
A Browser for Incremental Programming

Nathanael Scḧarli a,∗ Andrew P. Blackb

aSoftware Composition Group, University of Bern, Switzerland
bOGI School of Science & Engineering, Oregon Health & Science University, USA

Abstract

Much of the elegance and power of Smalltalk comes from its programming environment and tools.
First introduced more than 20 years ago, the Smalltalk browser enables programmers to “home in”
on particular methods using a hierarchy of manually-defined classifications. By its nature, this clas-
sification scheme says a lot about thedesiredstate of the code, but little about theactualstate of the
code as it is being developed. We have extended the Smalltalk browser with dynamically computed
virtual categoriesthat dramatically improve the browser’s support for incremental programming.
We illustrate these improvements by example, and describe the algorithms used to compute the
virtual categories efficiently.

Key words: Smalltalk browser, incremental programming, intentional programming, method
reachability, requires set.

1 Introduction

The most important of the Smalltalk programming tools is theBrowser, which al-
lows the programmer to examine, modify and extend the code of applications and
of the system itself. The Browser was revolutionary when it was first introduced,
and over the intervening years it has been improved in several ways. For example,
semi-automated refactoring has been added, leading to a tool known as the Refac-
toring Browser [1], and in many Smalltalk dialects some form of package construct
has subsumed the original primitive categorization of classes. Nevertheless, the way
in which today’s browser organizes the methods of a class is essentially the same
as in 1980: a hierarchy of manually assigned “protocols”.

In the intervening years, the concept of the “Integrated Development Environ-
ment” — for that is what the Smalltalk toolset would now be called — has proved

∗ Corresponding Author
Email addresses:schaerli@iam.unibe.ch (Nathanael Scḧarli), black@cse.ogi.edu

(Andrew P. Black).

Preprint submitted to Computer Languages 24 September 2003

to be so successful that similar environments have been created for other program-
ming languages. For example, IBM’s VisualAge for Java [2] was essentially a re-
targeting of the Smalltalk IDE to Java; more recently the cross-language environ-
ment Eclipse [3] has made similar tools available for many popular languages. As
these IDEs have evolved, they have started to perform on-the-fly analysis of the
code, enabling a typical modern IDE to provide the programmer with real-time
feedback such as syntax coloring and message prompting.

The raw material for real-time feedback is adequate computational power. Today’s
Smalltalks run on a commodity laptop about a thousand times faster than they ran
on commodity machines of the early 1980s, and about fifty times faster than on the
custom hardware of the Dorado. This power has been harnessed to write Smalltalk
applications for real-time music and motion picture manipulation that, twenty years
ago, would have been unthinkable. But the power hasnot been used to keep the
programmer informed of the changing relationships between the entities that make
up an evolving program.

In this paper, we present a tool that uses a real-time analysis of the program be-
ing modified to do exactly this. The analysis enables the tool to infer and display
system-wide information about the structure of the program, thus actively support-
ing incremental programming and program understanding.

The basic idea is to place the methods of a class into “virtual categories”,i.e., cate-
gories that are computed automatically, that are instantly available for display, and
that are always up to date. Therequirescategory of a classC contains all the mes-
sages that are sent toself by the methods ofC and its superclasses, but for which
methods are neither defined inC nor inherited. We also compute thesuppliescate-
gory, which contains the concrete methods ofC that implement inherited abstract
methods, and theoverridescategory, which contains the concrete methods ofC
that override inherited concrete methods. The last virtual category,sending super,
contains the methods that send messages to the pseudo-variablesuper .

Of these virtual categories, the first — the set of required methods — is the one
that we have found to be most useful. The availability of this category supports
“programming by intention” [4], a top-down style that encourages the programmer
to think aboutwhathas to be done rather than abouthow to do it. The idea behind
programming by intention is to imagine methods that do “the hard part” of one’s
task, so that all that one has to do to complete the task is send the corresponding
messages. Of course, later one applies the same idea to defining the “hard” methods.
In this paradigm, therequirescategory provides a constant reminder of what is left
for the programmer to do.

We have implemented all of these virtual categories in a browser for Squeak, an
open-source dialect of Smalltalk [5,6]. In addition to being the most useful, the
requirescategory also turns out to be the trickiest to define and implement effi-

2

ciently; to the best of our knowledge there is no other browser that displays it. In
contrast, the definition and computation of the other virtual categories is mostly
straightforward, and recent versions of other Smalltalks (e.g., VisualWorks [7] and
Squeak [6]) also compute some similar properties and use the results to decorate
method names in the browser. However, no other browsers use this information to
group methods into virtual categories that supplement the programmer-defined cat-
egories and provide the programmer with multiple views on the code. A Squeak
image is available that demonstrates our browser and contains its source code [8].

This paper makes three contributions. First, we analyze the information that a pro-
grammer needs in order to be effective at incremental programming (section 2).
Second, we describe the way that our browser supplies this information, and report
on our experience using the extended browser and the way in which it changes the
programming process (section 3). Third, we define therequiredset and describe an
algorithm to compute it that runs in real-time (section 4).

2 Incremental Programming and its Demands

Even though incremental programming has been part of the Smalltalk ethic from
the earliest days, it seems not to have been singled-out as an important feature of
the language. Ingalls’ seminal paper on the design principles behind Smalltalk [9],
for example, does not mention support for incremental programming. So it is nec-
essary for us to ask ourselves what incremental programming really is, and how a
development environment should support it.

Fortunately, we do not have to look far for our answers. Over the last few years,
Kent Beck and others have codified a set of practices called Extreme Programming
(XP) [10], which capture very clearly the essence of incremental work: not just in-
cremental programming, but also incremental requirements gathering, incremental
design, incremental planning, and incremental deployment. This means that instead
of bringing the work on each of these activities to an end before proceeding to the
next, programmers iterate through all of the activities multiple times, each time do-
ing only as much work as is necessary to achieve the current (incremental) goal. We
will take the “extreme” style of programming as a paradigmatic example of what a
good incremental programming environment should support.

2.1 Programming in an Extreme Environment

In an “XP shop” the incremental and iterative style of work is applied not only to
the major development activities, but also to the work within each activity. During
implementation, this means that classes are not written sequentially, one after the
other, and finally executed only when they are all complete. Instead, a programmer

3

works on several classes at a time, and combines and tests them as soon as a fraction
of the functionality is implemented.

The following patterns of work seem to be central to incremental programming.

(1) Programming with limited knowledge.A programmer starts implementing a
part before he has full knowledge of the whole system.

(2) Working in multiple contexts.A programmer may be working on several classes
in parallel. For example, he may start implementing a new method before fin-
ishing the implementation of another. As a consequence, he often switches
working context.

(3) Understanding how classes collaborate.When working with multiple incom-
plete classes at once, the programmer needs to understand how these classes
work together and how changes in one class affect related classes.

(4) Understanding what is still missing.With incremental programming, it is im-
portant to know what parts are still missing in order to make a program, or at
least a part of it, complete. The missing parts are a good indication of what
the programmer should work on next.

(5) Refactoring.A consequence of starting to program with limited knowledge is
that it is likely that the implementation will have to change as the programmer
becomes more knowledgeable. XP says that we should embrace change, not
be fearful of it. Refactoring is the secret weapon that enables us to combat the
increasing entropy and code rot that would otherwise be the result of continual
redesign and re-implementation.

(6) Testing.Writing and maintaining tests is a corner-stone of incremental and
iterative programming. Tests are used to capture the intended behavior of a
feature as soon as that feature is implemented—or even before. Tests make it
possible to refactor quickly and safely, and help us to understand what is still
missing.

2.2 Supporting Incremental Programming in Smalltalk

Smalltalk’s integrated environment is designed to support experimental program-
ming, and encourages the programmer to intermix design, coding, testing and de-
bugging [11]. Thus, it is not surprising that the language and environment support
four of the six patterns of work identified above (1, 2, 5 and 6).

Since the Smalltalk language is not explicitly typed, the programmer does not have
to specify the types of method arguments or instance variables when they are intro-
duced. As a consequence, programming in Smalltalk requires less knowledge about
the design of the whole system in order to start implementing (1).

The earliest implementations of Smalltalk-80 came with a windowing system that
allowed one to open multiple browser windows and work concurrently in multiple
contexts (e.g., with multiple classes and methods) (2). More recently, this capability

4

has been significantly improved with new browsers such as Whisker and the Star
Browser, both of which allow one to work in multiple contexts without having to
open multiple windows. (See section 5 for more information about these develop-
ments.)

Since the introduction of the Refactoring Browser, Smalltalk has been able to com-
mand a rich set of tools for semi-automated refactoring (5). Incremental testing
was originally supported by the practice of writing executable comments and ex-
ample methods. Because of incremental compilation [11], and because no checks
for completeness are performed at compile time, it is possible to test a method im-
mediately after it is written, even though other methods on which it depends may
be incomplete or absent. Since the introduction of the SUnit testing environment, it
is now also possible to effectively organize these tests (6).

Unfortunately, Smalltalk provides only limited support for the two remaining pat-
terns of work, which means that it is relatively hard to understand how different
classes relate to each other (3) and what is still missing to make them complete (4).

We believe that these problems can be solved by providing the programmer with
statically accessible and always up-to-date information about ways that the differ-
ent classes of a system collaborate. The task of providing this information can be
broken into several subtasks. First, we need to identify what kind of information is
needed to understand how the classes collaborate. Second, we need to be able to
compute this information in real-time. Finally, we need to find a way to make this
information readily accessible to the programmer.

In the rest of this paper, we explain how we completed these tasks for the most com-
mon form of collaboration between classes: inheritance. In section 5, we discuss
how the same techniques can be applied to help the programmer understand ag-
gregation and delegation, the other major forms of collaboration in object-oriented
languages.

3 The Browser

The previous section identified some limitations in the support offered for incre-
mental programming by existing Smalltalk browsers. Now we describe our new
browser and how it overcomes these limitations. First, we discuss the categories of
information presented by our browser, and explain why this information makes it
easy to understand inheritance collaborations. Then we give an “illustrated walk-
through” of a programming session, showing how the browser facilitates incremen-
tal programming and helps programmers to understand existing class hierarchies.

5

Fig. 1. The browser examining the classInteger.

3.1 Information Presented by the Browser

Our browser is shown in figure 1. At first glance it looks like the standard Smalltalk
browser, but a few extra features are visible. In the figure, the classInteger is se-
lected in the class pane (the second from the left). The third pane, which in the
standard browser contains a manual categorization of the methods of the selected
class, now contains in addition somevirtual categories. These categories present
information that we identified as key to understanding how a class collaborates with
its neighbours in the inheritance hierarchy.

The category-requires-, which is colored blue, includes all of the methods that the
classInteger sends to itself but does not define or inherit. In figure 1, this list of
methods appears in the fourth pane, where we have selecteddigitAt:, which is con-
sequently displayed in the code pane at the bottom of the browser. The implemen-
tation shown,self requirement, is a marker method generated by the browser to indi-
cate thatdigitAt: is an unsatisfied requirement. The same holds for the requirements
digitAt:put: anddigitLength. The remaining two requirements,highBit andhighBitOf-

Magnitude, do in fact have implementations:self subclassResponsibility. 1 However,
the browser recognizes this as a marker method and still categorizes these meth-
ods as required. The requires category tells the programmer how the classInteger is
parameterized, and which methods are necessary in order to make it complete.2

The next category,-supplies-, lists methods that are required by some other class
and provided by the class that we are browsing. In the case ofInteger, this virtual
category contains 10 methods including*, +, −, /, <, =, andhash. This tells the pro-
grammer thatInteger’s superclass (Number) is parameterized by these 10 methods
and shows the concrete implementations thatInteger supplies for these parameters.

The third category,-overrides-, lists those methods provided byInteger that over-

1 A method with bodyself subclassResponsibility is the standard way of indicating that a method is
abstract,i.e., that it is the responsibility of a subclass to provide it.
2 Note that in Smalltalk,Integer is the abstract superclass of the concrete classesSmallInteger, Large-

PositiveInteger, andLargeNegativeInteger.

6

ride inherited methods. In our example, there are 11 overriding methods, including
//, asInteger, even, floor, andisInteger. The-overrides-category is important for two
reasons. First, it provides a view of the class as a “delta”; the methods in this cat-
egory characterize the parts of the behavior of the superclass that are changed by
this subclass. Second, the overriding methods, together with the supplied meth-
ods, are the most critical for understanding the classInteger and reasoning about its
correctness. This is because inheritance breaks encapsulation [12]: subclasses col-
laborate with their superclasses through a much broader interface than the public
interface of the superclass. Taken together, overridden and supplied methods rep-
resent the hooks through whichNumber collaborates withInteger. In particular, this
means that the behavior implemented in each of these methods ofInteger needs to
conform to the specification implied byNumber, and that these are the methods in
Integer that must be adapted if the specification implied byNumber changes.

The fourth virtual category is called-sending super-; it contains the methods that
perform super sends(i.e., message sends that cause the message lookup to be
started in the superclass). This category is important because it tells the program-
mer which of the methods collaborate with behavior from their parent class. Fur-
thermore, all of these methods depend explicitly on their position in the inheritance
hierarchy, so special care has to be taken if they are moved during refactoring.
This category is not shown in the figure because it is empty. In fact, all the virtual
categories are displayed by the browser only when they are not empty.

Although it may not be clear from the grayscale figures used by this journal, each
of the generated virtual categories has a characteristic emphasis: blue forrequires,
green forsupplies, grey for overrides, and underlined forsending super. Even
when browsing methods using the ordinary, manually-defined method categories,
the names keep their characteristic emphasis. So, a supplied method that sends to
super will always show up in green and underlined. The blue color-coding is also
applied to the name of the class itself in the second pane whenever the set of re-
quired methods is not empty. This serves as a reminder that the class is incomplete:
it may be an abstract class such asInteger, or the programmer may still be working
on it.

3.2 Programming with the Browser

Now that the reader understands the kind of information presented by our browser,
we will illustrate how this information facilitates programming in general, and in-
cremental programming in particular.

As a working example, we will assume that we are about to implement a hierarchy
of classes for collections in Smalltalk. We start by implementing the abstract class
Collection, which serves as the root of our hierarchy. At this level, we will imple-
ment the most common interface methods such asisEmpty, includes:, select:, add:,

7

Fig. 2. The browser on the classSet just after it was created.

remove:, etc.. While writing these implementations, we proceed in an “intentional”
style: we need not worry about sending messages that are not yet implemented.
This is because our browser updates all the virtual categories in real-time, and as a
consequence every message that is sent to self but not yet implemented immediately
appears in the-requires-category.

As a concrete example, consider the methodisEmpty, implemented as

isEmpty
↑ self size = 0

As soon as this method is accepted, a requirementsize is created. It will not disap-
pear until either it is satisfied (i.e., a size method is implemented) or all the meth-
ods that requiresize are removed. The same thing happens when we implement the
methodselect:, which requires the methodsdo: andemptyCopyOfSameSize.

The constant availability of therequirescategory gives us the freedom to implement
the methods in the order that they come to mind without having to worry about
forgetting to implement the methods on which they depend. Furthermore, many
errors, especially typographical errors, can be detected immediately because they
cause weird requirements to appear. A new menu item,local senders of . . .helps us
discover why a method is required: it lists the methods in the current class hierarchy
that send the selected message.

Once we have implemented the most essentialCollection methods, we create the
concrete subclassSet so that we can test our abstract implementation. Figure 2
shows the classSet just after it has been created as a subclass ofCollection. At a
glance we see that this class is incomplete (the nameSet is blue), that it does not
yet implement any methods, and that it requires methods foradd:, atRandom:, do:,
andremove:ifAbsent: to make it complete. (AlthoughSet does not yet have any of its
own methods, it inherits methods fromCollection. These requirements are inferred
by analyzing the inherited methods.)

In order to properly satisfy these requirements, we will eventually need to imple-
ment some internal methods that map the contents of the set to the instance vari-
ablesarray andtally. Again, the automatically computed list of requirements allows
us to implement these methods in whatever order we prefer, while keeping a high-

8

Fig. 3. The browser examining the classSet after it is completed.

level view of what is already implemented and what still needs to be done.

Figure 3 shows our browser on the classSet after it has been completed. Because
there are no longer any unsatisfied requirements, the-requires-category has disap-
peared. Instead, the category-supplies-appears, showing how the implicit param-
eters ofCollection are satisfied bySet. We also see the category-overrides-, which
contains methods such as=, asSet, copy, includes: andsize. These are the methods
that the classSet overrides in order to modify the inherited behavior or to provide
a more efficient implementation.

Since these two virtual categories capture much of the relationship ofSet with
its parent, they help the programmer to avoid “inter-level” errors between these
classes. In other words, the methods in these categories are exactly the ones that
characterize the collaboration betweenCollection andSet, and so they are exactly
the ones that must be examined if the specification inCollection is changed. For
example, if we change the way thatCollections are compared, we need to ensure
that the overridden method= is updated appropriately.

Let us suppose that, after testingSet, we move on to create some sequenced collec-
tion classes such asOrderedCollection andHeap. Since these classes will have some
code in common, we decide to make them both subclasses of a new abstract class
SequenceableCollection, which will itself be a subclass ofCollection. When looking at
these three classes with the browser, we see that they all require the same methods,
namelyadd:, atRandom:, do:, andremove:ifAbsent:.

Instead of implementing these three classes one after the other, we can now take ad-
vantage of the freedom granted by incremental programming and work on all three
classes in incremental steps. This means that we go through these requirements and
the necessary internal methods and decide in which class each method should be
implemented. During this process, which may also include refactoring actions such
as pushing methods up or pulling them down in the hierarchy, the features of our
browser always give us up-to-date information about what methods are required in
each of these classes and how they collaborate.

To make this concrete, suppose that we start with the requirementdo:, and decide
that we should implement this in the classSequenceableCollection as follows.

9

Fig. 4. The browser examining the classHeap.

do: aBlock
1 to: self size do: [:index | aBlock value: (self at: index)]

As soon as we accept this code, the browser shows us that we have a new re-
quirementat: in SequenceableCollection and its two subclasses. Sinceat: must be
implemented differently inOrderedCollection andHeap, we proceed to implement
the twoat: methods in the subclasses. This is reflected in the browser, which shows
at a glance thatat: is now a parameter of the abstract classSequenceableCollection

and that it issuppliedby different methods in the two concrete subclasses.

Figure 4 shows the classHeap as it results from this process. We have selected the
virtual category-sending super-, which contains a single method=. This tells us
that there is only one method that uses the keywordsuper to access an overridden
implementation in the parent class and which is therefore vulnerable to refactor-
ings. The two other virtual categories,-supplies-and-overrides-, tell us howHeap

implements the parameters of its abstract parent classSequenceableCollection, and
which of the inherited methods it overrides.

3.3 Understanding and Modifying Existing Classes

In the previous section, we have shown how our extended browser helps one to
create a new class hierarchy. In addition, our experience has shown that the browser
is also a great help when one must understand and modify existing classes and class
hierarchies.

As an example, consider the collection hierarchy that we have just created. The
browser’s virtual categories provide valuable guidance to a new programmer in
understanding both the higher-level purpose and the lower-level implementation
of each of the classes. This is because these categories separate the information
that is essential to understanding the collaboration from the rest of the code, and
thus make the overall architecture more explicit. Once the programmer has a basic
understanding of the parent class, she will need to look only at a small part of the
code of a subclass in order to understand how that subclass relates to its superclass.

10

These features are even more important when it comes to extending a class in an
existing hierarchy with some new features. Such an extension is quite common,
particularly if the hierarchy was created incrementally, or by following the XP doc-
trine of doing the simplest thing that could possibly work to satisfy the requirements
that are currently available [10, Chapter 17]. Especially in complex hierarchies, it
is quite easy to introduce “inter-level” errors. For example, the programmer might
modify or extend a class and forget to make all of its subclasses compatible with
these changes. Not only does the browser help one avoid making such inter-level
errors, it also shows us which subclasses accidentally become incomplete as a result
of the changes to the superclass.

Although it might seem that these problems are easy to avoid without virtual cate-
gories, our experience has shown that this is not the case. When we introduced our
new browser into Squeak, we immediately found dozens of abstract classes that
should actually be concrete, as well as hierarchies that exhibited other inter-level
errors such as sending unimplementedsuper messages. The most surprising thing
was that we found these errors even in the core of the system, which has been used
by thousands of users for many years. For example, classes likeFraction, Bitmap,
CharacterSet, Debugger, and nearly all subclasses of the classMorph—which is the
root class of Squeak’s user interface framework—are accidentally abstract, simply
because programmers forgot to implement some methods.

We find this to be convincing evidence not only that our browser extensions are
necessary to avoid such errors in the future, but also that they provide great help
in finding and eliminating these errors in existing class hierarchies. Since abstract
classes are “blue”, finding them is trivial. Having the requirements continuously
available in an up-to-date virtual category also makes it straightforward to identify
the cause of the problem and eliminate it.

4 Implementation

Most of the virtual categories that are displayed in our browser can be computed
straightforwardly. The exception is therequiresset. In this section, we therefore
focus the problem of computing therequiresset efficiently enough for it to be
displayed in real-time.

To compute the required methods of a class we must consider all of the class’s
reachablemethods, that is,

(1) all methods that are locally defined in the class,
(2) all non-overridden methods defined in its superclasses, and
(3) all methods that may be reached by super-sends from other reachable methods.

The requires set of a class contains all of the message selectors sent toself in one of

11

the reachable methods, minus the selectors of the methods really provided by the
class (and by its superclasses). A method is really provided by a class if there is
a real implementation; marker methods such asself subclassResponsibility, andself

shouldNotImplement do not count as real implementations. These definitions have
been formalized elsewhere[13].

In order to compute this set, we first must find the self-sends and super-sends of a
method. Whereas the super-sends can be immediately retrieved from the byte-code,
computing the self-sends is more complicated, because they do not all emanate
from a single syntactic construct. Consider, for example, the following method.

fasten
| anObject |
self hook.
anObject := self.
anObject button.
self class new clip.

From the code of this method, it is immediately clear thathook is sent toself. What
aboutbutton andclip? These messages are also sent to an instance of the current
class, and so they are really self-sent too. However, detecting this requires a deep
analysis of this method, as well as of the methodnew on the class side.

Our current implementation does not carry out such an analysis. This means that in
the above method,hook is the only self-send that we would detect. We compensate
for this deficiency by allowing the programmer to declareexplicit requirementsby
implementing a marker method with the bodyself explicitRequirement.

Even with this simplification, computing the requires set in real-time is quite chal-
lenging. The main problem is that a single change in a class may affect the requires
set of all its subclasses. Thus, a change inObject may mean that we have to update
the required methods of all of the classes in the system. A naive implementation
based on the above definition would be far too slow to provide the programmer
with useful feedback (see section 4.4 for a performance comparison). Updating the
requires set in real-time required an optimized algorithm that caches critical data
and takes advantage of the coherence of the inheritance hierarchy.

4.1 Caching Self-Sends and Super-Sends

In an early version of our implementation, we used a special parser to extract the
self-sends and super-sends from the source code of a method. Because this parsing
process is quite time-consuming, we inferred these sends only when a method was
first created and cached them.

When computing the requires set, looking for methods that contain a certain self-

12

send is far more common than looking for (or modifying) the self-sends of a par-
ticular method. Therefore we index the caches by the sent selectors: for each class
C we maintain a dictionary whose keys are the selectors that are self-sent by the
methods directly implemented inC, and whose values are the array of selectors
that name the methods that perform those self-sends. For example, if the selectorx

is sent toself by the local methodsa andb, looking upx returns the array#(a b).

Super-sends are critical for determining the set of reachable methods, so we also
maintain a cache of the super-sends that are issued by the local methods of each
class; this cache is similarly indexed by the super-sent selectors rather than by the
selectors of the methods that perform the super-sends.

In our current version, we extract the self-sends and super-sends by abstract inter-
pretation of the byte-code, which is more than 50 times faster than the approach
based on parsing the source code. Nevertheless, we still maintain the caches be-
cause they make the information available in a form that is better suited for the
needs of our algorithm. In section 4.5, we show how the algorithm can be modified
so that it uses smaller caches and takes advantage of this faster way of computing
the self-sends and super-sends.

4.2 Using the Coherence of the Inheritance Hierarchy

When a method is added, modified or removed, we need to check its class, and all
its subclasses, to see whether there is any effect on the requirements. The heart of
this computation is checking whether a given selector is self-sent in a given class.
Especially in the case of large hierarchies, performing this check separately for each
subclass proved to be far too slow. Therefore, we developed a recursive algorithm
that takes advantage of the coherence that typically exists between neighbouring
classes in the inheritance hierarchy.

The main method of our algorithm is applied initially to the topmost classC; it as-
certains recursively, forC and each ofC ’s subclasses, whether that class self-sends
a given selectorx. As the method proceeds down the inheritance hierarchy, it re-
members a method that self-sendsx (if one exists). Unless this method is overridden
in the next subclassC ′, we immediately know thatC ′ also self-sendsx. Otherwise,
we call a helper method that tries to find another method that contains a self-send
to x and is reachable from this subclass. The helper method first searches the local
methods ofC ′, and then recurses up through all the superclasses until it either finds
such a method or reaches the top of the hierarchy. While going up the inheritance
hierarchy, we maintain the set of all the unreachable methods in order to avoid false
positives.

We now give a more detailed description of both the main method and the helper
method.

13

Main method. The main method of the algorithm searches through the argument
classC and all its subclasses and ascertains which of these classes self-send the
selectorx. In addition toC andx, this method also takes an argumenty, the selector
of a method that is known to issue a self-send tox in the superclass. This argument
is nil if there is no such method in the superclass or when the main method is called
on the first class of the hierarchy. The main method proceeds as follows.

(1) If y is notnil , we check whethery is overridden in the classC.
(2) If y is overridden ornil , we call the helper method discussed below to search

for the selector of a reachable method that self-sendsx. The result is stored as
y′ and isnil if no such method exists.

(3) If y′ is still nil , we markC to indicate that it does not self-sendx. Otherwise
we indicate that the classC does self-send the selectorx.

(4) We perform a recursive call for each of the direct subclasses ofC, passingy′

as a parameter.

Helper method. The purpose of the helper method is to find a methods that self-
sends the selectorx and is reachable from the classC. In addition toC andx, this
method takes a third argumentU , the set of all selectors that have been found to be
unreachable. This set is empty when the method is called from the main method.
The computation proceeds as follows.

(1) We check whether the classC contains a local method that issues a self-send
to x and whose selector is not in the setU of unreachable selectors. If we find
one, we return its selector and exit.

(2) Before we use recursion to search the superclass, we check whether the super-
class has been marked as having no self-send tox by the main method. If so,
we returnnil and exit.

(3) We construct the setU ′ of all the superclass selectors that are unreachable
from the class for which this helper method was initially called. Since all the
unreachable selectors inC remain unreachable, the setU ′ includes all the
selectors inU . In addition,U ′ contains all the selectors for which methods are
defined inC (and which therefore have the potential to override superclass
methods) and which are not super-sent inC.

(4) We use recursion to find a superclass method that contains a self-send tox. In
order to avoid finding unreachable methods, we pass the setU ′ as a parameter.
The result is stored asy and isnil if no such method exists.

(5) If y is notnil , we check whethery is reachable by a super-send. If so, we update
y to so that it names the local method that performs the super-send. Then, we
returny.

14

4.3 Discussion

As a validation, we have used our algorithm to compute the self-sending classes for
each of the 12 542 selectors in our Squeak 3.2 image and compared the results to the
ones obtained with a naive implementation. During this process we also gathered a
lot of profiling data that we used to optimize our algorithm. We now briefly discuss
some of the insights we gained during that optimization process.

Choosing a lazy approach In both the main and the helper method, we use a
lazy approach: we stop as soon as we identify a single method that self-sends the
given selector. In the main method, for example, we keep only a single method that
is known to issue a self-send in the superclass, even though there may be other
methods that could be cheaply retrieved from the caches. The reason for this is that
overrides of the single known method are extremely rare: in our image they occur
less than once in 100 000 calls of the main method. It is therefore not even worth
the relatively small overhead of maintaining a set of selectors.

Design of the caches The caches are well-suited to the algorithm. In step (1) of
the helper method, we can find all the local methods that issue a self-send tox by a
single lookup in the self-send dictionary. Similarly, in steps (3) and (5) of the helper
method, we are able to check whether a selector is reachable via a super-send by a
single lookup in the super-send dictionary.

The caches can also be kept up-to-date quite cheaply. This is mainly because the
caches contain only local data, that is, the the cache for a particular class does not
depend on other classes in the hierarchy. Thus, modifying a class requires updating
at most the local cache for that class. Furthermore, changing the place of a class in
the hierarchy does not affect the caches at all.

4.4 Performance Comparison

Our first implementation of the browser deployed caches for the self-sends and
super-sends of every method. However, unlike the approach presented above, these
caches were indexed by the selectors of the methods performing the self-sends
rather than by the selectors that were sent. Furthermore, our initial algorithm did
not take advantage of the coherence in the class hierarchy. This meant that the
method for finding out whether a classC self-sends a selectorx was applied to
each class separately. Using this implementation to find out which classes in the
system required the selector+ took several minutes (188 seconds),3 which made it
impossible to provide real-time feedback.

3 All the performance data provided in this paper were measured in a Squeak 3.2 image consisting
of 1860 classes (not counting the meta-classes), and were executed on a Mobile Pentium III 1.2GHz
with 512MB RAM.

15

In a second version of the algorithm, we used the same caching strategy, but took
advantage of the coherence in the class hierarchy. Performance improved signif-
icantly, but the same computation still took over 9 seconds. Finally, using the
caching strategy and the algorithms presented above, the same test takes less than
50 milliseconds and thus meets our requirement for instantaneous feedback.

4.5 Optimizing the Algorithm for Smaller Caches

The self-send and super-send caches of all the 3638 classes in our Squeak 3.2 image
contain about 25 000 sent selectors and 50 000 senders. (Because each class has its
own cache, there are far more cache entries than there are distinct selectors.) This
means that the caches occupy about 750 kilobytes of memory, or about 8% of the
image. To reduce this overhead, we developed and implemented a modified version
of this algorithm that uses a space-optimized caching strategy.

The basic idea is that we do not cache the super-sends and cache only a single
sender for every selector that is self-sent in a class. This means that our caches
consist of about 22 000 entries that associate sent selectors to senders and therefore
occupy about 370 kilobytes, less than half of the original size.

Even without changing the algorithm, this causes a performance penalty of less
than 15% for 99% of the selectors. This is because the single senders either are (a)
not overridden in the subclasses, or are (b) overridden by subclasses that contain
another local sender anyway, or are (c) located in classes that have so few methods
that searching all of them for another sender is very fast. However, for the remaining
1% of selectors, the computation can take up to 2 500 milliseconds in the worst
case, which is about 40 times longer than before.

In order to reduce the computation time in these cases, we introduced some tempo-
rary caches into our algorithm. These caches store information about which meth-
ods of a class have already been searched for a self-send and which of these meth-
ods actually contain a self-send. In this way we can avoid the situation where mul-
tiple subclasses override the single sender that is cached for the superclass and
therefore cause all the methods of the superclass to be searched multiple times.
Using these temporary caches the computation takes a maximum of 400 millisec-
onds and is therefore only about 6 times slower than the original algorithm with
full caches.

This strategy can be further optimized by caching the selectors of all the sender
methods in those classes that have many selectors. Alternatively, we can be clever
when choosing which one of the senders should be cached: we just choose the
method which is least overridden in the subclasses.

The latter approach is very effective, but it depends on inter-class information, and

16

it is therefore hard to ensure that the caches remain in this optimized state. An ef-
fective way of achieving this is to update the caches while executing our algorithm.
This means that we use the information from our temporary caches to update the
permanent caches, thus making future executions of the algorithm for the same
selector much faster.

Using these optimizations allows us to further reduce the computation time so that
even in the worst case it takes less than twice as much time as the original algorithm,
while the size of the permanent caches is halved.

5 Related and Future Work

The idea of keeping an automatically updated list of things that remain to be done
dates back at least as far as the “grass catcher” of Trellis [14], and has been adopted
in some form or other in many IDEs; the “Tasks” window of Eclipse is another
example. However, such lists are typically created as a by-product of a global
re-compilation, rather than being constructed modularly as the consequence of a
change to a single method, as in Trellis and in our virtual categories.

Recently, there have been other extensions to Smalltalk browsers that provide the
programmer with automatically updated information about the code. In the intro-
duction, we mentioned that there are Smalltalk implementations such as Visual-
Works that decorate method names in the browser to indicate things such as super-
sends or overrides. However, these browsers neither use this information to group
methods into virtual categories nor compute the set of required methods.

SOUL, the Smalltalk Open Unification Language [15], is an open, reflective logic
programming language written in VisualWorks Smalltalk. Although it is not itself
a browser, it can be used to extend a Smalltalk browser with many kinds of logical
reasoning, triggered by the occurrence of an action such as accepting a method.
This ability has been used to formulate queries that look for composite patterns,
and to infer the types of instance variables. SOUL has also been used to create
“virtual classifications” that map source-level artifacts to higher-level architectural
components (and vice versa) [16].

The Refactoring Browser adds many useful features for semi-automated refactoring
to the standard Smalltalk browser, and is available for several Smalltalk implemen-
tations including Dolphin Smalltalk [17], VisualWorks, and Squeak. Refactorings
supported by this browser include moving methods up and down the inheritance
hierarchy, extracting a block of code into a method, and renaming instance vari-
ables and methods. The Refactoring Browser uses type inference to help the user
to decide which senders actually refer to the method being renamed

Whisker is a Smalltalk browser implemented in Squeak. Whisker’s main contribu-

17

tion is a screen layout that provides a simple and intuitive way to view the contents
of multiple classes and methods simultaneously, while using the screen efficiently
and avoiding the need to manually move and resize windows. Whisker does this by
using subpane stacking,i.e., dynamically stacking subpanes into a single column.
Whisker also infers and displays information about the classes of objects that are
bound to the instance variables of a class.

Another extended browser is the Star Browser [18], which is available for Squeak
and VisualWorks. Like Whisker, the goal of the Star Browser is to allow the pro-
grammer to establish a working context without having to deal with too many win-
dows. Unlike Whisker, the Star Browser is built on top of a lightweight classifica-
tion model that allows one to categorize any sort of item such as classes, methods,
method categories,etc.. Besidesextensional classificationsthat are just bags of
items, the model also allows one to expressintentional classifications, which are
defined by a description, and whose contents are updated automatically.

Despite these efforts, we believe that there remain many opportunities to improve
the Smalltalk programming environment. One example is applying the techniques
of this paper to provide the user with always up-to-date information about the col-
laborations between classes in aggregation and delegation relationships. We believe
that identifying the key information necessary to understand these collaborations
could lead to tool and process improvements similar to those that we have observed
in the case of inheritance. For example, a browser might support a virtual category
showing the methods that a class requires in order that its instances understand all
the messages delegated to them.

However, the process of actually computing this information will be much harder
because, unlike inheritance, aggregation and delegation are dynamic collaborations.
Especially because Smalltalk is not statically typed, it is not immediately clear
which instance variables and method arguments may refer to instances of which
classes. Nevertheless, this problem can be tackled by combining the results of type
inference with information about the classes of instance variables and method ar-
guments that is gathered dynamically. Although this will not always lead to com-
pletely accurate information, it seems likely that approximate information will be
quite adequate in practice.

6 Conclusion

We have identified four virtual categories that, if updated in real-time, provide valu-
able insight on the program under development. This categorization structures the
space of methods in a way that is quite different from the explicitly declared pro-
tocols, and in doing so reveals a different view on the code. Whereas the protocols
group the methods according to their role in the domain logic (i.e., testing, printing,
model access,etc.) the virtual categories group the methods according to their role

18

in the composition, that is, in the way that the class interacts with its neighbours in
the inheritance hierarchy.

Our experience with the extended browser has shown that this view is very valuable
both for writing and for understanding the code. While writing, it supports an in-
cremental style of programming: the programmer can freely compose components
and add methods, and rely on the browser to maintain an overview of what still
remains to be done and where possible problems (e.g., open requirements and over-
rides) might lie. Later, the same view helps the programmer to understand the code,
because at a glance she can see all the critical methods that are essential for under-
standing the interaction between the various components. This stands in contrast to
the conventional viewpoint, which leaves the programmer the task of finding these
critical methods by looking through many methods (sometimes hundreds), spread
over many protocols.

From an implementation point of view, most of these categories are quite easy to
compute. The exception is the computation of the requires set. There are three rea-
sons for this. First, the absence of explicit type information makes it hard to detect
the requirements; second, finding whether a method is reachable turns out to be
non-trivial; and third, heavy optimization is required to obtain real-time perfor-
mance.

Nevertheless, our experience has shown that these obstacles can be overcome. Al-
though we based our analysis on a very simple definition of self-send, in practice
most of the requirements are detected. Furthermore, caching information about the
requirements means that the requires set can be re-computed quickly, even after a
change that affects many classes.

Acknowledgements This work has been partially supported by the Swiss Na-
tional Foundation, by the J.M. Murdock Charitable Trust, and by the National Sci-
ence Foundation of the United States under awards CDA-9703218, CCR-0098323,
and CCR-031340. The authors are also indebted to their colleagues at OGI and
SCG for their insights and feedback on this work.

References

[1] Don Roberts, John Brant, and Ralph E. Johnson. A refactoring tool for Smalltalk.Theory and
Practice of Object Systems (TAPOS), 3(4):253–263, 1997.

[2] Niraj Jetly. VisualAge for Java 2.0.Java Developer’s Journal, 4(4):48–49, April 1999.

[3] Eclipse Platform: Technical Overview, 2003. http://www.eclipse.org/whitepapers/eclipse-
overview.pdf.

19

[4] Ron Jeffries, Ann Anderson, and Chet Hendrickson.Extreme Programming Installed. Addison
Wesley, 2001.

[5] Dan Ingalls, Ted Kaehler, John Maloney, Scott Wallace, and Alan Kay. Back to the future: The
story of Squeak, A practical Smalltalk written in itself. InProceedings OOPSLA ’97, pages
318–326. ACM Press, November 1997.

[6] Squeak home page. http://www.squeak.org/.

[7] Cincom Smalltalk, September 2003. http://www.cincom.com/scripts/smalltalk.dll/.

[8] Nathanael Scḧarli. Traits — composable units of behavior, September 2003.
http://www.iam.unibe.ch/∼scg/Research/Traits.

[9] Daniel H. Ingalls. Design principles behind Smalltalk.Byte, 6(8):286–298, August 1981.

[10] Kent Beck.Extreme Programming Explained: Embrace Change. Addison Wesley, 2000.

[11] Larry Tesler. The Smalltalk environment.Byte, 6(8):90–147, August 1981.

[12] Alan Snyder. Encapsulation and inheritance in object-oriented programming languages. In
Proceedings OOPSLA ’86, ACM SIGPLAN Notices, volume 21, pages 38–45, November 1986.

[13] Nathanael Scḧarli, Oscar Nierstrasz, Stéphane Ducasse, Roel Wuyts, and Andrew Black.
Traits: The formal model. Technical Report IAM-02-006, Institut für Informatik, Universiẗat
Bern, Switzerland, November 2002. Also available as Technical Report CSE-02-013, OGI
School of Science & Engineering, Beaverton, Oregon, USA.

[14] Patrick D. O’Brien, Daniel C. Halbert, and Michael F. Kilian. The Trellis programming
environment. InProceedings Object-Oriented Programming Systems, Languages and
Applications, (OOPSLA’87), ACM SIGPLAN Notices, volume 22, pages 91–102. ACM Press,
October 1987.

[15] Roel Wuyts. Declarative reasoning about the structure object-oriented systems. InProceedings
of the TOOLS USA ’98 Conference, pages 112–124. IEEE Computer Society Press, 1998.

[16] Kim Mens, Roel Wuyts, and Theo D’Hondt. Declaratively codifying software architectures
using virtual software classifications. InProceedings of TOOLS-Europe 99, pages 33–45, June
1999.

[17] Doplhin Smalltalk, September 2003. http://www.object-arts.com/DolphinSmalltalk.htm.

[18] Roel Wuyts and Stéphane Ducasse. Unanticipated integration of development tools using the
classification model.Computer Languages, Systems and Structures, 2003. (To appear, special
issue on Smalltalk).

20

Nathanael Scḧarli is a PhD student in computer science at the University of Bern,
where he is a member of the Software Composition Group, led by Prof. Oscar
Nierstrasz. His research is in the field of programming language design and imple-
mentation.

Before starting his Ph.D. in 2001, Schärli received his master’s degree in computer
science, also from the University of Bern. While studying for his Masters, he served
as an intern in Alan Kay’s research group, where he developed a handwriting rec-
ognizer for Squeak Smalltalk. Since then, Schärli has continued to collaborate with
Kay’s group on handwriting recognition and programming language research.

Andrew Black is a Professor of Computer Science at the OGI School of Science
& Engineering, which is part of the Oregon Health & Science University. Prior to
joining OGI as Head of Department in 1994, Black was a researcher with Digital
Equipment Corporation, and prior to that an Assistant Professor at the University
of Washington. He holds a D.Phil. from the University of Oxford, where he studied
under Professor C.A.R. Hoare.

Black’s research interests are in programming language design, distributed systems,
and software engineering. He was a co-designer of the distributed object-oriented
programming language Emerald, and has published extensively on objects, distri-
bution, and the relationship between them.

21

