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Abstract. Existing middleware is based on control-flow centric inter-
action models such as remote method invocations, poorly matching the
structure of applications that process continuous information flows. Dif-
ficulties in building this kind of application on conventional platforms
include flow-specific concurrency and timing requirements, necessitat-
ing explicit management of threads, synchronization, and timing by the
application programmer. We propose Infopipes as a high-level abstrac-
tion for information flows, and we are developing a middleware frame-
work that supports this abstraction. Infopipes transparently handle com-
plexities associated with control flow and multi-threading. From high-
level configuration descriptions the platform determines what parts of
a pipeline require separate threads or coroutines and handles synchro-
nization transparently to the application programmer. Independently of
the actual activity of pipeline components, they may be programmed like
passive or active objects. In this way, the most appropriate programming
model can be chosen for a given task and exisiting code can be reused
regardless of its activity model.

1 Introduction

The benefit of middleware platforms is that they handle application-independent
problems transparently to the programmer and hide underlying complexity.
CORBA or RPC, for instance, provide location transparency by hiding mes-
sage passing and marshalling. Hiding of complexity relieves programmers from
tedious tasks and allows them to focus on the important aspects of their appli-
cations.

To provide any useful functionality, however, middleware needs to assume ab-
stractions that are in common for the applications it supports. One assumption,
on which exisiting middleware platforms are based, is the client-server architec-
ture and request-response interaction, where control flows to the server and back
to the client.
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This model, however, is inappropriate for emerging information-flow appli-
cations that pass continuous streams of data among producers and consumers.
Building these applications on exisiting middleware requires programmers to
specify control-flow behaviors, which are not key aspects of the application.
Morever, existing middleware has inadequate abstractions for specifying data-
flow behaviors including quality of service and timing, which are key aspects of
the application.

We propose a new middleware platform for information-flow applications that
is based on a producer-consumer architectural model and the Infopipe abstrac-
tion. Infopipes simplify the task of building distributed streaming applications
by providing basic components such as pipes, filters, buffers, and pumps [2, 24].
Each component specifies the properties of the flows it can support, including
data formats and QoS parameters. When stages of a pipeline are connected flow
properties for the composite can be derived, facilitating the composition of larger
building blocks and the construction of incremental pipelines.

In addition to providing new abstractions that are useful to the application
programmer, the middleware platform hides complexity that is common to infor-
mation flow pipelines. The need for concurrently active pipeline stages introduces
significant complexity in the area of thread management that can be hidden
in the middleware. Hence, our platform supports the concept of thread trans-
parency by freeing the programmer from the need to deal with thread creation
and destruction and synchronization. Moreover, the actual control flow is trans-
parently managed by the middleware and is decoupled from the way pipeline
components are implemented, be they active or passive objects. This approach
simplifies programs and allows widespread reuse of infopipe components. In the
same way that RPC systems automatically generate code for parameter mar-
shalling and message handling, our middleware handles thread management and
generates glue code that allows Infopipe components to be reused in different
activity contexts.

Section 2 describes the Infopipe middleware platform we are developing.
Thread transparency is discussed in Section 3. Section 4 describes the current
implementation. Related work is summarized in Section 5 before the conclusions
in Section 6.

2 Infopipe Middleware

The Infopipe abstraction has emerged from our experience building continu-
ous media applications [5, 12, 15, 32]. Currently we are building a middleware
framework in C++ based on these concepts. On top of this platform we are
reimplementing our video pipelines to facilitate further development.

2.1 Overview

Infopipes model pipeline components for information flow analogously to plumb-
ing for water flow. The goal is supporting a similarly simple composition of
pipelines from components.
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Fig. 1. Infopipe Example

The most common components have one input and one output. Such pipes
can transport information, filter certain information items, or transform the
information. Buffers provide temporary storage and remove rate fluctuations.
There are pumps to keep the information flowing, pulling items from upstream
and pushing them downstream. Hence, pumps have two active ends and buffers
have two passive ones, while filters and transformers have two ends of opposite
polarity but can typically be used in either push or pull mode [1,2]. Sources and
sinks have only one end, and can be either active or passive.

More complex pieces have more ports. Examples are tees for splitting and
merging information flows. Splitting includes splitting an information item into
parts that are sent different ways, copying items to each output (multicast), and
selecting an output for each item (routing). Merge tees can combine items from
different sources into one item or pass on information to the output in the order,
in which it arrives at any input.

In combining components of a pipeline it is important to check the compat-
ibilty of supported flows and to evaluate the characteristics of the composite
Infopipe. From each basic or composite Infopipe a Typespec can be queried that
describes the flows that it supports. These types include supported formats of
data items, interaction properties such as the capability of operating in push or
pull mode, and ranges of QoS parameters that can be handled.

To integrate different transport protocols into the Infopipe framework, they
can be encapsulated in netpipes. These netpipes support plain data flows and may
manage low-level properties such as bandwidth and latency. Marshalling filters
on either side translate the raw data flow to and from a higher-level information
flow. These components also encapsulate the QoS mapping of netpipe properties
and information flow properties.

In building an Infopipe an application developer needs to combine appro-
priate filters, buffers, pumps, network pipes, feedback sensors and actuators as
well as control components. To facilitate this task, our framework provides a set
of basic components including pumps and buffers to control the timing and a
feedback toolkit for adaptation control [7]. Components for processing specific
types of flow need to be developed by application programmers, but can easiliy
be reused in various applications. For instance, developers of video on demand,
video conferencing, and surveillance tools all can use any available video codec
components.

Figure 1 shows a simple video pipeline from a source producing compressed
data to a display. At the producer side frames are pumped through a filter into a
netpipe encapsulating a best-effort transport protocol. The filter drops when the



network is congested. The dropping is controlled by a feedback mechanism using
a sensor on the consumer side. This lets us control which data is dropped rather
than incurring arbitrary dropping in the network. After decoding the frames,
they are buffered to reduce jitter. A second pump controlling the output timing
finally releases the frames to the display sink.

2.2 Interaction

filter A filter B filter C

pull push

Fig. 2. Activity

In the basic model, pumps have two active ends, buffers have two passive
ends, and filters an active and passive end. In this way, any activity in the In-
fopipe originates from a pump, as shown in Figure 2. Hence, pumps regulate the
timing of the data flow and can themselves be controlled by timers or feedback
mechanisms. Each pump has an associated thread that calls all other pipeline
stages up to the next buffer up- or downstream and encapsulates the interaction
with the underlying scheduler. Sinks and sources may be active or passive and,
hence, operate similarly to pumps and buffers in this respect.

Besides exchanging data items, Infopipe components can exchange control
messages. They include local interaction between adjacent components as well
as global broadcast events. To exemplify the local control, consider an MPEG-
decoder that passes on decoded video frames and at the same time still needs
them as reference frames itself. Communication between the decoder and down-
stream components must determine when the shared frames can be deleted.
Another case is a video resizing component that needs to be informed by the
video display whenever the user changes the window size. Control interaction
between remote components of a pipeline includes communication between feed-
back sensors, controllers, and actuators. Other events such as user commands
to start or stop playing need to be broadcast to potentially many components.
While control events to adjacent components can easily be sent there directly,
we are building an event service to facilitate global distribution of control events.

The current design is based on the assumption that control event handling
does not require much time. Hence, there is no explicit control for timing and
buffering of these events and their handlers are executed with higher priority
than potentially long-running data processing.



2.3 Infopipe Typespec

The ability to construct composite pipes from simpler components is an impor-
tant feature of the Infopipe platform. Automatic inference of flow properties,
glue code for joining different types of components, and automatic allocation of
threads help the application programmer as well as simplify binding protocols
for setting up an Infopipe.

A Typespec describes the properties of an information flow. Typespecs are
extensible and new properties can be added as needed. Undefined properties may
be interpreted as meaning either don’t know or don’t care as discussed below.
The following list describes some parts of a Typespec.

– The item type describes the format of the information items and the flow.
– The activity of ports in the information the flow determines whether items

are pushed or pulled. Activity is represented in the Typespec by assigning
each port a positive or negative polarity. A positive out-port will make calls
to push, while a negative out-port has the ability to receive a pull. Corre-
spondingly, a positive in-port will make calls to pull, while a negative in-port
represents the willingness to receive a push. With this representation, ports
with opposite polarity may be connected, but an attempt to connect two
ports with the same polarity is an error.
Some components do not have a fixed polarity. For example, filters can op-
erate in push or pull mode, as can chains of filters. These components are
given the polymorphic polarity α → α. When one end is connected to a port
with a fixed polarity, the other end of the filter or filter chain acquires an
“induced” polarity [2, 8].

– A third property specifies the blocking behavior if an operation cannot be
performed immediately. For instance, if a buffer is full, the push operation
can either be blocked or can drop the pushed item. Likewise, if a buffer is
empty, a pull operation can either be blocked or return a nil item.

– While push and pull are the only data transmission functions, control events

between connected components may be needed to exchange meta-data of the
flow. The capability of components to send or react to these control events is
included in the Typespec to ensure that the resulting pipeline is operational.

– QoS parameters may include video frame rates and sizes, latency, or jitter.
While processing a flow with specific values for these parameters requires
elaborate resource management and binding protocols, QoS parameters may
provide valuable hints to the rest of the pipeline even if guarantees are not
available. For instance, feedback mechanisms can trade one quality dimen-
sion for another, which again can be reflected in the Typespec.

Properties can originate from sources, sinks, and intermediate pipes. Sources
typically supply one or more possible data formats along with information on
the achievable QoS. Likewise support certain data formats and ranges of QoS
parameters. The latter can be restricted by the user to indicate preferences.

For any stage in a pipeline, an input or output Typespec can be a subset
of a given output or input Typespec, because that stage supports only a subset



of flow types, for instance because it supports only pull-interaction, fewer data
types, or a smaller range for a QoS parameter. Moreover, stages can add or
update properties.

Because of this incremental nature of Typespecs, we do not associate a fixed
Typespec with each component, but let each pipeline component transform a
Typespec on each port to Typespecs on its other ports. That is, the component
analyses the information about the flow at one port and derives information
about flows at other ports. These Typespec transformations are the basis for
dynamic type-checking and evaluation of possible compositions.

2.4 Distribution

Any single protocol built into a middleware platform is inadequate for remote
transmission of information flows with a variety of QoS requirements. However,
different transport protocols, can be easily integrated into the Infopipe frame-
work as netpipes. These netpipes support plain data flows and may manage
low-level properties such as bandwidth and latency. Marshalling filters on either
side translate the raw data flow to a higher-level information flow and vice-versa.
These components also encapsulate the QoS mapping, translating between net-
pipe properties and flow-specific properties.

marshal network marshal

Fig. 3. Distributed Infopipe

In addition to netpipes, the Infopipe platform provides protocols and factories
for the creation of remote Infopipe components. Remote Typespec queries also
require a middleware protocol as well as a mechanism for property marshalling.
The location itself can be integrated in the type checking by adding a location
property that is changed only by netpipes. Finally, control events are delivered
to remote components through the platform.

3 Transparent Thread Management

Different timing requirements at different stages of a pipeline require asyn-
chronously operating threads. However, handling multithreading and synchro-
nization mechanisms is difficult for many programmers and frequently leads to
errors [22, 29]. But since the interaction between components in an Infopipe



framework is restricted to well known interfaces, it is possible to hide the com-
plexity of low-level concurrency control in the middleware platform. This is simi-
lar to the way in which RPC or CORBA hide the complexity of low-level remote
communication from the programmer.

While some aspects such as timing behavior need to be exposed to the pro-
grammer, as described in Section 3.1, other aspects such as scheduler interfaces,
inter-thread synchronization, and wrappers and the adaptation of implementa-
tion styles can largely be hidden in the middleware platform, as described in the
following three subsections.

3.1 Timing Control and Scheduling

Pumps encapsulate the timing control of the data stream. Each pump has a
thread that operates the pipeline as far as the next passive components up- and
downstream. Interaction with the underlying scheduler is also implemented in
these pipeline components. At setup, they can make reservations, if supported,
according to estimated or worst case execution times of the pipeline stages they
run. Moreover, they can assign and readjust thread scheduling parameters as
the pipeline runs.

From our experience with building multimedia pipelines we can identify at
least two classes of pumps. Clock driven pumps typically operate at a constant
rate and are often used with passive sinks and sources. Both pumps in Figure 1
belong to this categorie. Audio devices that have their own timing control can be
implemented as a clock-driven active sink. The second class of pumps adjusts its
speed according to the state of other pipeline components. The simplest version
does not limit its rate at all and relies on buffers to block the thread when a
buffer is full or empty. More elaborate approaches adjust CPU allocations among
pipeline stages according to feedback from buffer fill levels [27]. Another kind of
pump is used on the producer node of a distributed pipeline [5, 32]. Its speed is
adjusted by a feedback mechanism to compensate for clock drift and variation
in network latency between producer and consumer.

The choice of the right pump depends on application requirements as well as
the capabilities of the scheduler. While it is not yet clear to what extent pump
selection and placement can be automatic, pumps do hide thread creation and
scheduling mechanisms. The programmer does not need to deal with these low-
level details but can choose timing and scheduling policies by choosing pumps
and by setting appropriate parameters.

If existing pumps do not provide the required functionality, it can be cleanly
added by implementing new pumps. While a pump developer needs to deal with
threads and scheduling, the pump encapsulates threading mechanisms similarly
to the way that a decoder that encapsulates compression mechanisms. In either
case, the complexity is hidden from application programmers using the new
components.



3.2 Synchronization

The Infopipe middleware ensures synchronized access to shared data in its high-
level communication mechanisms. The component developer does not need to
deal with inter-thread synchronization explicitly, but just provides data process-
ing and event handling functions. Hence, inter-thread synchronization is based
on passing on data items and control events rather than on more error-prone
low-level primitives such as locks and semaphores.

The pipeline components are implemented as synchronized objects [4], that
is only one thread is active in one component at any time. However, threads
can be preempted in favor of threads driven by other pumps, because running
data processing functions such as video decoders non-preemptively can introduce
unacceptable delay in more time-critical components such as writing samples to
the audio device. A data processing function is never called before the previous
invocation completes or while a control event handler of the same component
is running. Control events that arrive while data processing is in progress are
queued and delivered as soon as the data processing is done. Note, however,
that control events can be delivered, while threads are blocked in a push or
pull. Hence, the programmer needs to make sure that the component is in
a consistent state with respect to control handlers when these operations are
called.

3.3 Activity Styles in Pipeline Components

In this section we discuss several styles of activity that can be used in imple-
menting pipeline components. The main distinction is between active objects
that have an associated thread and passive or passive objects that are called by
external threads [4]. We focus on the most common pipeline components with
one input and one output end. As a simple example we use a defragmenter that
combines two data items into one. The actual merging is performed by function
y=assemble(x1,x2).

The middleware platform assumes transformation components to be pas-
sive. The external interface is an item pull() operation that can be called by
downstream components and void push(item) operation that can be called by
upstream components. Which of these is used in a particular pipeline component
depends on the position of the component relative to pumps and buffers. Com-
ponents between buffer and pump operate in pull mode, components between
pump and buffer in push mode, as shown in Figure 2.

To implement the components in this passive style, push or pull must be
provided by the programmer. For the defragmenter example, the functions are
shown in Figure 4. Each enumerated groups of arrows denotes the control flow
for one call to the operation it annotates. In Figure 4b, each invocation of pull
travels all the way through the code triggering two pull calls to the upstream
pipeline component. For push in Figure 4a every other call (2 and 4) causes a
downstream push. If no output item can be produced the call returns directly.



void push(item x) {
if (saved!=NULL) {
y=assemble(saved,x);

next->push(y);

saved=NULL;

}
else

saved=x;

}

1234
item pull() {
x1=prev->pull();

x2=prev->pull();

y=assemble(x1,x2);

return y;

}

1 2

a) push-mode b) pull-mode

Fig. 4. Passive defragmenter

This example shows that the pull operation for the defragmenter can be imple-
mented more easily than push. The latter requires the programmer to explicitly
maintain state between two invocations, which is done in this example using
the variable saved. Conversely, for a fragmenter, push would be the simpler
operation.

while (running) {
x=prev->pull();

...

next->push(y);

}

while (running) {
x=prev->pull();

...

next->push(y);

}

1

8

2

7

3

6

4

5

Fig. 5. Synchronous Threads

While components that have been built as active objects with a thread of
their own do not match the style of component usage in the pipeline, there
are several reasons for supporting them. One reason is the reuse of code from
older pipeline implementations that used an active object model or implemented
each stage as a process. Another reason is the flexibility the model provides. The
programmer can freely mix statements for sending and receiving data items as is
most convenient for a given component. Finally, more programmers are familiar
with the active model than with the passive model.

The way to integrate these active components in the facade of a passive
component is to use coroutines, that is, threads interacting synchronously in a
coroutine set. These coroutines merely provide a suspendable control flow, but
are not a unit of scheduling. The communication mechanism between them does
not buffer data; instead the activity travels with the data. All but one coroutines
in a given set are blocked at any time. Figure 5 gives an example of two coroutines
interacting in this way in push mode. An item is pushed into the first component
deblocking it from a pull call (1). It then processes the data and pushes the
result to the next component (2), which deblocks from its pull (3). It again
does some processing and a downstream push (4). When this call returns (5),



the control flow loops back to the pull call blocking the second component (6)
and deblocking the first component from its push (7). Finally the control flow
reaches a pull call again and returns to the upstream component (8).

Note that now prev->pull() and next->push() cannot be direct method
invocations to another component. Instead, get() or put() methods are called,
which are provided by the platform. They either are mapped to a push or pull
call or perform a coroutine switch depending on the implementation of the called
object. For simplicity and uniformity, we nonetheless maintain the same notation
in all examples.

while (running) {
x1=prev->pull();

x2=prev->pull();

y=assemble(x1,x2);

next->push(y);

}

1234 1 2

a) push-mode b) pull-mode

Fig. 6. Active defragmenter

Figure 6 shows an active implementation of the defragmenter example. Here
again, each enumerated group of arrows denotes the control flow for one push

call (in Figure 6a) or one pull call (in Figure 6b) to the component. When
operating in push mode, upstream pull calls block the defragmenter and each
invocation executes from pull to pull. As an exception, the first push call
invokes the main function of the component and enters its loop. The pull mode
works analogously.

while (running) {

x=this->pull();

next->push(x):

}

a) Push-mode wrapper for pull

while (running) {

x=prev->pull();

this->push(x):

}

b) Push-mode wrapper for push

Fig. 7. Coroutine wrappers

The passive implementation shown in Figure 4 has a major drawback. Com-
ponents have to provide both a push and a pull operation for the same function-
ality. Alternatively, components could provide only one of these operations, but
then could be used in either pull or push mode only, making building the pipeline
more difficult. These restrictions can be avoided with middleware support that
allows push functions to be used in pull mode and vice-versa. Our Infopipe mid-



item pull() {
x1=prev->pull();

x2=prev->pull();

y=assemble(x1,x2);

return y;

}

1234
void push(item x) {

if (saved!=NULL) {
y=assemble(saved,x);

next->push(y);

saved=NULL;

}
else

saved=x;

}

1 2

a) push-mode b) pull-mode

Fig. 8. Passive defragmenter, used other way

dleware generates glue code for this purpose and converts the functions into
coroutines as illustrated in Figure 7. Figure 8 shows the resulting control flow
for the defragmenter example.

Note that the external activity is the same in Figures 4, 6, and 8. The number
of incoming and outgoing arrows is the same for each invocation and for all three
implementations. Every other push triggers a downstream push in part a of the
figure and every pull triggers two upstream pulls in part b.

There is one more way of implementing components that produce exactly one
outgoing packet for each incoming packet. In this case, a conversion function can
be provided: item fct(item x). While the functionality is restricted by this
one-to-one mapping, this type of component can easily be used in pull as well
as push mode. The glue code for the respective functions is simple:

void push(item x) {next->push(fct(x));}

item pull() {return fct(prev->pull(x));}

a)

producer consumer

e)

consumer producer

b)

function function

f)

main main

c)

consumer consumer

g)

consumer main

d)

main function

h)

consumer producer

Fig. 9. Pipelines and coroutines



While we have used a defragmenter as an example, the different ways of
implementing components that we have described also apply to fragmenters, de-
coders, filters, and transformers. By supporting all these styles, the introduction
of coroutines provides flexibility in developing and reusing components, but for
efficiency it is nonetheless important to avoid context switches and use direct
function calls whenever possible. Hence, the framework automatically detects
which components can share a thread and for which ones additional coroutines
are needed. Figure 9 shows several pipelines between a passive source and a
passive sink with the associated threads depicted as dashed boxes. The same
applies to pipeline sections between two buffers. Altogether, there are four styles
of components. Active object implementations provide a tread-like main func-
tion. Passive objects are consumers implementing push, producers implementing
pull, or are based on a conversion function. In push mode, consumers and func-
tions are called directly, and in pull mode producers and functions are called
directly. Otherwise, a coroutine is required. In each case, all threads operate
synchronously as one coroutine set and the pump controls timing and schedul-
ing in all components.

The behavior of components with more than two ports is more complex and
supported interaction styles depend on their functionality. Consider a switch with
one in-port and two out-ports. Incoming packets are routed to one of the out-
ports depending on the data in the packet. Now consider this switch in pull-style,
that is, packets are pulled from either out-port. A pull request arrives at out-port
1 triggering an upstream pull-request at the in-port. Suppose that the incoming
packet is routed to out-port 2. Now there is a pending call without a reply packet
and a packet nobody asked for. Suspending the call would require buffering
potentially many requests on out-port 1 and buffering packets at out-port 2
until all packets at out-port 2 are pulled. This approach leads to unpredictable
implicit buffering behavior and complex dependencies. To avoid these problems
the Infopipe framework generally allows only one passive port in a non-buffering
component. However, there are exceptions. For instance a different type of switch
may route the packet not according to the value of the packet, but based on the
activity. A pull on either out-port triggers an upstream pull and returns the item
to the caller. In this case, the out-ports must both be passive and the in-port
must be active. This component could not work in push-style.

4 Implementation

The developement of the Infopipe middleware described in Section 2 is still in
progress. We have implemented the activity-related functionality discussed in
the previous section and part of the Typespec processing. A local video player
has been built on top of it.

The platform is built on a message-based user-level thread package [11,12,14]
implemented in C++. Each thread consists of a code function and a queue for
incoming messages. Unlike conventional threads, the code function is not called
at thread creation time but each time a message is received. After processing



a message, the code function returns, but the thread is only terminated when
indicated by the return code. In this way, code functions resemble event han-
dlers, but may be suspended waiting for other messages or may be preempted.
Threads work like extended finite state machines. Inter-thread communication
is performed by sending messages to other threads, either synchronously if there
remains nothing to do for a thread until a reply is received, or asynchronously
whenever a reply is not needed immediately, or no reply is required at all. Net-
work packets and signals from the operating system are mapped to messages by
the platform allowing all types of events to be handled by a uniform message
interface.

The Infopipe platform creates a thread for each pump. If there is no need
for coroutines in the pipeline section a pump controls, the thread calls the pull

functions of all components upstream of the pump, then calls push with the
returned item to the components downstream of the pump, and finally returns
to the pump, which schedules the next pull. This case applies to the configura-
tions a), b), and c) in Figure 9. For configurations d), g), and h) there is a set
of two coroutines and for configurations e) and f) there is a set of three corou-
tines associated with the pump. If such coroutines are needed, each of them is
implemented by an additional thread of the underlying thread package. Their
synchronous interaction is implemented on top of it.

Infopipe push and pull calls between coroutines and control events are
mapped to asynchronous inter-thread messages. Although push and pull as
described in Section 3 are blocking, synchronous messages cannot be used, be-
cause then the thread would not be responsive to control events. Instead, the
thread blocks waiting for either a control message or the data reply message.
A control event is dispatched to the appropriate handler and then the thread
blocks again. After receiving the reply message the code function of the thread
is resumed. In this way the middleware implementation establishes synchronous
communication of data items between coroutines, while control events can be
handled even if the component is blocked in a pull or push. Moreover, because
a set of pipeline components that communicate directly via function calls share a
thread, each thread needs to internally dispatch data and events to the respective
components.

The thread package supports scheduling control by attaching priorities to
threads as well as by attaching constraints to messages. In the latter case, the
effective priority of a thread is derived by the scheduler from the constraint of
the message taht the thread is currently processing or, if the thread is waiting
for the CPU, on the constraint of the first message in its incoming queue. If
no constraint is specified for the message, the priority statically assigned to the
thread is used. The package provides a priority inheritance scheme that modifies
this behaviour if needed for avoiding priority inversion, for instance, when a
thread receives a message with a higher priority than that of the message it
currently processes.

In the Infopipe framework, message constraints are assigned by the pumps.
Messages between coroutines inherit the constraint from the message received



by the sending component, applying the constraint to the entire coroutine set.
In this way, the pump controls the scheduling in its part of the pipeline across
coroutine boundaries.

The component developer indicates his choice of activity style by inherit-
ing from the appropriate base class and by overriding a run method for an
active object, a push method for a consumer, a pull method for a producer,
and a convert method for a function style component. Additionally, a handler
for control events needs to be provided. For pipeline components that change
the Typespec of flows the inherited implementation of the type query must be
overridden.

Pipeline setup is configured by an high-level C++ interface. Composition and
start of a simple video player is basically implemented by

mpeg_file source("test.mpg");

mpeg_decoder decode;

clocked_pump pump(30); // 30 Hz

video_display sink;

source>>decode>>pump>>sink;

send_event(START);

If the components were not compatible, the composition operator >> would throw
an exception. The last line starts the pipeline by broadcasting a control event,
to which the pump reacts. This simple example does not compensate for jitter
caused by varying decoding times.

A context switch between the user level threads takes about 1 µs; the time
for a mere function call is two orders of magnitude shorter. Hence, the approach
that we have presented in which threads and coroutines are introduced only when
necessary is mostly important for pipelines that handle many control events or
many small data items such as a MIDI mixer. For these applications, and if
kernel-level threads are used, allocating a thread for each pipeline component
would introduce a significant context switching overhead.

5 Related Work

Some related work aims at integrating streaming services with middleware plat-
forms based on remote method invocations such as CORBA. The CORBA tele-
coms specification [21] defines stream management interfaces, but not the data
transmission. Only extensions to CORBA such as TAO’s pluggable protocol
framework [16] allow the efficient implementation of audio and video applica-
tions [20].

One approach for adding quality of service support to CORBA has been
introduced by the QuO architecture [31]. It complements the IDL descriptions
with specifications of QoS parameters and adaptive behavior in domain specific
languages. From these declarative descriptions so called delegates are generated
and linked to the client application in a similar way to that in which stubs



are generated from an IDL. QuO, however, has not been built for streaming
applications and interaction is based on remote method invocations.

A model for specifying flow quality and interfaces has been proposed as part
of the MULTE project [25]. Compatibility and conformance rules are used for
type checking and stream binding. This model is more formal, but less flexible
than our current approach using Typespecs.

Similarly to Infopipes, the Regis environment [17] separates the configuration
of distributed programs from the implementation of the program components.
The Darwin language is used to describe and verify the configurations. Com-
ponents, which execute as threads or processes, are implemented in C++ with
headers generated from Darwin declarations. While the Infopipe implementation
described here also uses C++ for pipeline setup, there are plans for developing a
Infopipe Composition and Restructuring Microlanguage [24].

Open middleware platforms and communications frameworks such as Open-
ORB [3] and Bossa Nova [13] offer a flexible infrastructure that supports QoS-
aware composition and reflection. While these frameworks do not provide specific
streaming support, they can serve as a basis for building information flow mid-
dleware.

Event-based middleware such as Echo [6, 10] provides a type-safe and effi-
cient way of communicating data and control information in a distributed and
heterogeneous environment. A higher-level Infopipe layer can also be built on
top of these platforms.

Ensemble [30] and Da CaPo [23] are protocol frameworks that support the
composition and reconfiguration of protocol stacks from modules. Both provide
mechanisms to check the usability of configurations and use heuristics to build
the stacks. Unlike these frameworks for local protocols, Infopipes use a uniform
abstraction for handling information flow from source to sink, possibly across
several network nodes.

The x -Kernel protocol architecture [9] associates processes with messages
rather than protocols. In this way, messages can be sheperded through the entire
protocols stack without incurring any context switch overhead. We support this
thread-per-packet approach for Infopipe components that are implemented in
a way that allows direct function calls, while the developer may nevertheless
choose to program in an active style if this simplifies the program structure.

As a more general abstraction, the Scout operating system [19] combines
linear flows of data into paths. Paths expose invariants and allow components on
the path to exploit this non-local information. This general principle is applicable
to many aspects of information flows. For instance, in Scout, paths are the unit of
scheduling similarly to sections of an Infopipe between two passive components,
which are scheduled by one pump.

For constructing streaming applications from components, there are also
free and commercial frameworks [18, 26, 28]. GStreamer and DirectShow sup-
port setup of local pipelines without timing and QoS control. They provide
services to automatically configure components for the conversion of data for-
mats. GStreamer supports component implementations in push or active style,



but does not have pumps to encapsulate timing control. RealSystem is a dis-
tributed framework that allows file source components to be used in servers as
well as in local clients. The actual transmission, however, is hardcoded into their
server and may only be configured by adaptation rules.

6 Conclusions

Infopipes provide a framework for building information flow pipelines from com-
ponents. This abstraction uniformly extends from source to sink. The application
controls the setup of the pipelines, configuring their behavior based on QoS pa-
rameters and other properties exposed by the components.

The Infopipe middleware manages concurrent activity in the pipeline and en-
capsulates synchronization in high-level communication mechanisms. To specify
scheduling policies the application programmer needs only to choose appropri-
ate pumps, which interact with the underlying scheduler and control the actual
timing. Components can be implemenented as active objects, passive consumers,
passive producers, or functions, whichever is most suitable for a given task and
exisiting code can be reused regardless of its activity model. The Infopipe mid-
dleware transparently handles creation of and communication between threads
and coroutines. This is very much like the way in which CORBA transparently
handles marshalling and remote communication.

We have implemented most middleware functionality for local pipelines. Us-
ing this platform, we have built several video processing components and con-
figured a simple video player application. The supported functionality is being
extended by distributed setup, resource reservations, and feedback mechanisms.
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