
When Only Random Testing Will Do

Dick Hamlet∗
Portland State University

Portland, OR, USA
hamlet@cs.pdx.edu

ABSTRACT
In some circumstances, random testing methods are more
practical than any alternative, because information is lack-
ing to make reasonable systematic test-point choices. This
paper examines some situations in which random testing is
indicated and discusses issues and difficulties with conduct-
ing the random tests.
Category and Subject Descriptor: D.2.5 Software engi-
neering, Testing and debugging
General Terms: Verification
Keywords: Testing theory, random vs. systematic testing

1. RANDOM VS. SYSTEMATIC TESTING
The conventional view sees random testing as a second-

class alternative to its antithesis, so-called systematic test-
ing. Systematic testing is preferred because it is directed,
usually toward exposing failures. The proponents of sys-
tematic testing may admit that if one cannot come up with
a purposeful testing plan then random testing is a fall-back
possibility. They acknowledge that automatic test input gen-
eration in random testing is attractive, but only when an op-
erational profile [?] is known, and only if there is an auto-
matic oracle [?, for example] to judge the many test results
that arise. Since both enabling conditions are problematic in
practice, random testing’s advantage is discounted. Random
testing’s undeniable strong suit is that a successful random
test can predict a reliability bound [?] for the software being
tested. However, this advantage is compromised by the in-
feasible number of test points necessary to predict ultrareli-
ability [?]. Thus when a test manager chooses between test
methods, random testing is always problematic, not compet-
itive with (for example) specification-based functional test-
ing that promises to find many show-stopping failures with
a few use cases.
∗Supported by NSF ITR grant CCR-0112654 and by an E.T.S. Wal-
ton grant from Science Foundation Ireland. Neither institution is in
any way responsible for the statements made in this paper.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
RT’06, July 20, 2006, Portland, ME, USA
Copyright 2006 ACM 1-59593-457-X/06/0007 ...$5.00.

However, there are situations where random testing must
be chosen because systematic alternatives are the impracti-
cal ones. This paper explores some of those situations and
suggests ways to maximize the benefit of a random test.

1.1 Subdomain-testing Methods
Almost all systematic testing is subdomain testing. In sup-

port of some testing goal (usually uncovering failures so they
may be fixed) the program input space is divided into sub-
domains, and one or more test points are selected in each
subdomain. In practice the number of subdomains must be
small, so some subdomains are almost as large as the full
input domain. It is often said that a subdomain is defined
by its members being ‘the same’ in some sense. This ‘same-
ness’ is subjective and often misleading. It might be better to
say that the tester can think of nothing of consequence that
distinguishes between subdomain elements. That being the
case, it is sensible to make the choice of test point(s) from
a subdomain according to a uniform random distribution1.
Thévenod-Fosse [?] calls this mixed test-selection strategy
‘statistical testing’.

At the system level, the aforementioned specification-based
functional testing is almost always the right choice. The
subdomains are defined by cases recognized in the speci-
fication. If the specification is precise, these cases can be
defined by formal predicates and it is possible to check that
the subdomains are disjoint and exhaust the input domain.
However, the practical value of functional-subdomain test-
ing arises from an imprecise specification for the software,
the existence of important use cases, and limited time or
resources for testing. Untrained testers can execute these
cases, and can use common sense and intuitive knowledge of
the problem domain to judge the results. A few such cases
go a long way toward finding problems that users will en-
counter immediately. It is hard to imagine any other testing
method supplanting system-level functional testing.

At the unit level, functional testing is less useful, partly be-
cause specifications are often missing, but primarily because
there can be no narrow use cases. The role a unit will later
play in an assembled system might in principle be known at
unit-test time, but in practice the unit tester is unaware of
how it will be used. In component-based software develop-
ment the units are components, and at component-test time

1The distribution cannot even be a non-uniform profile, because if
one existed it would be a way to distinguish elements and to split
the subdomain.

there may be no application system even envisaged. Thus
for unit testing, ‘systematic’ testing takes on an additional
meaning: all invocation possibilities for the unit must be ex-
plored, including many that will never arise in a given sys-
tem.

Systematic structural code coverage testing comes into its
own at unit level. Because unit code is compact and well
understood (often the unit tester is the coder), tests can be
sought that exercise each part of the code. For example, it
is common to try to cover all branches by supplying a test
data set some point of which makes each branch go each
way, TRUE and FALSE [?]. The subdomains for branch
testing are indexed by branch conditional and truth value; a
test point x falls in (e.g.) the TRUE subdomain for branch
b iff the program when executed on x passes through b and
makes the conditional there TRUE.

The best use of tools that measure test coverage is as an
adequacy metric, not for test generation [?, Chapter 20].
Tests should be generated by some other method, then cov-
erage examined to see if any code element was missed. The
original test is deemed adequate if the structural coverage
is good2. Functional test generation augmented by tests to
probe suspected code faults is the most used generation
method.

1.2 Other Systematic Methods
Exhaustive testing is a subdomain method only in the lim-

iting sense that each domain point is a singleton subdomain.
Recently attention has focused on ‘bounded exhaustive test-
ing’ (BET) [?, for an early example] [?], in which a finite
portion of the domain (usually an initial portion in length
order) is completely tested. BET has achieved some remark-
able anecdotal successes, but has not yet received much the-
oretical study.

Spacing test points evenly throughout an input space is
‘systematic’ in the most intuitive sense. It could be consid-
ered a subdomain method (the subdomains being intervals)
that includes a prescribed single-test-point choice (say the
midpoint) in each subdomain. Equispaced sampling could
also be described as random testing using a very peculiar
distribution.

1.3 Random Testing
Random testing is literally the antithesis of subdomain

testing: no points are considered ‘the same’ and the sam-
pling is over the entire input domain. Its application to any
system or unit depends only on a knowledge of the input
domain and the ability to map pseudorandom numbers into
that domain as a sampling device. However, to obtain a re-
liability estimate from random testing, an input distribution
for expected software usage must be available. This distri-
bution, the so-called ‘operational profile’ [?], weights inputs
according to how likely they are to occur in use.
2It is necessary to point out that good feelings resulting from
achieving high coverage when one was not trying to do so are no
more than that: there is no theoretical evidence that code coverage,
however attained, has a necessary relationship to any quality mea-
sure. The intuition behind this sad fact is that many coding/design
mistakes are omissions, and one never fails to cover what is not
there. If a test set fails to cover the code something may be wrong;
when it does cover there is no corresponding significance.

At the system level, an operational profile is also called a
‘user profile,’ since it describes what a software user will do.
Although user profiles are not commonly part of a software
specification, they should be, because without a profile, reli-
ability is not a meaningful idea. At system level, the defini-
tion of input domain is necessarily arbitrary and at the whim
of the software’s users. It must always be a design consider-
ation that no input value is precluded, even when the ‘user’
is another program or a hardware device. Mistakes and mal-
functions occur, and for each software system the designers
must decide how much effort will be devoted to checking in-
put values before using them. A user profile is no more than
a fine-grained quantification of domain definition. The pro-
file constitutes a tacit promise concerning which inputs will
be provided and with what frequencies.

Things are different at the unit level. What input values
arrive there is partly determined by user caprice at the sys-
tem level, but the system architecture is also a filter. How a
unit is placed within the system control structure determines
what inputs it may receive. In the simplest example, a unit
called by another cannot receive parameter values of a type
other than that of the interface, and if the call is within a con-
ditional statement the Boolean condition can make some pa-
rameter values impossible. There is no probabilistic aspect
to this domain modification in a statically structured system.

If the system architecture is given along with a system op-
erational profile, it is possible in principle to deduce a distri-
bution that the unit will see within the system. For a simple
extreme example of a distribution seen by a unit, there could
be just two parameter values that can reach an embedded
unit, and the system operational profile could make one of
them much more likely. If just one parameter value could
get through, then the unit profile is one of two: a unit spike
at the given value or a pathological ‘profile’ with zero den-
sity everywhere, depending on whether the system profile as
seen at the unit call site ever assigns the one possible value
a non-zero probability. In any case, calculation of the in-
put distribution a unit will see in place in a system is never
done in practice, because it goes against the whole idea of
unit testing early in the development cycle. It doesn’t help
that the practical calculation of the profile a unit inherits is
technically difficult even given full information.

1.4 System- vs. Unit Testing
Intuitively, the goals of system testing differ from those of

unit testing. At the unit level the testing problem is a nec-
essary absence of usage information, so the tester hopes to
be convinced that no failures exist anywhere in the complete
domain, through an intimate understanding of the code. At
the system level the testing problem is code- and problem
complexity, but there is usage information that allows the
most-used inputs to be tested.

Random testing in its usual application to predict a relia-
bility bound makes sense only at the system level. Paradox-
ically, it is at the unit level where Section 2.1 suggests its
use.

2. RANDOM TESTING THE METHOD OF
CHOICE

Random testing seems a better choice than systematic test-
ing in two general situations:

Sparse sampling. For a large, unstructured input domain—
i.e., when a meaningful subdomain breakdown is not
evident—it seems wrong to invent subdomains, each
of which may be no more tractable than the full do-
main. Haphazardly picking a few points in such sub-
domains seems no different than haphazardly picking
a few points from the whole domain3. This position re-
ceives theoretical backing from many studies (follow-
ing the seminal work of Duran and Ntafos [?]) com-
paring random testing with subdomain testing in the
abstract. The most intuitive statement favoring subdo-
main testing for detecting failures is that it works when
there is a variation in failure rates among the subdo-
mains4. Section 2.1 will consider examples where ran-
dom sampling of a large, unstructured space is indi-
cated, and the practical problems that arise.

Persistent state. Most software includes permanent storage
that persists from one execution of a program to the
next. Testing practice takes account of persistent state
by forcing a program under test into a state, and once
there, conducting a number of tests from that initial
condition. Testing theory has most frequently ignored
state. The usual theoretical assumption is that software
is ‘reset’ between tests, so that results are repeatable.
Theory and practice come together by imagining that
state is just another input to be sampled. This view is
technically incorrect, since the state dimension is not
independent and hence a sampled state may never ac-
tually occur. The correct view is that each test is a
sequence of inputs beginning from state initialization.
In response to an input sequence, the software goes
through a state sequence determined by its code, with
a final output that is the test result at the end of the
sequence. In Section 2.2 it will be argued that such
sequences are best selected randomly.

2.1 Sparse Sampling of a (Sub)domain
Subdomain testing requires information to make a divi-

sion of the input space plausible. Without this information,
‘systematic’ efforts are no more than a subjective comfort
to the human tester, who may feel better using a ‘method’
even if it has no rational basis. The information needed
to define sensible subdomains can come from a software
specification or domain knowledge of the problem the soft-
ware is to solve. But it can happen that the input space is
immense and specification information lacking to divide it;
then subdomain testing is contraindicated. Random testing
still has two competitors: Equispaced (non-random) samples
and bounded exhaustive testing (BET).

Random testing and equispaced sampling have the same
enabling condition: the ability to map numerical values onto
3It is unfortunate that in the Hacker’s Dictionary [?] sense of ‘ran-
dom’, these would be called “a few random points”.
4This insight originated in reference [?], and is elegantly investi-
gated using Schur functions in reference [?].

the input space. The choice of sampling method intuitively
depends on how complex the inputs are and on how sparse
the sampling must be. When an input value does not have
a complex structure and the sampling density is high, there
are advantages to each method. Equispaced samples are just
that: the unsampled gaps are all the same size. For exam-
ple, let the input domain for a single integer parameter be
[0, 100000) ⊆ Z. 1000 equispaced samples have a spac-
ing of 100, while 1000 uniform random choices will leave
gaps of maximum size on the order of 800 and select about
five duplicate points5. But there may be an unexpected cor-
relation between equispacing and an implementation mis-
take. For example, if a buffer is allocated in chunks of length
128, those 1000 equispaced samples will not hit a boundary
value: ..., 100, 200, 300, ..., 500, 600, ..., 1000, 1100, ... ;
whereas, 1000 random samples have at least a small chance
(nearly 1%) of hitting at least one of the 781 special values
128, 256, 384, 512,

On the other hand, when the sampling frequency is low
and the input space is complex, equispaced samples do not
seem wise. The chance that the coverage explores one aspect
of inputs but neglects another, and the balance between mul-
tiple dimensions, seem too difficult for proper equispaced
exploration. A sequence of random choices seems safer. For
example, imagine testing a stack implementation for its stor-
age and retrieval of values. The test points are sequences
of push and pop operations. The values pushed, the length
of the sequence, and most of all, the intermixing of opera-
tions, are relevant parameters for test. With only a few tests,
it seems better to choose all of these parameters randomly
than to attempt to work out a coverage system. (This exam-
ple is a special case of the sequence issue discussed in more
detail in Section 2.2.)

It is more difficult to compare random testing with BET.
Intuitively, BET finds failures because human loss of intel-
lectual control on a problem or algorithm occurs early in
the tree of interacting cases. People can’t hold hundreds of
possible interplay situations in their heads; BET can investi-
gate millions exhaustively. BET makes no claim to establish
technical reliability: there are many anecdotal or contrived
pathological cases in which a problem occurs only outside
the range of BET feasibility. Random testing explores the
whole of an input domain, but of course it does far less well
with the part on which BET is perfect. But whether BET
is more effective than random testing seems a problem that
requires empirical, not theoretical investigation. BET tries
cases too complex to have been explicitly imagined by hu-
man implementors, and therefore often exposes failures re-
sulting from not thinking of those cases. But when BET
does not expose failures, it is hard to imagine any sound the-
oretical argument that there are none. In mutation testing,
a similar situation was swept under the rug by adopting the
‘competent programmer hypothesis (CPH)’ [?] that if a pro-
grammer has not made mistakes that can be detected by triv-
ial mutations, then he/she has made no mistakes. The BET
analogy would be that if there are no failures in the BET
range, there are none at all. The two situations share the
feature that human beings cannot think through the trivial
mutations (resp. all the BET tests). Still, no sound evidence
5Values obtained by trial, using the Perl rand() function.

or argument has been presented for the CPH.
The conditions that favor random testing are more likely

to arise at the unit level, because unit testing is characterized
by a lack of known structure on the input domain. Further-
more, since the parameters that define the input domain of
a unit are supplied not by users but by other software, they
are more likely to have complex structure. These are sub-
jective assessments of which sparse sampling is best; rea-
sonable testers will not always agree about what should be
done. For persistent state the case is more compelling.

2.2 Sampling Persistent State
To make the situation as concrete as possible, imagine that

a program under test utilizes a permanent disk file to record
‘state’ values. The program initializes this file should it not
exist when execution begins; we assume that program be-
havior is repeatable from this ‘reset’ condition. After reset,
the program may read and write its permanent file as a mem-
ory of past executions. Two somewhat different uses of state
are important:

Remembering a ‘mode’. By writing only a little information
into its permanent file, a program can on one execution
parametrize its behavior on subsequent executions. Of-
ten the mode is a block of information that ‘personal-
izes’ behavior. A user identification is recorded, along
with a set of ‘preferences’ which that user has set. Web
services universally keep this kind of mode state with
the IP address or machine symbolic name as the identi-
fication. The effect of recording a mode is that a finite
number of decisions within the program code are made
without requiring input to make them on each execu-
tion.

Looking up information. A program’s permanent file can be
an extensive information repository, to which the pro-
gram goes for data when it needs to respond to some
input and which may be updated as well. A database
is such a repository with a special structure and a set
of processing aids (its query language). While ‘mode’
information is best thought of as a small collection that
might have been supplied as input, repository informa-
tion is best imagined as of unlimited size. Its values,
rather than controlling a few program decisions, usu-
ally enter into the program’s computations as data.

The character of persistent-state data is that its form and sub-
stance are usually narrowly specified. A set of preferences is
not an arbitrary pattern, but rather encodes one particular bi-
nary vector. A database format is rigid and prescribed. Fur-
thermore, as an entity entirely under program control, per-
sistent storage is not usually checked by code for ‘errors.’ It
is expected that needed constraints will have been observed.
Finally, the ‘legal’ values of a state are very sparse in all
possible bit patterns. An arbitrary file almost never meets
the necessary constraints for a database, for example.

These characteristics of persistent state impact the testing
of programs that use it. For example, it makes sense to ex-
haustively test the control patterns described by ‘modes,’ and
branch or path coverage is a partial check on whether this
has been done. A repository cannot be treated exhaustively;
it must be sampled, and some kind of partitioning will be

needed to structure the samples.
When a program has persistent state, there are two quite

different ways for a tester to establish state values. The cor-
rect way is to begin at reset and supply a sequence of input
values that cause the program to transition into some state
s. Applying this prefix from reset on a number of different
test cases then exercises the program from state s. It is a
short cut to externally set the state value to s and test with-
out the prefix. In our simple case of a permanent state file,
setting the state amounts to creating this file with the proper
contents.

The second, invalid, testing procedure treats the state like
an input, setting it externally for each test. Program tests
are then (input, state) value pairs, and these pairs can be
sampled efficiently. For ease of reference, call this second
way of testing “state-sampled.” State-sampled testing is in-
valid when a state selected is infeasible; that is, when no
sequence of inputs starting from reset exists to reach it. In-
feasible states can arise from a specification mistake or an
implementation failure. The converse may also occur: The
program may be able to reach states that are specified as in-
feasible. Unfortunately, trying a state that should not occur
can be worse than missing one that should occur: it isn’t
easy to identify a state as forbidden by specification, so a
great deal of testing time is wasted exploring what actually
can’t happen. Like all such testing problems involving in-
feasibility, it is unsolvable in general to decide if a particular
state should be infeasible whether or not it has been reached;
and also unsolvable to determine if an unreached state is in
fact infeasible.

2.2.1 An Example of Mode Behavior
For a concrete example, consider the following simple spec-

ification:

The input is a floating-point value in the range [−5, 10).
It is required on domain [0, 10) to compute either a sin
or cos function shifted vertically by +2.0. The output
may be clipped to the range [1.4, 2.6], or damped by
multiplying by the function λx[1/(x/3+0.5)], but not
both clipped and damped. The choice of trigonomet-
ric function, clipping, or damping is determined by a
‘preference’ which is set by negative inputs as follows:

Input Setting
−1 Clip
−2 Damp
−3 sin or cos

Initially, the function is cos, neither damped nor clipped.
Each negative input reverses the appropriate choice.
The preference remains in effect from run to run after
it is initialized or changed.

This specification is deficient as natural-language ones usu-
ally are, particularly about what happens on inputs like−4.3.
It is also somewhat unusual in not specifying the exact form
of the state, only what the state must accomplish. It doesn’t
say what is returned for negative inputs or what to do in the
case of ‘error’ inputs. Perhaps it is too concise in the way
it forbids clipping and damping together. Nevertheless, the
Perl code of Fig. ?? is the way many people would imple-
ment it (correctly, it is hoped). The programmer has decided

