
over the whole test domain, which is a kind of opposite of subdomain testing, there is often little difference
[6], and recent results [3] indicate that there may be tight theoretical limitations on how good subdomain
testing can be.

1.1 Organization

This article is organized as follows:
A brief historical and definitional introduction is given in Section 2.
A number of the most common subdomain-testing schemes are described in Section 3, each with a

rationale and critique.
The important special cases of testing software that retains and uses persistent state or co-operates

concurrently with other software are described in Section 4.
The results of theoretical comparison with random testing are summarized in Section 5.
Conclusions as to when to use subdomain testing and what may be expected from it in practice (Section

6) end this article.

2 History, Definitions, and Scope

Although the origin of subdomain testing is not known, it probably arose in testing practice when program-
mers considered which software inputs were “the same” in some sense, and therefore more than one need not
be tried. For example, suppose that a program is supposed to reject negative inputs with an error message.
Then it should be enough to try one negative input and check for the message. Other negative inputs are
‘the same’ and need not be tried. The example shows both the plausibility of subdomain testing (here the
subdomain is “all negative inputs”) and its flaws. If the code begins with something like

READ x

IF (x < 0) THEN

print "ERROR: Negative input."

return

FI

then the single test seems safe; but if instead the code is more obscure, perhaps not so. Furthermore, the
input “-11111111111111111111111111111111111111” might very well not cause the program to do the same
thing as input ‘-1’ because of peculiarities of the library READ routine or hardware limitations on stored

2



values. In subdomain terms, these difficulties mean that the “negative inputs” subdomain is not so simple
or uniform as it might seem, and so testing it requires care.

“Negative inputs” is an example of a functional, or specification-based subdomain: it is defined by what
the program should do. (See Specification-based Test Case Generation, Black-box Testing.)
Another viewpoint is from the program code. In the example, there are inputs that cause the error-message
statement to be executed, and these define a structural or code-based subdomain, “execute the error print”.
The flaw in trusting code-based subdomains is more subtle. Indeed, every input in this subdomain does hit
the print statement by definition. But it can still happen that inputs in the subdomain do not have the
same meaning. For example, the input “ABCDE” might look ‘< 0’ to the library READ routine (or cause
an exception), yet should have resulted in a different error message, or even a completely different program
response.

The initial response to these difficulties was to combine functional and structural subdomains. The
intersection between “negative inputs” and “execute the error print” is a subdomain where both are true,
and from which complications have been eliminated. It was early proposed [18] that such intersections be used
for subdomain testing. If the tester manages to find an input point in the intersection, it is sufficient to try it
alone, since all other points in that subdomain are intuitively the same. Unfortunately, as a practical testing
technique, intersecting subdomains doesn’t work any better than using functional or structural subdomains
by themselves. In the intersection there are other subdomains, such as “negative input that does not execute
the error print” that should be tried, and the tester has no more idea how to try them than he/she had
about how to see if any “negative inputs” values were peculiar. Indeed, if the program works properly, such
subdomains must be empty. But how can a tester establish that an input subset is empty?

There is one subdomain breakdown that is unexceptionable: separate the test domain into those inputs
where the program succeeds in doing what it is required to do (say subdomain S) and those where it fails
(subdomain F ). F and S should tell us what we really want to know from testing: whether or not the
program works. But given F no testing at all is needed: a program is correct iff F is empty. Once F is
shown to be empty (necessarily not by sampling F or S!), there is no need to sample at all.

In 1976, Bill Howden recognized that these intuitive difficulties with subdomain testing could be made
precise. His paper [14] carefully defined the process of dividing the test domain and sampling in each
subdomain, and he proved that it is an unsolvable problem to succeed with this in general. That is, there
is no effective subdomain breakdown (that is, one which can be algorithmically carried out) which for all
programs can be sampled to show correctness. Howden illustrated his proof using the structural subdomains
of executing the same path in imperative code (see Section 3.2 for a definition), and showed that for a sample
of small programs from a textbook, these subdomains necessarily detected some 35% of the program failures.
Howden’s result shows that it is pointless to seek perfect subdomain testing, that is, subdomains whose testing
cannot succeed without the program being correct. A less ambitious goal would be probabilistic: to find a
subdomain breakdown such that sampling each is provably better than sampling the test domain without
regard for the subdomain boundaries. Attempts to investigate the probabilistic view have been inconclusive,
but beginning with a seminal paper of Duran and Ntafos in 1985 [6], many studies indicate that if subdomain
testing is better, it is not much better. These results are discussed in Section 5 below. Another practical
way to proceed is to define particular kinds of failure and seek subdomains that necessarily detect them.
This technique has been very successful in testing electrical and mechanical systems. Their “fault modes”
are described, and tests designed to preclude each particular fault. Software seems to have an infinity of
“fault modes,” but see Software Fault-based Testing for more information.

If subdomain testing has limited value, why is it almost universally used, and why do testers and pro-
grammers usually believe that it is more meaningful than can be precisely established? The answer comes
from human psychology rather than from computer science: people feel that it is better to do something
than to do nothing; and, when people have worked hard, they tend to confuse effort with results. Howden
himself said it clearly in responding to a subdomain-intersection paper at a technical meeting. The paper
called its method “rigorous”; Howden suggested that this be changed to “vigorous”. However, our human
intuitions are not without value. If testing must be done because it can uncover even a few problems, and
if only subdomains make it possible to do in practice, then subdomain testing will be used.

3



In discussing subdomain testing, terminology common to testing in general is needed (indeed, even the
introductory remarks above had to use some technical terms).

Definitions and discussion:

The test domain (input domain) for a program is an arbitrary set of values that might be program inputs.
In general this set includes every possible value of every kind; however, in special cases it may be agreed
that some values are excluded as impossible, e.g., because it is stipulated that the program only accepts
mouse clicks, and an operating system can only deliver these in certain ranges. One way to restrict the
test domain is to adjust a program’s specification to make excluded values ‘don’t care’ inputs, as described
below. However, it is always dangerous to make stipulations that exclude arbitrary values, since it may
very well happen that the assumptions on which the exclusion is based prove false in practice, exposing
the program to completely untried cases from its users.

A test (test case, test point) is a value selected from the test domain on which to execute a program.

A collection of tests is called a testset. (The common usage of ‘test’ for the collection or for describing the
process of testing, e.g., “the test took a week,” will be avoided here.)

An operational profile (or user profile, see Operational Profile Testing) is a probability distribution
over the test domain that assigns to each point the probability that it will occur when the program is in
use. In practice, the only profile available is a crude histogram assigning weights to a few subsets of the
test domain.

A specification for a program P is a description of what P is required to do, hence also requirements. If
the description is mathematically precise, it is called a formal specification; commonly the specification is
a natural language document interpreted by human beings. In principle, a specification should include an
operational profile for its program, but this is almost unheard of.

A program P succeeds on input value x iff the result of executing P on input x agrees with its specification;
otherwise P fails on x. By extension, success or failure on a testset means that P succeeds on all its
members, or fails on at least one. (We also say that the test or testset succeeds or fails.) In situations
where P does not produce any result, and/or where its specification does not describe what the result
should be, there is disagreement: some say that no result always signifies failure; others that there can be
unspecified “don’t care” inputs on which the program cannot by definition fail, no matter what it does or
does not do. Where we cannot avoid discussing such a situation, we take the latter view. A program is
correct with respect to its specification iff it succeeds on all values of its input domain.

An oracle is a procedure for deciding, given two values x and y, whether or not a program producing
result y on input x has succeeded. If the specification requires human interpretation, the only possible
oracle is a subjective decision. Formal specifications can by contrast be effective or automatic oracles if
using them to decide is algorithmic.

A subdomain testing technique (coverage method) is a means of determining subdomains for a given test
domain, selecting a testset comprised of one or more tests from each, executing those tests, and judging
the results. Should the testset succeed for some program, the program is said to have passed coverage
testing or testing has achieved coverage (for the particular technique).

With this terminology, it is possible to state Howden’s result more precisely:

Theorem (Howden [14]): There is no general algorithmic coverage method (that is, one that can be
mechanically carried out for any program) with the property that when a program passes it, that program
must be correct.

There is a practical aspect to subdomain testing which is shared with any testing activity. Tools that
support testing must do bookkeeping, recording and categorizing tests and reporting on their outcomes.

4



Subdomain testing adds a bit to the bookkeeping overhead because each test point must be associated with
a subdomain, but introduces no fundamental changes. See Software Testing Tools.

Finally, a distinction is drawn between different levels of “program” that might be tested. In unit testing
(see Software Unit Testing) the program tested is only part of a software system (perhaps a subroutine
or an off-the-shelf component); addressing the larger piece of software is called system testing. Subdomain
testing is used at all levels, and for the most part the level is not material. However, particular subdomain
techniques work better at different levels. For example, most system testing uses functional subdomains;
structural subdomains and tool support work best in unit testing.

3 Common Subdomain Testing Techniques

All testing has the dual purpose of uncovering failures and increasing confidence in success. It is worth
separating functional- from structural subdomain testing, because their intuitive viewpoints differ. The best
way to see the difference is to consider the consequences of not covering subdomains of each kind. In a
functional breakdown of the test domain, each subdomain corresponds to some case with a specified result,
e.g., “clicking the CANCEL button should clear the screen.” Suppose no such case is tried, that is, this
subdomain is not sampled in testing. Then the tester has no idea what a user of the program will see when
CANCEL is selected, an action very likely to occur. As noted in the introduction, trying the button once
successfully (and hence covering the subdomain) is no guarantee of discovering every possible failure that
might result from this action—CANCEL might fail under different circumstances—but if the button is
never pushed the tester knows nothing about what a user might see.

On the other hand, what does it mean when a structural subdomain is missed? Consider as in the
Introduction subdomains corresponding to executing each statement of an imperative program. Suppose no
test covers a block of code that bears the comment “--clear the screen”. Then by definition this code will
never have been tried. One does not know if it is intended to be invoked by the CANCEL button, or how it
might be invoked. But one surely has no evidence that it does not contain mistakes. In the most benign case
the code might be impossible to reach (but might not that itself indicate a programming mistake?); in the
worst case it is the only code used to clear the screen in a number of different circumstances, and it might
fail to do so (say because of invoking the wrong operating-system function). Again, successfully invoking
the code once (covering the subdomain) is no guarantee that a different invocation will not fail, but if the
subdomain remains uncovered the tester knows nothing.

In both these scenarios, subdomain testing serves the purpose of preventing the tester from missing
something that should be tried. The difference is whether that ‘something’ is a user action or a code
action. Another important difference is that functional testing requires knowledge of the specification and
the program’s intended use and users. Structural testing, on the other hand, requires detailed knowledge
of the code and run-time tools to monitor its execution. Intuitively, the two kinds of subdomain testing
complement each other; unfortunately, to use both requires extra resources.

3.1 Functional Subdomain Testing

The adjective “functional” refers to a program’s ‘functionality,’ what it should do, not to a mathematical
function. Good functional testing turns on culling from the specification a set of these functions that is a
good balance between generality (abstraction) and specificity (concreteness). Too far toward abstraction and
the subdomains will be too large and each will have too much variation; too specific and there will be too
many subdomains, many hardly different from each other. How easy it is to find good functional subdomains
depends on how complex the software is and on how well its specification is organized and presented, as
well as on the skill of the test designer. In a very rigid testing plan—for example, to meet a formal test
standard for a contract—the functions to be tested may be prescribed. One such standard requires that
each requirement in the specification be treated as a separate function. Since even a medium-sized software
system can have thousands of requirements, this standard imposes a heavy testing burden. In most cases
such regimentation will be counterproductive. It will be better for the tester to imagine her/himself to be

5



an end user of the software, and with the specification as a guide to run through the functions a user might
select.

If there is an operational profile available, it should play a large role in selecting and sampling functional
subdomains. Indeed, the usual profile already provides a functional subdomain breakdown, since it is a
histogram giving the probability that certain test-domain subsets will be used; those subsets are natural
functional-test subdomains. It is also natural to weight the testing effort by the profile, selecting more tests
in proportion to the histogram weights. Harlan Mills has given a convincing argument [4] that the quality of
testing depends largely on the frequency of occurrence of the failures found (partly determined by the user
profile), not the number of failures found. A counter-intuitive corollary is that for very infrequent failures, it
is not worth the effort to change the code, because debugging time is wasted on a failure estimated to occur
only (say) every 5000 years of operation.

Any functional testing effort will use not only isolated test points, but sequences of tests that build on
one another. Users typically have problems to solve, and use software to solve them in a sequence of related
executions. Test sequences will be explored in Section 4.1 to follow.

There are some general techniques for gleaning functional subdomains from informal specifications. Spec-
ifications isolate cases by describing values of input parameters under which a case holds. Even the vaguest
specification describes the input parameters themselves and their intuitive meanings. Two examples will
indicate how this information can be mined for functional subdomains.

Identify function by conditional requirements. Suppose a requirement reads, “If the temperature
goes above 90o C for more than 5 sec, the system shall turn on the pump.” The condition defines an input
subdomain of values from a temperature sensor and a clock, and the requirement defines the functional
result.

Guess function from input parameters. If a program involved in word processing takes a string of
characters as an input parameter, it is very likely that certain values of this string are of interest. For
example, an empty string results from a user failing to supply an input field. White-space characters
and/or punctuation characters are likely to be significant, dividing the string into intuitive ‘words’ and
‘lines’. Upper and lower case may or may not be significant. Such an analysis leads to identifying cases
like “several lines of more than one word each, mixed upper- and lower case”; these define functional
subdomains.

A breakdown of the test domain using cases defined by conditional expressions can be organized into
tables that allow specified results to be read off for each case. Indeed, it has been proposed [12] that tables
of this kind should form the specification itself, transforming a natural-language document into one that is
semi-formal.

Although the situation is slowly changing, even rudimentary specifications for a program may not exist,
beyond a few comments in its code. But even in such cases, there is a method for devising reasonable
functional subdomains, making use of intuitive knowledge about the problem the code is to solve. The
program’s potential input values can usually be associated with variable identifiers in the code, and the
values of each can be grouped into subsets using common sense. The example above of the possibilities
for an input string is typical, and requires almost no knowledge of what the program should do with the
string. The category-partition method [17] is a way to turn a list of input parameters into a functional
subdomain breakdown for testing. Each input parameter is assigned a number of value ‘categories,’ thus
‘partitioning’ the multidimensional input domain into subdomains that are cross products of the categories.
Each cross-product subdomain singles out an intuitive case in which input variables take those values. The
category-partition method is weakest in attaching required results to these subdomains (for use as an oracle),
but often choosing a particular set of values in a subdomain will call up an intuitive idea of what the program
should do there.

Specification-based partitions are subject to the general deficiency described in the introduction. Subdo-
mains that are too general include several functions, and sampling may not try them all. But no matter how
well chosen the functions/subdomains, the result of subdomain testing may be misleading. Just because the

6



sampled points succeed is no guarantee that other points in a subdomain cannot fail. The program being
tested may act differently on different parts of a subdomain and some of these actions can be correct while
others are not.

3.2 Structural Subdomain Testing

In contrast to specification-based testing, which is a very subjective and people-intensive activity, structural
subdomain testing can be at least partly automated. Each structural method concentrates on some syntactic
aspect of the program under test [16]. The test domain is divided by whether that aspect is invoked
in execution. For imperative programs, the simplest intuitive structure is the block of code, a group of
statements that are executed together under all circumstances. Statement testing defines a subdomain for
each block: those inputs that cause that block to be executed. Statement-testing subdomains are not
necessarily disjoint, since the same input can cause the execution of two distinct blocks. Any structural
method introduces the possibility of infeasible subdomains, ones that are defined for the method but which
in fact contain no points of the test domain. For statement testing, a block of dead code defines such an
infeasible subdomain. Unfortunately, it is an unsolvable problem to determine if a particular code block is
dead; thus statement testing is not a mechanical, algorithmic method. It shares this unsolvable feasibility
problem with all other common structural methods.

There is a bewildering array of structural methods, each perhaps invented to improve on the deficiencies
of the others. For example, in branch testing each conditional statement of an imperative program is used to
define the two subdomains of inputs that cause it to take one of the two possible truth values. If a conditional
statement has multiple parts formed using Boolean connectives, each of its two branch subdomains can be
split into ones that cause just each part to be true or false. This variant is usually called multi-condition
coverage. Because of the infeasible-subdomain problem, it may not be possible to carry out a complete
structural-subdomain test, which leads to yet another unlimited array of subdomain-based methods for
partial coverage. For example, 85% statement coverage requires that tests be selected so that less than 15%
of the statement subdomains are not sampled.

The ultimate structural subdomain testing technique for imperative programs is path testing. Subdomains
are defined to correspond to each control-flow possibility (execution path) of a program. Achieving path
coverage means that each such path has been tried at least once. Path testing is considered the high-end
of control-flow techniques, because if paths are covered, so are all other structural control elements. For
example, there cannot be a statement or branch possibility missed if paths are covered. Howden [14] chose
path testing for his example, so it is instructive to see why this ultimate structural method failed to establish
correctness in 65% of the small programs to which he applied it. Its deficiency is the same as that of all other
subdomain methods: Sampling every path subdomain tries all the execution paths, but falls impossibly short
of trying all program possibilities. Each path subdomain is comprised of a myriad of input points which
traverse that particular path. Some of these may lead to test success and some to test failure. For example,
taking a path that clears the user’s screen may be sometimes be the correct thing to do, but sometimes a
mistake. If the mistaken invocations are few among many correct invocations, any path subdomain test is
almost certain to succeed, missing the failures hidden in the subdomain(s).

Path testing has another deficiency (not shared by branch- or statement testing): Most programs have
too many paths. Each conditional statement in a program doubles the path count. A program containing
an indeterminate loop (WHILE statement) has in principle an infinity of paths, since iterating the loop body
0, 1, 2, ... times technically each creates a distinct path. Thus in practice path testing must fail to cover an
infinity of paths.

Dataflow testing is sometimes motivated as a method that selects a finite subset of the potential infinity
of path-testing subdomains. However, it is probably better described as an attempt to add data information
to control-flow methods. Among many variants [7], the most used is called all-uses. An all-uses subdomain
for a given variable V comprises those inputs on which the value of V is set at a particular location in
the program, then subsequently this V-value is used at another particular location (without having been
set again between). Intuitively, the programmer has stored something in V for later examination. Of all
structural coverage methods, dataflow coverage is the closest to functional coverage, since it is often possible

7



to associate a functional result with each particular store and use of V. For example, V may be a flag that is
used to remember a condition naturally connected to a specific functional case.

All of the structural testing ideas that have been described are based on program control flow. (Dataflow
is a partial exception, since it uses variable values to pick out paths.) There is, however, an entirely different
kind of structural coverage called mutation [10, 5]. (See Software Mutation Testing.) It imagines
distorting a program into variants (‘mutants’), and seeking test points that distinguish each variant from the
original. Mutation subdomains consist of all inputs that ‘kill’ each mutant, that is, witness that it produces
some result different from the original. The intuition behind the method is that without a test to tell a
program from its mutants, a mutant might as well be what’s wanted. If there were no restrictions on the
form of mutants, this method would work perfectly: Unless the original program is correct, some variant
(more correct) differs from it, but the original program must fail on tests that would kill this variant. But
without restrictions, there would be an infinity of mutations and mutation subdomains. In practice, the
mutations allowed are very narrow indeed. It is usual to create each mutant by making only one small
change at the expression/statement level, for example, to alter an original assignment statement

X = (X+1)*Y

to
Y = (X+1)*Y.
Even this drastic restriction is not enough to control the cost of mutation testing very well—checking

mutation coverage is far more compute-intensive than checking other structural methods. The most difficult
part of using mutation testing is its infeasible-subdomain problem: A subdomain is infeasible if the mutant
from which it arises cannot be killed; that is, its mutant is a program equivalent to the original. It is much
more difficult to recognize equivalence in programs than (say) to see that some control transfer is impossible.

The descriptions of structural methods in this article are necessarily brief, and many variations have been
omitted.

The most seductive aspect of structural testing is its potential for automation. (See Software and
System Automated Testing.) Since subdomains and their coverage are defined by the execution of
some program syntactical feature, it is in principle possible to mechanically generate subdomains and test
points within them, thus eliminating the labor-intensive activity of test generation. Alternately, given a
testset that achieves structural coverage, it may be possible to mechanically reduce it to a smaller testset
without reducing the coverage. Even without automation, structural testing seems to be more ‘systematic’
than functional testing, since its goal is to cover items from a finite list (the program syntax); in contrast,
functional testing has an open-ended subjective feel. Engineers are happier engaging in tasks with a clear
direction that can be seen to be completed by their efforts. “Find a test point that will execute statement
93,” seems to fit the bill.

Unfortunately, structural test coverage is only a surrogate for what testing is supposed to accomplish.
It is all too possible to busily attain coverage, yet find few failures and gain little confidence that software
works. The underlying reason is that functional testing, with its end-user viewpoint, is closer to testing’s
goals. In contrast, when all structural subdomains have been covered, it is still possible to have missed
important functionality. Concentrating on structural coverage diverts attention from the real problem in
favor of details in the surrogate problem. For example, one way to achieve statement coverage is to analyze
a program’s pattern of conditional statements. An uncovered block of code has a series of guards in the code
that lead to it, and will be executed if this chain is satisfied. A systematic attempt to execute such a block
naturally concentrates on the conditions leading to it. The tester studies the code and comes up with simple
cases that enable all the necessary conditions. However, such cases usually have no correspondence with the
software’s functionality. Zero values, empty strings, etc., make it easier to trace and control conditionals in
code, but such values are unlikely to occur in actual usage. Thus the test points that an engineer contrives
to achieve statement coverage are the least likely to expose problems that will arise in real usage of the
program.

There is, however, a way to exploit the complementary nature of functional and structural subdomain
testing, by using structural methods as an adequacy criterion [15] for functional testing. The procedure is
this:

8



Functional test. The tester uses the specification to create functional subdomains and chooses test points
to cover them in the usual way.

Check structural coverage. Using algorithmic tools, the functional testset is checked for structural cov-
erage. The procedure terminates if the structural coverage is complete. Otherwise:

Add functional tests. Examine the untested structural element for clues as to what function it was
intended to perform. Then using the specification, add a functional test case that should utilize it.

Repeat the structural-coverage check above.

What is essential to this procedure, what allows it to avoid the trap of getting caught up in counterproductive
structural details, is the third step: Instead of seeking to improve structural coverage by studying the code,
one seeks to improve the functional coverage, with structure as the clue to missing functions.

3.3 Comparing Subdomain Testing Methods

Because control-flow structural coverage methods were the first to be invented and are the easiest to support
with tools, they have received the widest study. Among these methods there is a natural subset hierarchy
called the subsumes ordering. Method M1 subsumes method M2 iff any covering testset of M1 is also
a covering testset for M2. It was noted above that path testing (strictly) subsumes all other control-
flow methods. For another example, 85% statement coverage strictly subsumes 80% statement coverage.
(Generalizations of this second example are obvious.)

‘Subsumes’ is a much trickier idea than it seems. First, not all methods are ordered by it. In particular,
there is no subsumes relationship between functional and structural methods, the ones we would most like
to compare. Second, the ‘better’ method in the sense of subsumes is not always really better. When there
is a large gap between two methods M1 and M2 and M1 subsumes M2, it means that the testsets covering
M1 are a small subset of those covering M2. It can happen that what should be tested in some program
is more frequently encountered by M2; that is, of all the covering M2 testsets, say half have a chance of
finding some problem. The very difficulty of achieving M1 coverage may mean that only (say) a quarter of
the covering M1 testsets encounter the problem. Then if the tester picks a testset without knowing of the
problem being sought (always the tester’s situation!), the chance that an M2 testset will find it is twice as
high as the chance that an M1 testset will. Furthermore, the M2 testsets are much easier to generate.

Empirical studies aimed at comparing testing methods are very difficult to do properly [8], and those
that have been done have not shown a clear advantage for any method. The choice of method then comes
down to what best fits into a particular development methodology. For example, one large advantage of
functional testing is that its tests can be devised as soon as the specification is available; structural testing
must wait for the advent of executable code, but it has better tool support.

4 Subdomain Testing Programs with Persistent State and Con-

currency

In the previous parts of this article, testing has implicitly treated programs as computing what are called
‘pure functions’. It was assumed that a program has no ‘memory’ (or ‘state’) retained from one execution to
the next and also that the program has no source of non-determinism such as parallel execution of its parts;
if a test point should be repeated, the result will be the same each time. Some programs do behave this
way, and it is easy to detect the possibility that stateless or concurrency assumptions are violated. In order
to retain state from run to run or be non-deterministic, a program must make blatant calls to the operating
system. Section 4.1 provides a complete discussion of subdomain testing involving state, which is seldom
handled correctly in practice. When it comes to concurrent execution, testing is on shaky foundations, but
perhaps the sources of difficulty are not fundamental, as described in Section 4.2.

9



4.1 Persistent State

Most programs use persistent storage, which is the source of their power. On one run they record information,
and on another they examine it. It has been learned from sad experience that keeping state is also a major
source of subtle failures that escape detection during testing. One situation is that some program function is
tested successfully, but in a particular state with which the tester was unconcerned. Then the program gets
into a different state, where that function was not tested and fails in use. A classic example is an aircraft
control program in which the function ‘retract landing gear’ was tested in the state ‘airborne,’ but not for
the state ‘landed,’ and was later found to work all too well in the latter state. A more subtle situation arises
when one execution succeeds, but leaves the program in an erroneous state that will cause a subsequent
execution to fail without apparent reason.

State values are often taken to be ‘inputs,’ in that a program can examine and use them in its computa-
tions just as it can use input values, and hence state partially determines what actions a program will take.
If state were no more than another input, it could be added to subdomain testing easily: each input subdo-
main could be split into several state subdomains, each of which would thus be sampled. (It amounts to the
same thing to imagine subdomains for the state, each of which is divided into several input subdomains.)
Unfortunately, the simple view that state is an input is wrong. Input is not controlled by the program but by
its user, and so therefore by its tester. State the program controls absolutely. A user or tester may imagine
that he/she ‘puts the program’ in some particular state, but in fact what happens is that the user supplies
input, on which the program execution establishes state. The distinction is critical for testing, because the
program may malfunction in setting state, making a mockery of what the tester is trying to cover. State
thus acts also like output.

There is also a pernicious interplay between state specification and state implementation. Many spec-
ifications describe abstract states and the transitions between them that a program is to make. The very
intuitive and powerful notation of the state machine [11] is a good mechanism for giving the description. In
coding a program to meet such a specification, the programmer may attempt to work with concrete analogs
of the specified states, and to implement the specified transitions. But as in all programming tasks, mistakes
can be made, creating a mismatch between the real states and those that should occur. To follow a sequence
of specified state transitions may mean nothing at all to the real program state.

Finally, there is the ‘infeasible state’ problem. Since the program controls state, it may be impossible to
enter a particular state, because no combination of inputs can set that state value. The specification may
have such infeasible states (but they may not be known!); code may have them as well (and the ones from
specification and code may be different!). It is usual that persistent storage has a rigid and peculiar format,
which programs maintain as a primary duty; thus in practice almost all arbitrary state values are infeasible.
For example, a database is a file, but almost all files are not databases.

The correct way to sample behaviors of a program with state is as follows:

1. Adjust the environment so that the state appears ‘reset’ or ‘uninitialized’ to the program. To make
use of state, a program must know when things are just beginning, typically to create and save initial
state values. All testing starts from this reset state, and from it testing is repeatable.

2. Select a test point and execute the program. Record the output values and resultant state values.

3. Continue, selecting a sequence of input test points, executing, and recording output and result state.

4. Each input selection records two pairs: the (input, input-state) pair that begins it, and the (output,
result-state) pair that ends it. The input value in the first pair is the tester’s arbitrary choice, but the
input-state value is not—it is the result-state value from the previous selection.

5. At some point the tester chooses to end the sequence. The list of two-pair values (each having a
beginning and ending pair) is then a record of the testing activity.

Each time a sequence as described is selected, it constitutes a composite ‘test point’ for the program with
state, a ‘point’ composed of member (input, input-state) beginning pairs in the order they occur. Only
feasible state values will occur in the sequences.

10



Subdomain testing of a program with state must deal with two spaces—the test domain of inputs and
the state domain. These must be kept separate, because the former is within the power of the tester to
sample but the latter is not—it is under program control. Each space can be independently divided into
its own functional or structural subdomains as in Section 3. The (input × state) cross products, however,
are not those to be sampled directly. Rather, sequences of inputs are chosen as described above. The pairs
of beginning values in a sequence fall into one of the (input × state) cross-product subdomains, which has
therefore been implicitly sampled by the sequence composite ‘test point’.

Only one question remains: How can the cross-product subdomains be covered? That is, how should
a tester choose the testing sequences? Nothing like this question arises for stateless program testing, since
there it does not matter in what order test points are selected, so the tester can just systematically go
through the input subdomains. To even measure subdomain coverage in both input- and state domains
extensive bookkeeping is required. At each point along each testing sequence, every possible choice of input
subdomain may be tried. It isn’t enough to ignore the position in the sequence, because this may miss some
state values that otherwise could arise. Furthermore, the particular choice of an input value from an input
subdomain may alter the sampling of states. Whatever choices of sequences a tester makes, some of the
(input, state) cross-product subdomains will be covered, but most will not, simply because most states are
infeasible. It is an open question how to attain the widest state coverage; indeed, there is little evidence for
or against the position that covering state is a good idea.

Specifications typically do not provide much guidance in choosing testing sequences. Even when they
describe how state should influence the results, they may be vague about how state values are established.
However, specification by state-machine diagram [11] is exceptional. State-machine specifications not only
describe required states, but also the transitions among them. Of course, a programmer may choose not
to implement states or transitions from the specification, perhaps because there is a more efficient way to
gain the same results. By and large, however, it is safer and easier to implement a specified state machine
faithfully. State-machine states form natural singleton subdomans, so there is no state-subdomain sampling
problem. More important, there are mechanical rules for state-machine construction that preclude infeasible
states in the specification. It is sufficient to require that each state in the diagram be reachable from the initial
state. That establishes a testing sequence to bring the abstract state to any one of its values. Furthermore, if
in every state a transition is defined for every possible input, it cannot happen that the result is unspecified
on any testing sequence as described above.

A state-machine specification thus defines a number of coverage measures that parallel path coverage
in control flow, with the states themselves analogous to control points, and the transitions of the state-
machine graph analogous to execution flow of control. One could ask for coverage of all states (analogous
to statement coverage in Section 3.2), or all state transitions (branch coverage), or all sequences of state
transitions (path coverage)1. For a finite-state machine (FSM), all of these coverages are decidable—that is,
there is no infeasible-state problem for an FSM. But very few specification state machines are FSMs, because
the input space is not finite; then, all the coverage problems return to being unsolvable. Thus in principle
all the additional difficulties of choosing state-subdomain-covering test sequences disappear when there is a
state-machine specification. There are no infeasible states, and the information needed to achieve coverage
can frequently be sought in the specification transition diagram. This soothing ointment has only one fly in
it: the program may fail to correctly implement specification states.

Even if an attempt was made to faithfully implement a specification state machine, mistakes may have
been made. Unfortunately, the possibilities for error can be spread across the input domain, so that each
input subdomain is subject to the potential problem that some of its values follow the specification and some
do not. Hence the testing results depend on choices made in input subdomains as each testing sequence
advances. Selecting ‘good’ points that mimic the specification will lead to testing success; but ‘bad’ points
will carry the program off into state never-never land. The worst of it is that ‘bad’ choices in a testing
sequence need not fail; instead they may only put the program in a strange state where some subsequent
inputs would lead to failure, but the testing sequence ends before this happens. This is precisely one way that

1Although it is possible to imagine somewhat far-fetched analogs for dataflow coverage and for mutation, these have not

been seriously explored.

11



state leads to obscure failures. The best that a tester can do is to define a careful correspondence between
program-state values and specification-state values, and rigorously check this correspondence at each step in
each testing sequence. It can still happen that the program goes state-wrong for untried sequences, but at
least the testing actually carried out will not be spurious. It is uncommon to recognize the need to match
implementation states with those specified—most testers assume without any evidence that they are the
same.

4.2 Concurrency

If program testing theory lags behind programming that uses state, it falls much farther behind concurrent
programming. Concurrent mechanisms range from two processes using operating-system calls to share
information in a single memory, to programs running in different computers and communicating across
the Internet. The essence of concurrency, from the standpoint of testing a program using it, is that there
is an exchange of information between the program and some outside agency that the program does not
control. Information may pass both ways, so the interaction can act like an input or an output. The outside
agency can store and retrieve information, so the interaction may act like persistent state. Or, because the
outside agency is itself a program, the interaction may be more complicated than any of these. Furthermore,
because two interacting programs cannot be sure of each others execution speed, synchronization may be
used (or not used!) to control (or fail to!) when in each execution interaction takes place.

It would be highly desirable to test parts of a concurrent system independently. These parts are not
strictly “units” as usually unit tested. For clarity, borrow an operating-system term and call them “pro-
cesses,” and their combination a “system.” Unfortunately, the processes are inextricably entwined by their
communication and control connections2. If no constraints are placed on processes executing in parallel,
their system behavior can be very complicated. In general the composite execution consists of interleaved
segments on different processors, exchanging information at arbitrary waypoints. For a single invocation of
the system, the lengths of execution segments and the information exchanged can vary because of varying
processor and communication delays. A test of such a system does not have a repeatable outcome, and infre-
quently occurring patterns are unlikely to be tested. In later usage when they do occur, the software can fail.
Writing programs that can’t be properly tested is certainly unwise, so there have been attempts to tame the
dragon of concurrency through programming language design. Language constructs such as monitors [13]
control process interleaving and make it easier for programmers to recognize and avoid the worst problems,
such as deadlock or race conditions. Unfortunately, parallelism is useful only if two communicating processes
overlap their actual executions. Once overlap is allowed, however strongly constrained, it is an unsolvable
problem to decide if in fact the processes necessarily follow a safe pattern. Subdomain testing can help.

At a minimum, two processes P1 and P2 executing in parallel must be able to ‘rendezvous’ and exchange
information. To capture an exchange abstractly, imagine that each process has two input domains and two
output ranges. One input/output pair connects to the external (human) world and one to the other process.
A representative system execution might be described by: (1) P1 receives an external input, (2) P1 sends
an output to P2, (3) P2 receives this, (4) P2 sends an output to P1, which (5) P1 receives, and (6) P1

sends output to the external world. Except for the points of exchange (2)-(3) and (4)-(5), both processes
are executing simultaneously. In true blackbox testing of such a system, only the external input domain
can be sampled and only the external output range observed. Subdomain testing can divide the external
input space, but this seems to miss the point of testing concurrency. A better decomposition might consider
each process separately. P1’s execution is controlled by two inputs, one external and one from P2, so it
can be tested in isolation over the cross-product of these two input domains E × I1, each domain divided
into subdomains. Sampling a two-dimensional input subdomain like S = (SE , SI1

) intuitively probes what
P1 does on an external input (a member of SE) in the context of a communication from P2 (a member of
SI1

). Subdomains like S allow the tester to force execution of diverse aspects of the system. For example,
it might be decided to define external subdomains based on system functionality, but define subdomains for

2Any unit testing must deal with the problem of “stubs,” stand-ins for other units not part of the test, but this problem is

far more severe with concurrent processes.

12



communication using the structure of P1. This discussion is suggestive rather than precise; a more detailed
presentation can be found in a monograph on software component testing [9].

There are superficial similarities between concurrent, cross-product input spaces and the (input × state)
test spaces for a program with persistent state. But since (in the example above) P1 does not control the
space SI1

, it should be sampled. It is true that many I1 test points are wasted because it is likely that S2

does not send them, but that’s the whole point of testing—the world outside P1 cannot be trusted, whether
it comes from human beings (E) or from another process (I1 from P2).

The discussion above barely scratches the surface of concurrent systems, suggesting how little is known
about testing them in even the simplest cases. Subdomain testing is intended to isolate cases so that nothing
is missed; it is hard to escape the intuition that control of that kind simply isn’t possible in the face of
general concurrency.

5 Comparison of Subdomain Testing with Other Testing Methods

For most practical testers, functional subdomain testing is their bread and butter; they have never considered
its near-opposite, random testing. Serious consideration of random testing is not made easier by the erroneous
but commonly held belief that ‘random’ means ‘haphazard’ or ‘ill-defined’. Real random testing over a test
domain is a perfect method with which to compare subdomain testing, since its definition is precisely that
the choice of test points makes no use of any systematic relationship among points in the test domain.
Furthermore, it is easy to assess the effectiveness of random testing probabilistically. Probability analysis of
subdomain testing is more difficult, but some surprising results have been obtained.

Given an input domain, (uniform) random testing employs a testset (say of size N) chosen from a uniform
distribution3 over the test domain. Suppose that such a testset succeeds for some program (the usual case
for software of good quality and practical values of N). Assuming the failure rate of the program (the
probability that it fails on a randomly selected test point) is constant, the upper confidence bound C that
the failure rate lies below F is

C = 1 − (1 − F )N .
Setting C, the desired confidence, and N , the number of tests, F can be calculated, with a significance like
the following:

Random testing using about 23,000 points without failure (N = 23, 000) establishes that the
program will not fail more than one time in 10,000 (F = 10−4), with a confidence of 90%
(C = 0.9).

In a seminal 1985 paper, Duran and Ntafos [6] published a theoretical comparison between arbitrary
subdomain testing and random testing for the stateless case. They used simulation to analyze subdomain
testing’s probability of finding at least one failure (among other probabilistic measures), to compare with
F from random testing. Random testing did surprisingly well, or put another way, it was surprising that
subdomain testing did not do as much better than random testing as expected. Their paper led to a flurry
of theoretical research with similar results. Along the way this research provided some deep insights into
when subdomain testing works best and why [1]. It remains to explain why there is not a greater disparity
between subdomain- and random testing.

The first researchers to attempt an explanation have found a surprising bound on the effectiveness of
subdomain testing, and in fact on all other forms of testing, in comparison with random testing. It seems
that nothing can be done to improve very much on random testing. Chen et al. [3] derived a theoretical
bound on how much random testing could be improved. The bound is different for different probabilistic
measures of test effectiveness, but in all cases the possible improvement is modest (e.g., a factor of 2). Their
analysis is limited to stateless programs and rests on assumptions about the description of ‘failure domains,’
shapes of subsets in the test domain where the program fails at every point in the subset. There is no reason
to believe that their assumptions are fundamentally limiting, however.

3The practical difficulties of defining a distribution over non-numeric domains do not concern us here.

13



Granting for the sake of argument that further research will confirm these results, the proper interpre-
tation is the one originally suggested by Duran and Ntafos: random testing deserves serious investigation.
It’s not that subdomain testing isn’t a good idea; rather, random testing is also a good idea. The current
notion of adaptive random testing (ART) is an attempt to combine the methods, and it may realize almost
all of the possible gain over random testing [2].

6 When to use Subdomain Testing

Any attempt to organize and systematize a testing effort will involve some input-space subdomain breakdown,
however ill-defined or subjective the subdomains may be. So given that a program is to be tested at all,
advice about subdomain testing comes down to what kind of subdomains might be used, and cautions about
how things can go wrong. It would take a brave software development team to declare that their efforts
need no testing—any human endeavor is prey to mistakes. But it is less necessary to test software whose
quality is likely high because its development process is well defined, its development team experienced, and
their previous work successful. A minimal testing effort should use functional subdomains. If the functions
defining them can be closely related to usage, so much the better. For example, a published tutorial on
how to use the software defines functional subdomains that are irresistible: they are a minimal cover for the
software’s functionality, and many users will almost certainly try them.

The decision to go beyond a low-cost functional test should not be lightly taken, and should be closely
monitored. The danger is that the cost-benefit ratio may be very low. When subdomain testing exposes
problems at a steady rate, then it should continue; when the rate falls off it is time to stop. (And at the
same time, it is of first importance to look back on development and ask why a problem is being found
at all.) Structural testing is particularly subject to becoming unproductive busywork. In a choice between
extending functional testing or switching to structural testing, the latter is hard to justify. However, to use
structural test coverage as an adequacy measure (see Section 3.2) is unexceptionable, if tool support is in
place to minimize its cost.

Whenever subdomain testing is used, those involved should be alert to its fundamental limitation: no
subdomain is really homogeneous, either in the ‘sameness’ that defines it, or in success/failure. When a test
fails in a subdomain, well and good—the problem can be fixed if its frequency merits fixing. But when a
subdomain test succeeds, it almost certainly means only that the subdomains aren’t very good or the choice
of test points in them was unlucky or both. Imagining how a success might be accidental or atypical is a
way to improve subdomain testing.

References

[1] P. J. Boland, H. Singh, and B. Cukic. Comparing partition and random testing via majorization and
schur functions. IEEE Trans. on Soft. Eng., 29:88–94, January 2003.

[2] T. Y. Chen, H. Leung, and I. K. Mak. Adaptive random testing. In Proceedings of the 9th Asian Com-

puting Science Conference, Lecture Notes in Computer Science, volume 3321, pages 320–329. Springer-
Verlag, 2004.

[3] T. Y. Chen and R. Merkel. An upper bound on software testing effectiveness. ACM Trans. Softw. Eng.
Methodol., 17(3):1–27, 2008.

[4] R. H. Cobb and H. D. Mills. Engineering software under statistical quality control. IEEE Software,
pages 44–54, November 1990.

[5] R. A. DeMillo, R. J. Lipton, and F. G. Sayward. Hints on test data selection: Help for the practicing
programmer. Computer, 11:34–41, April 1978.

[6] J. Duran and S. Ntafos. An evaluation of random testing. IEEE Trans. on Soft. Eng., 10:438–444, 1984.

14



[7] P. G. Frankl and E. J. Weyuker. An applicable family of data flow testing criteria. IEEE Trans. on

Soft. Eng., 14:1483–1498, 1988.

[8] Phyllis G. Frankl and Stewart N. Weiss. An experimental comparison of the effectiveness of branch
testing and data flow testing. IEEE Trans. on Soft. Eng., 19(8):774–787, August 1993.

[9] Dick Hamlet. Composing Software Components: A Software-testing Perspective. Springer. To be
published in 2010.

[10] R. G. Hamlet. Testing programs with the aid of a compiler. IEEE Trans. on Soft. Eng., pages 279–289,
1977.

[11] David Harel. Statecharts: A visual formalism for complex systems. Science of Computer Programming,
8:231–274, June 1987.

[12] K. L. Heninger. Specifying software requirements for complex systems: new techniques and their
applications. IEEE Trans. on Soft. Eng., 6:2–13, 1980.

[13] C. A. R. Hoare. Monitors: an operating system structuring concept. Comm. of the ACM, 17(10):549–
557, 1974.

[14] W. E. Howden. Reliability of the path analysis testing strategy. IEEE Trans. on Soft. Eng., 2:208–215,
1976.

[15] Brian Marick. The Craft of Software Testing. Prentice-Hall, 1995.

[16] Simeon Ntafos. On required element testing. IEEE Trans. on Soft. Eng., 10:795–803, June 1984.

[17] T. J. Ostrand and Marc J. Balcer. The category-partition method for specifying and generating func-
tional tests. Comm. of the ACM, 16:676–686, 1988.

[18] D. J. Richardson and L. A. Clarke. Partition analysis: A method combining testing and verification.
IEEE Trans. on Soft. Eng., 11(12):1477–1490, December 1985.

15


