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Abstract

Depth captured by consumer RGB-D cameras is often
noisy and misses values at some pixels, especially around
object boundaries. Most existing methods complete the
missing depth values guided by the corresponding color im-
age. When the color image is noisy or the correlation be-
tween color and depth is weak, the depth map cannot be
properly enhanced. In this paper, we present a depth map
enhancement algorithm that performs depth map comple-
tion and de-noising simultaneously. Our method is based
on the observation that similar RGB-D patches lie in a very
low-dimensional subspace. We can then assemble the sim-
ilar patches into a matrix and enforce this low-rank sub-
space constraint. This low-rank subspace constraint es-
sentially captures the underlying structure in the RGB-D
patches and enables robust depth enhancement against the
noise or weak correlation between color and depth. Based
on this subspace constraint, our method formulates depth
map enhancement as a low-rank matrix completion prob-
lem. Since the rank of a matrix changes over matrices, we
develop a data-driven method to automatically determine
the rank number for each matrix. The experiments on both
public benchmarks and our own captured RGB-D images
show that our method can effectively enhance depth maps.

1. Introduction
The emerging consumer depth cameras, such as Mi-

crosoft Kinect and ASUS Xtion Pro, can now capture scene
depth in real time, and enable a variety of applications that
used to be challenging for computer vision and graphics.
However, depth maps captured by these devices are often
noisy and miss values at some pixels. For example, there are
often missing depth values around object boundaries caused
by the viewpoint disparity between multiple sensors in the
depth camera. Moreover, for the depth cameras that use
structured light, they often cannot provide accurate depth
for dark surfaces due to light absorption.

Since depth cameras often capture color and depth
(RGB-D) information of a scene, various methods have

been recently developed to use the color image to enhance
the corresponding depth map [30, 21]. These methods are
developed based on two assumptions. First, the quality of
the color image is high. Compared to the depth map, the
color image obviously has no missing pixel values. Fur-
thermore, it is less noisy than the depth map. Second, the
depth image and its corresponding color image are highly
correlated. For example, joint bilateral filter-based methods
assume that pixels with similar colors tend to have similar
depth values. These two assumptions, however, do not al-
ways hold in practice. When these depth cameras are used
in a poor illumination environment, which is not uncommon
in indoor scenes, the color image is often very noisy. The
noisy color image can often mislead depth map enhance-
ment and damage fine depth details. As shown in the green
circle of Figure 1 (d), the smooth edges of the small sticks
are damaged. One may suggest first de-noising the color
image using a state-of-the-art color image denoising meth-
ods like BM3D [8], as shown in Figure 1 (c), and then using
the denoised color image to guide depth map enhancement.
However, such a method may still fail in practice because
the correlation between color and depth does not always ex-
ist. For example, the white part of the brush head shares a
similar color to the background, which misleads the joint
bilateral filter to use the depth values from the background
to fill in the missing depth values in the brush, as indicated
in the red square area in Figure 1 (e).

In this paper, we present an approach to depth map en-
hancement that can use the noisy color image to simultane-
ously complete missing depth values and denoise the depth
map. Our method is based on an observation that simi-
lar RGB-D patches approximately lie in a low-dimensional
subspace. We can then assemble these RGB-D patches into
a matrix and enforce the low-rank subspace constraint to
achieve both de-noising and missing depth value comple-
tion. The subspace constraint essentially captures the po-
tentially scene-dependent image structures in the RGB-D
patches in both color and depth domain and thus our method
is more robust than those methods that are based on the
correlation between color and depth. Our method enforces
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(a) Ground truth (b) Noisy RGB-D image (c) BM3D color denoising

(d) Joint bilateral filter (e) BM3D+Joint bilateral filter (f) Our depth enhancement result

Figure 1. Depth map enhancement.

the low-rank subspace constraint through incomplete matrix
factorization. One technical challenge is that the actual rank
number varies over the RGB-D patches depending on the
image structures. We use a data-driven method to automat-
ically estimate a right rank number for each patch matrix.

The main contribution of this paper is a low-rank matrix
completion-based depth map enhancement method. This
method can use noisy color images to guide depth map de-
noising and completion. We also contribute a data-driven
approach for automatic rank estimation. We experimented
with our method on public benchmarks and our own cap-
tured RGB-D images, and compared it to a range of depth
map enhancement methods. Our experiments show that our
method outperforms the state-of-the-art methods, even after
we use the state-of-the-art color image de-noising method
to clean the color images for these methods beforehand.

2. Related Work

A variety of methods have been developed for depth en-
hancement. These methods can be roughly categorized into
depth map completion and depth super resolution. Denois-
ing is often simultaneously handled during each of the two
processes. This section first gives an overview on depth im-
age completion, which is most relevant to this work. We
then briefly overview depth super resolution.

Most existing methods compute the missing depth values
using the corresponding color image based on the observa-
tion that there exists correlation between the depth map and
the corresponding color image. A variety of joint bilateral
filter-based methods have been developed based on this ob-
servation to use color images for hole filling [5, 20, 21].
Median filter has also been extended for depth image com-
pletion guided by the color image [18]. The fast march-
ing algorithm was extended to incorporate the color image

for filling depth values [17]. Wang et al. developed a joint
color and depth in-painting method for stereo images [29].
Their method segments an image into small regions and es-
timates a depth plane for each region to fill in missing dis-
parity (depth) values. Shen and Cheung presented a prob-
abilistic model to capture various types of uncertainties in
depth acquisition of a structured-light camera and used it to
denoise and complete the depth map [27]. These methods
can robustly fill in missing values in a depth map; however,
their performance depends on the quality of the associated
color images. The KinectFusion method from Izadi et al.
uses depth maps from neighboring frames to fill in missing
information during realtime 3D reconstruction [13]. When
the camera is static, this fusion method cannot work well.
Yu et al. recently developed a method that combines color
and partial depth information to refine the depth map in a
way that preserves structure [31].

A significant amount of research has been focused on
depth super resolution. These methods typically simulta-
neously handle noise in the input. Similar to depth map
completion, joint bilateral filter-based methods have been
employed to make use of color images for depth super res-
olution and denoising [14, 30, 21]. Park et al. further ex-
tended the nonlocal means filtering algorithm to up-sample
a low-resolution and noisy depth map guided by an aux-
iliary high-resolution color image [19]. Li et al. designed
a hybrid camera system that captures color and depth im-
ages at different spatial-temporal resolution and used it for
both color image motion deblurring and depth super reso-
lution [15]. The recent method from Dolson et al. can up-
sample depth maps from dynamic scenes when combining
the input color and depth images [9].

Schuon et al. fused multiple low-resolution depth maps
of the same scene captured from different viewpoints into
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Figure 2. Histogram of the ranks of 30,000 RGB-D patch matrices
that were randomly sampled from 3 RGD-D images.

a high-resolution one [26]. Multiple depth acquisition de-
vices/methods have been combined to obtain high-quality
depth maps. Zhu et al. combined passive stereo and time-of-
flight sensors [32]. Castaneda et al. used two aligned time-
of-flight cameras to capture two slightly different depth
maps and merged them to achieve high depth quality [6].
Aodha et al. developed a data-driven approach to single
depth image super resolution [1]. Hornác̆ek et al. used a
3D patch matching method to find similar patches from a
single depth image for depth super resolution [11].

3. Depth Map Denoising and Completion
Our method takes a noisy depth image D and its corre-

sponding color image I as input. The noisy depth image
D also misses values at some pixels. Our method both de-
noises the depth image and completes the missing depth val-
ues. Our method is based upon the observation that similar
image patches lie in a low-dimensional subspace. Below we
first examine this observation empirically, and then describe
our depth enhancement method.

3.1. Lowrank Subspace Constraint

Given a reference RGB-D image patch Pr with size m×
m, we find its k − 1 nearest neighbors {Pi} in the same
input image using the distance metric defined in Equation 2.
We then subtract each patch with the average of all these k
patches and assemble the resulting k patches into a patch
matrix M of size 4m2×k, where each column corresponds
to one of the patches. We observe that this patch matrix
can be well approximated by a matrix with a very low rank.
That is, the similar matches approximately lie in a very low-
dimensional subspace.

To empirically verify this observation, we collected a
set of images from the Middlebury stereo vision bench-
marks [25, 23, 10] and randomly sampled 30,000 reference
patches, each with size 7 × 7. Here, we considered dispar-
ity from this benchmark as depth. We built a corresponding
patch matrix with k = 40 patches for each reference patch
as described above and normalized all its values to [0, 1].
As there is noise in the images, we estimate the rank of each
patch matrix using SVD as follows,

r̂ = argmin
r

fe(r − 1)− fe(r) ≤ ϵ (1)
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Figure 3. Patch samples. (a): clean patch. (b): noisy patch. (c): the
top ten eigen vectors of the patch matrix formed by similar patches
to each noisy patch. These eigen vectors are ordered according
to the decreasing order of the corresponding singular values. For
each patch, we show its R, G, B, and D channels separately, each
as one row. We can see that the first few eigen vectors capture the
structure of each patch matrix.

where fe(r) is the root mean square error between the patch
matrix and its rank-r approximation obtained using SVD
and ϵ is the error-decreasing threshold with value 0.015%.
Figure 2 shows the rank histogram of these 30,000 patch
matrices. 99.7% of these matrices can be approximated by
a matrix with rank below 7. We also find that the rank varies
over individual patch matrices. We develop a data-driven
method to determine the rank, as described in Section 3.3.

The subspace constraint essentially captures the under-
lying structure in the RGB-D patches. Figure 3 shows three
reference patches and the first ten eigen vectors of their
patch matrices. While each reference patch shown in Fig-
ure 3 (b) is very noisy, the first few eigen vectors of the
patch matrix formed by its similar patches can well capture
the underlying structures, as shown in Figure 3 (c).

3.2. Depth Enhancement

Our method explores the low-rank subspace constraint
of the patch matrix for depth image denoising and comple-
tion. Consider a patch Pr with missing depth values at some
pixels. We first find its k − 1 nearest neighbors {Pi}. We
could compute the L2 norms-based distance between two
patches. However, this method has a problem as it treats
depth in the same way as color. A large difference between
two patches in their color components indicates that these
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(a) Image (b) Depth

Figure 4. Patches with similar local 3D structures. Although
the three patches marked with green squares are at three differ-
ent depth layers, they share a similar local 3D structure and thus
should be considered as similar patches.

two patches have different colors. A large difference be-
tween two patches in the depth component, however, does
not necessarily mean that they have different local 3D struc-
tures. As shown in Figure 4, while the three patches marked
with green squares are at different depth layers, their 3D
structures are very similar to each other and thus can be
considered as similar patches.

We therefore shift each patch in depth when we compute
the patch distance as follows,

d(Pr, Pi) = α∥Ir−Ii∥+β∥(Dr−D̄r)− (Di−D̄i)∥ (2)

where Ir and Dr are the color and depth components of
patch Pr. D̄r is the median depth value of patch Dr. α and
β are the parameters to weight the color and depth distance,
with default value 0.4 and 30, respectively. Since the depth
component of a patch is often incomplete, we first assign
an initial depth value Dpre(p) for each depth-missing pixel
p using a nonlocal means method before we compute the
patch distance as follows,

Dpre(p) =
1∑

q∈Ωp
wp,q

∑
q∈Ωp

wp,qD(q) (3)

where Ωp is the neighborhood of pixel p, and wp,q is a
weight consisting two components

wp,q = exp−∥G⊙ (Pp − Pq)∥4F
2σ2n2

G

(4)

where ∥ · ∥F is the Frobenius norm. ⊙ means component-
wise multiplication. Pp and Pq are two patches centered at
p and q. G is a mask matrix. It takes value 0.84 for elements
corresponding to the color channels. For the depth channel,
it takes value 0 when either Pp or Pq has a missing depth
value and 0.55 otherwise. nG is the number of none-zero
values in G. σ is a parameter with default value 100.

Once we find k − 1 nearest neighbors in total, we
assemble them together with the reference patch into a
patch matrix M4m2×k. M can be incomplete and the pre-
inpainting step above is only used to find the nearest neigh-
bors. Denote a clean and complete version of this matrix as

M̂4m2×k. Since M̂ is of low rank, it can be decomposed
into two low-rank sub-matrices A and B as follows,

M̂4m2×k = A4m2×rBr×k (5)

where r is the rank of M̂ and can be determined using the
method described in Section 3.3. We can then formulate
depth completion and denoising as an incomplete matrix
factorization problem that aims to recover A and B from
the noisy and possibly incomplete input M . We formulate
this matrix factorization problem as follows,

min
A∈R4m2×r,B∈Rr×k

∥W ⊙ (M −AB)∥2F (6)

where W is a mask matrix, with 1 and 0 indicating exist-
ing and missing data, respectively. If M is complete, the
above factorization problem can be solved by SVD. Other-
wise, it can be solved using incomplete matrix factorization
methods [4, 7]. We experimented with these algorithms and
found that the alternation method [3] works well here. It
can produce comparable results to those non-linear meth-
ods such as the Damped Newton algorithm [4]. One reason
is that M has only a very few number of missing values.
We therefore use the alternation algorithm in our method
for its efficiency. Once we find A and B, we can recover
the clean and complete patch matrix M̂ as their product.
Note, this matrix factorization step cleans and completes all
the patches in the patch matrix M . All these patches can be
used as depth enhancement results collaboratively.

For depth map completion, we only need to assemble
a patch matrix and run matrix factorization at pixels with
missing values. We can also run this process at each pixel to
achieve depth map denoising. Since a pixel can be covered
by multiple patches, which are all enhanced, we aggregate
the enhanced patches in a similar way to collaborative filter-
ing [8]. Specifically, to obtain the final depth enhancement
result at each pixel, we retrieve its values in all the patches
that cover it and have been used in and recovered by matrix
factorization, and average them as the final depth value.

3.3. Rank Estimation

As described in Section 3.1, the patch matrix rank varies
over matrices. We observe that the rank typically depends
on the RGB-D patch structure. We therefore design a series
of features to capture the patch structure and then use a re-
gression method to estimate the rank for each patch matrix.

Our method detects edges in both the color and depth
image to capture the patch structure. Since the input images
are noisy, we use a robust edge detector [16]. Then for each
patch Pi, we obtain a color edge map Ec

i and depth edge
map Ed

i . For simplicity, we arrange these edge maps into
vectors and use the same notations to represent them. We
use the following features to capture the patch structure.
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Method Correct Error ≤ 1 Error ≤ 2
Parabola regression 69.2% 93.9% 98.6%
Linear regression 68.3% 93.6% 98.6%

SVM 53.0% 84.0% 91.8%
KNN 67.3% 88.3% 95.6%

Table 1. Rank estimation.

a. Number of edge pixels.

F1 =

k∑
i=1

|Ec
i |1 and F2 =

k∑
i=1

|Ed
i |1

b. The edge difference between the nearest patch and
the furthest patch.

F3 = |Ec
1 − Ec

k|1 and F4 = |Ed
1 − Ed

k |1

c. The variance of the edge differences.

F5 = var(|Ec
2 − Ec

1|1, |Ec
3 − Ec

1|1, · · · , |Ec
k − Ec

1|1)
F6 = var(|Ed

2 − Ed
1 |1, |Ed

3 − Ed
1 |1, · · · , |Ed

k − Ed
1 |1)

d. The pixel value variance within the average patch.

F7 = var(P̄ r(1), P̄ r(2), · · · , P̄ r(m2))

F8 = var(P̄ g(1), P̄ g(2), · · · , P̄ g(m2))

F9 = var(P̄ g(1), P̄ b(2), · · · , P̄ b(m2))

F10 = var(P̄ d(1), P̄ d(2), · · · , P̄ d(m2))

where P̄ is the average patch, and the superscript r, g, b,
and d indicate the color and depth channels.

We assemble the above features into a feature vector F
for each patch matrix and train a parabola regression model
to predict the rank. We collected a set of 43,200 patch matri-
ces. We randomly partitioned half of the set into a training
set and the other half as a testing set, and used them to test
our prediction method. We repeated this process 100 times,
and reported the performance of our method in Table 1. We
also compared the parabola regression model with the linear
regression model, the K-Nearest-Neighbor Multi-Classifier,
and the multi-class SVM. We found that the parabola re-
gression model works best. It can predict the rank with error
no more than 1 for 93.9% of the patch matrices.

4. Experiments
We experimented with our depth completion and de-

noising method on two public dataset, namely the Middle-
bury stereo dataset [24, 25, 23, 10], and the RGBZ dataset
from [21]. For the Middlebury dataset, we used the left
color images and the corresponding disparity images of 30
stereoscopic images. In our experiment, we simply used
disparity as depth. From the RGBZ dataset, we randomly
chose one frame from each of its 9 RGBZ videos. This
RGBZ dataset does not provide the ground truth, and we

took the enhancement result from [21] as the ground truth
for our experiments. In our experiments, we added Zero-
Mean-White-Gaussian noise with stand deviation 25 and 5
to the color image and depth image respectively. We also set
around 13.0% pixels with unknown depth values. To sim-
ulate the spatial distribution of unknown depth values from
a consumer RGB-D camera, we used importance sampling
to select more pixels around edges with unknown depth val-
ues. We also manually selected pixels around depth edges
and dropped their depth values.

We compared our method to various methods that fo-
cus on depth completion for RGB-D images, including
Joint bilateral filter (JBF) [14, 21], Nonlocal means filter
(NLM) [12],Structure-guided fusion (SGF) [20], Spatio-
temporal hole filling (SHF) [5], and Guided inpainting and
filtering (GIF) [17]. For JBF and SHF, we modified their
method to handle single input image. We found that the per-
formance of these other methods was significantly compro-
mised by the noisy color images. To have a more meaning-
ful comparison, we first employed a state-of-the-art color
image denoising method, BM3D [8], to pre-process the
color images and then apply these methods for depth en-
hancement. Note that in this test, our method still directly
took the noisy color images as input. We report the quantita-
tive results in Figure 5. Overall, our method performs best
among all these algorithms with respect to the PSNR val-
ues. The average PSNR value of our method is 39.3 while
those for the other five methods are 37.9, 37.2, 33.9, 36.5
and 37.0, respectively.

Figure 6 shows some depth enhancement results. As
shown in Figure 6 (h) and (p), our method can better pre-
serve or recover image details, such as depth edges. Our
method performs particularly well in recovering small ob-
jects, such as the slim leaf indicated by the red rectangles
in the second example. The leaf has a very similar green
color to its neighboring background, which is challenging
for other methods. As shown in Figure 6 (p), our method
can better recover it. We show more qualitative compar-
isons on these testing images as well as some RGB-D im-
ages captured by ourselves in our project website1.

4.1. Discussion

The selection of the rank is important for our method.
While Table 1 reported the performance of our rank esti-
mation method, it is more important to examine how our
automatic rank estimation helps depth enhancement. We
therefore experimented with our method with the predicated
ranks and with fixed ranks. Since the majority of patch ma-
trices have a rank smaller than 8 as shown in Figure 2, we
tested our method with fixed ranks from 1 to 8. We re-
ported the average PSNR on all the 39 testing images in Fig-
ure 7. This experiment shows that our automatic rank selec-

1http://graphics.cs.pdx.edu/project/depth-enhance
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Figure 5. Comparisons among depth enhancement methods. We show the PSNR values of these methods on each of the testing images as
well as the average PSNR value (the last column in the bottom figure).

tion method helps depth enhancement. Since most patches
take rank 1, 2 or 3 and the small difference in rank leads
to small PSNR change, automatic rank estimation only im-
proves fixed ranks 2 and 3 marginally. On the other hand,
our method has already achieved a PSNR value (39.32) very
close to that using optimal (groundtruth) ranks (39.34).

The number of patches and the patch size in our exper-
iments are 40 and 7x7. Our experiments show that our
method is stable with reasonable parameter values. The av-
erage PSNR values for k=30, 40, and 50 are 39.25, 39.32,
and 39.31. The PSNR values for the patch size 5x5, 7x7,
and 9x9 are 38.93, 39.32, and 39.33.

Our method directly takes a noisy color image as input to
help depth enhancement. It is interesting to test if the per-
formance of our method can be further improved by denois-
ing the color images using a state-of-the-art method before
using them in our method. In our test, we used BM3D [8] to
denoise the color images and then used the denoising results
for depth enhancement in our method. Figure 8 shows the
depth enhancement results using our method with and with-

1 2 3 4 5 6 7 8 Auto Optimal
36

37

38

39

40

Rank

P
S
N
R

Figure 7. Automatic rank selection vs. Fixed rank.

out applying BM3D to color images. Interestingly, BM3D
helps our method insignificantly. This is consistent with our
further tests that show the PSNR value of our result drops
slowly with higher noise levels until the color and depth
noise level are over 50 and 10, respectively.

Since our method denoises R,G,B,D channels simulta-
neously through (incomplete) matrix factorization, a by-
product is color image de-noising although this is not in-
tended in our work. We compared our color image denois-
ing results to the state-of-the-art color denoising methods
on the same set of RGB-D images used above. As reported
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(a) Noisy color and depth image (b) Ground-truth color and depth image (c) JBF

(d) NLM (e) SGF (f) SHF (g) GIF (h) Our result

(i) Noisy color and depth image (j) Ground-truth color and depth image (k) JBF

(l) NLM (m) SGF (n) SHF (o) GIF (p) Our result
Figure 6. Comparisons among depth enhancement methods. All these images were cropped from the full-size versions for clarity.

Method BM3D BF NLM EPLL FOE Ours
PSNR 32.3 28.8 30.2 31.3 29.9 31.2

Table 2. Color image denoising.

in Table 2, while our method does not perform as well as
BM3D, it is comparable to EPLL [33], and outperforms bi-
lateral filter (BF) [28], nonlocal means filter (NLM) [2], and
the fields of experts method (FOE) [22].

Our method estimates missing depth values from suffi-
cient similar pathes with available depth values. When a
large region misses depth values completely, few repetitive
patches are available for a rare image structure and then our
method may fail.

The computational cost of our method mainly consists of
two parts, similar patch searching and patch matrix factor-
ization, which need to be run at every pixel. To improve the
speed, our implementation did not execute these two steps
at every pixel. Instead, we uniformly selected 1 out of 16
pixels to process as the patches recovered from processing
these pixels also cover the pixels that are not sampled. Then
the final collaborative filtering step described in Section 3.2

can already compute the results for those pixels that are not
sampled. Our system took about 1.5 minutes to process an
image with size 430× 370 on a desktop machine with Intel
i7 CPU using a single thread. Since matrix formulation and
factorization at pixels can be parallelized, our algorithm can
be speeded up significantly with parallel computing.

5. Conclusion

In this paper, we presented a method for depth enhance-
ment that can simultaneously achieve missing depth value
completion and depth denoising. Our method is based
on an observation that similar RGB-D patches lie in a
low-dimensional subspace. Our method assembles similar
patches into a patch matrix and formulates depth enhance-
ment as an incomplete matrix factorization problem. Our
method shows that our method can enhance noisy and in-
complete depth maps even with noisy color images.
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