
Object Structure in the Emerald System

Andrew Black, Norman Hutchinson, Eric Jul, and Henry Levy

Department of Computer Science, FR-35
University of Washington,
Seattle, Washington 98195

Emerald is an object.based language for the construction of distributed applications. The principal features of
Emerald lnehtde a uniform object model appropriate for programming both private local objects and shared remote
objects, and a type system that permits multiple user.defined and compiler-defined implementations. Emerald
objects are fully mobile and can move from node to node within the network, even during an invocation. This paper
discusses the structure, programming, and inq~lementation of Emerald objects, and Emerald's use of abstract types.

1. Introduction

Distributed systems are inherently more complex to

program than non-distributed systems. In an effort to

reduce this complexity, much recent work has focused on

toois that assist in the construction and programming of
distributed systems and applications. Examples include
message-based operating systems such as Accent [22] and
V [12], remote procedure call facilities such as Xerox RPC
[5], and languages such as Argus [20] and the Eden
Programming Language (EPL,) [7].

There three approaches to distribution represent a
succession of abstractions. Message-based systems
require the programmer to deal with the details of locating
message targets, packaging messages, and with

Permission to copy without fee all or part of this material b granted provided
that the copies are not made or distributed for direct commercial advantage,
the ACM copyright notice and the title of the publication and its date appear.
and notice is given that copying is by permission of the Association for
Computing Machinery. To copy otherwise, or to republish, requires a fee and/
or specific permission.

© 1986 ACM 0-89791-204-7/86/09(O-0078 75¢

asynchronous communication. Remote procedure call

hides the details of packaging and process control and

presents the programmer with a standard procedure call

paradigm; however the programmer is responsible for

locating the target of the call. Object-based languages

such as Argus and EPL provide location-independent
invocation of distributed objects; location is implicit. As
one moves along this spectrum from message-based
systems to distributed languages, flexibility and control are
traded for simplicity and ease of programming.

We have designed and are prototyping an object-based
language called Emerald whose goal is to simplify
distributed programming through language support while
also providing acceptable performance and flexibility, both
locally and in the distributed environment. The notion of
object is fundamental to Emerald. We believe that objects
are an excellent way to structure a distributed system
because they encapsulate the concepts of process,
procedure, data, and location. In Emerald, objects are the
units of programming and distribution, and the entities
between which communication takes place. However, we

This work was supported in part by the National Science Founda-
tion under grants MCS-8004111 and DCR-8420945, by
Kobenhavns Universitet (the University of Copenhagen), Den-
mark under grant J.nr. 574-2,2, and by a Digital Equipment Cor-
poration External Research GranL

78 OOPSLA '86 Proceedings September 1986

do not believe that all aspects of distribution should be
hidden from the programmer, and therefore the Emerald
language has explicit notions of location and mobility.

In the following sections we describe Emerald objects
and the Emerald type system. Emerald is strongly typed
and has been carefully designed so that types may be
resolved statically (i.e., at compile time). Static typing
permits the most efficient code to be generated, at some
loss in flexibility. If this cost is significant, the
programmer can explicitly delay type checking until run
time. This facility might be used, for example, when
invoking an unknown object obtained from a file service.

2. Emera ld Objects

All entities in the Emerald system are objects. This
includes small entities, such as Booleans and integers, and
large entities, such as directories and compilers. While
different objects may be implemented with different
techniques, all objects exhibit uniform semantics. An
object can be manipulated only through invocation; no
external access to an object's data is permitted. Objects
can be invoked remotely and can move from node to node.

Each Emerald object has four components:

1. A name, which uniquely identifies the object within
the network.

2. A representation, which consists of the data stored in
the object. The representation of a programmer-
defined object is composed of a collection of
references to other objects.

3. A set of operations, which define the functions and
procedures that the object can execute. Some
operations are exported and may be invoked by other
objects, while others may be private to the object.

4. An optional process, which operates in parallel with
invocations of the object's operations. An object with
a process has an active existence and executes
independently of other objects. An object without a
process is a passive data object and executes only as a
result of invocations.

An Emerald object also has several attributes. An object
has a location that specifies the node on which that object
is currently resident. Emerald objects can be defined to be
immutable; this simplifies sharing in a distributed system,
since immutable objects can be freely copied.
Immutability is an assertion on the part of the programmer

that the abstract state of an object does not change; it is not
a concrete property and the system does not attempt to
check it.

Emerald supports concurrency both between objects
and within an object. Within the network many objects
can execute concurrently. Within a single object, several
operation invocations can be in progress simultaneously,
and these can execute in parallel with the object's internal
process. To control access to variables shared by different
operations, the shared variables and the operations
manipulating them can be defined within a monitor
[10, 16]. Processes synchronize through builtin condition
objects. An object's process executes outside of the
monitor, but can invoke monitored operations should it
need access to shared state.

Each object has an optional initially section - a
parameterless operation that executes exactly once when
the object is created and is used to initialize the object
state. When the initially operation is complete, the
object's process is started and invocations can be accepted.

3. Abstract Types

Central to Emerald is the concept of abstract type. An
abstract type defines a collection of operation signatures,
that is, operation names and the types of their arguments
and results. All identifiers in Emerald are typed: the
programmer must declare the abstract type of the objects
that an identifier may name. An abstract type is
represented by an Emerald object that specifies such a list
of signatures. For example, if the variable MyMallbox is
declared as:

var MyMailbox : AbstractMaiibox

then any object that is assigned to MyMailbox must
implement (at least) the operations defined by
AbstractMallbox.

We say that the abstract type of the object being
assigned must conform to the abstract type of the
identifier. Conformity is the basis of type checking in
Emerald. Informally, a type $ conforms to a type T
(written S ¢, 7) if:

1. 5 provides at least the operations of T (S may have
more operations).

2. For each operation in T, the corresponding operation in
S has the same number of arguments and results.

September 1986 00PSLA ~6 Proceedings 79

3. The abstract types of the results of ,~'s operations
conform to the abstract types of the results of T's
operations.

4. The abstract types of the arguments of 7"s operations
conform to the abstract types of the arguments of S's
operations (i.e., arguments must conform in the
opposite direction).

Conformity" is defined formally in [8]; i t is similar to type
compatibifity in Owl [24].

The relationship between abstract types and object
implementations is many-to.one in both directions. A
single object may conform to many abstract types, and an
abstract type may be implemented by many different
objects. Although Emerald requires that the abstract type
of each identifier be manifest, the type of the object that is
to be assigned to an identifier may not be known until run
time. In such a case, the conformity check will be
performed at run time. However, very often enough
information will be available at compile time for
conformity to be checked statically.

It is important to note the difference between type
conformity in Emerald and subclasses in Smalltalk [14]. In

Emerald. the relationship between an object and the
abstract type(s) that it implements is one of shared
interface. A n object supports a superset of the operations
defined by its abstract types and each the supported
operations must conform to the corresponding operations
in the abstract types. In Smalltalk, tile relationship
between a subclass and its superclass is one of shared
implementation. A subclass is free to redefine the
signatures of the messages that it receives, but it
necessarily shares the superclass's representation (instance
variables) and typically shares many methods as well.

We expect that Emerald's strong typing will have
several benefits. First is early detection and notification of
programming errors. In Smalltalk, errors of the "message
not understood" variety can be generated only at run time.
We would like to detect many such errors through compile
time type checking. In cases where we cannot completely
type check an assignment at compile time, our run-time
messages can be more explicit, e.g., "object Q does not
conform to abstract type P" . The second benefit is
increased performance. In most cases, compile time
conformity checks permit us to do assignment and
invocation without run time type checking. In some cases
a mn time check is required; however, the check is made
on assignment, and once it succeeds subsequent

invocations can execute without further checking. Finally,
in many cases compile time type information allows us to
generate very efficient invocation code. This is described
in more detail in Section 8.

4. Objec t Crea t ion

As described above, an identifier in Emerald programs has
an abstract type, and an object must conform to that
abstract type to be named by the identifier. However,
Emerald objects do not require a Class object for their
creation. In most object-based systems, the programmer
first specifies a class object that defines the structure and
behavior of all its instances. The class object also
responds to new invocations to make new instances.

In contrast, an Emerald object is created by executing
an object constructor. An object constructor is an Emerald
expression that defines the representation, the operations,
and the process of an object. For example, suppose the
Emerald program in Figure 4.1 is executed. This results in
the creation of a single object. If we wished to create
more oneEntryDirectories we would embed the object

¢onst myDirectory - - object oneEntryDirectory
export Store, Lookup
monitor

vat name : Strin&
vat AnObject : Any

operation Store [n : String, o : Any]
nartt~ck...n

AnObject ~-- o

end Store

function Lookup [n : String ! ~ [o : Any/
Ifn - nam~

then o *-- AnObject
else o ¢-- nil

end If
end Lookup

Initially
name ~-- nll
AnObjoct ~ nll

end Initially

end monitor
end oneEntryDirectory

Figure 43: A oneEntryDirectory Object

80 00PSLA '86 Proceedings September 1986

const myDirectoryCreator - .
Immutable object on~EmryDirectoryCreator

export Empty

const OED - - type OED
operation Store [Swin&. Any]
function Lookup [String] --~ [Any]

end OED

&

12

16

operation Empty ~ [result : OED I
resldt (-- object oneEntryDirectory

export Store, Lookup

monitor
var name : String
var AnObject : Any

operation Store [n : SWin&, o : Any]
l~#~qGc..-n

AnObject ¢.- o
end Store

20

24

28

function Lookgp [n : Strin&] --) I o : Any]
i f n - nan~

then o (-- AnObject
else o ¢-- nU

end If
end Lookup

Initially.
name ~- nU
AnObject ¢- nil

end Initially

end monitor
end oneEntryOirectory

end Empty
end m~Emr y D ir ectoryC reat or

Figure 4.2: A oneEntryDirectory Creator

constructor of Figure 4.1 in a context in which it might be
repeatedly executed, such as the body of a loop or
ol~radon. This is illus~rated in Figure 4.2. In this
example, we construct the single object specified by the
outermost object constructor. That object exports an
operation called Empty; invoking the Empty operation
executes the object constructor on lines 9 to 29. creating a
new object that conforms to abstract type OEDt,
Conceptually, each object so created possesses its own
copy of the code for Store and Lookup, as in SW2 [18]. In

t In order to declare Empty, it is also necessary to declare a new
abstract type OED. This is avoided in a language liko Russell [9]
by making the comp/Jer infer the types of operaLion results.

practice, there will be at most a single copy of the code on
each node, and that copy will be shared.

The notion of object creator can be extended to as

many levels as the programmer requires. For example,

consider the builtin object Array. Array exports an of
operation that expects an abstract type argument, as in

Array.of[inte&er] .

The result of this invocation is an object that exports an

operation Create of zero arguments. When Create is

invoked, as in

Array.of [Inte&er].Cr ecce

the result is an array object, i.e., an object that exports

operations like setEler~nt, getEiement, and upperbound.

In a similar way, one could define a typed
OneEntryDirectory creator creator that is parameterized by

the type of the directory entry as shown in Figure 4.3.

const myTypedOirectOryCreatorCreator - -
IIt~Ml~Ntbkl.Ob~ typ~wecloryCreatorCreator
export of

4 function of [Elem~m'J'ype : AbswactType] -.*
[result : DirectoryCreatorTyl~]

where
OED - - type OED

8 operation Store [String, ElemmtType]
function Look~ [Strin&] -~ [£1em~TYi~]

end OED
DirectoryCreatorType - - type T

12 operation Empty --~ [result : OF.D]
end T

end where

16

20

result ¢-.- object typedDirectoryCreator
export empty

operation Empty --, [result : OED]
result ¢-- object oneEntryDirectory
export Store, Lookup

24
end oneF~ryDir~ctory

end E~Auty
end tyl~dDirector~reator

end of
end typedDirectotyCreatorCreator

Figure 43: A typed Directory Creator Creator

Sep(ember 1986 OOPSLA ~6 Proceedings 81

5. Abs t rac t Types as Objects

Abstract types are objects that obey a particular invocation
protocol: they export an operation (without arguments)
called get$ignature that returns a Sigsmtare. In other
words, an abstract type is an object that conforms to the
following abstract type:

Immutable type abstr~:tTypc
function tetSi#nat~e - , I Si#nmwe i

end ahstracITyp¢

Conversely, any object that conforms to the above type
may be treated as an abstract type. For example, if we add
the following function definition to Figure 4.2,

function ItetSi&natur, -.~ [result : $i&nalwe]
result ¢.- OED

end letSisnature

we may use oneEmryDirectoryCreator as an abstract type.
We may now write

vat aDir : myDire.cloryCrcalor
aDir ¢-. myDire~toryCrcator.F.mpty

rather than

v•r aOir : AbstractDirectory
aDir ~ myOircctoryCrt.ator.Empty

Given the dual role of myDirectoryCreawr, we see that it
may have been appropriate to give it a less descriptive
name. Similarly, we may define the primitive object Array
such that the object returned by the of operation may he
used as an abstract type~:. This allows us to write

v•r a: Array.ofllntqer]
a ,-- Array.ofllnteter].Creatt

6. Suppor t ing M u l t i p l e hnp lemen ta t ions

The most important goal of the Emerald design is the
support of a uniform object model. The semantics of all
objects, whether large or small, local or distributed, should

be independent of the implementation technique. This
uniformity should hold both for the progranuner who
builds objects and types, and for the application that
invokes them.

The best example of a system with a uniform object
model is Smalltalk. One characteristic that makes this
possible is that Smalltalk is not distributed. In a

t We previously stated that the abstract type of every identifier in
Emerald must be manifest. The expression Array.ofllntes~r] is
manifest since the target (Array) is immutable, the operation (of)
is • function, and the argument (Ime&er) is immutable. The ex-
pression can therefore be evaluated by the compiler.

distributed environment, the different implementation
techniques that must be used for local and remote
invocation often lead to the use of different abstractions
for local and remote objects. For example, in the MIT
Argus system [21], there are two different entities: Argus
Guardians [20], which represent the abstraction of a node,
and CLU Clusters [I9], which represent local objects
contained inside Guardians. In the Eden Programming
Language [7], used to build applications on the Eden
system [4], large network-wide entities are written as Eden
objects, while local entities are defined using Concurrent
Euclid data structures [17].

The problem with the two model approach is that the
programmer must decide which model to use. Because the
two models are semantically distinct, once an object is
implemented in one style it must be rewritten for use as
the other. For example, i f we build an Eden tree object in
EPL, and later need a tree for internal use within another
object, we must either design and code a different tree, or
suffer the inefficiencies of the more general

implementation.

In Emerald, all objects are coded using the single
object definition mechanism. At compile time, the
Emerald compiler chooses among several implementation
styles for the object, picking one that is appropriate to the
object's use. Different implementations vadeoff
representation efficiency and invocation overhead for
generality. Three different implementation styles are used.

1. Global objects are those that can be moved within the
network and can be invoked by other objects not
known at compile time (in other words, references to
them can be exported). These objects are heap
allocated by the Emerald kernel and are referenced
indirectly. An invocation may require a remote
procedure call.

2. local objects are local to another object (i.e., a
reference to them is never exported from that object).
They are heap allocated by compiled code. These
objects never move independently of their enclosing
object. An invocation may be implemented by a local
procedure call or by inline code.

3. Direct obj, cts are local objects except that their data
area is allocated directly in the representation of the
enclosing object. These are used mainly for builtin
types, structures of built in types, records, and other
simple objects whose organization can be deduced at
compile time.

82 OOPSLA '86 Proceedings September 1966

Thus, Emerald is similar to EPL and Argus, in that
there are several different implementation styles with
varying performance characteristics. However, unlike
these languages, the implementation differences are
hidden from the programmer. The compiler chooses the
best implementation based on compile time information.
In many cases, the compiler c~n determine the
implementation of local objects and can use this
information for further optimizations. If the compiler
knows only the abstract type then it must assume the more
general object invocation mechanism.

7. Distr ibution Suppor t

Emerald is designed for the construction of distributed
applications. As previously stated, we believe that objects
are an excellent way of structuring such programs because
they provide the units of processing and distribution. This
belief has been confirmed by our experience with
distributed applications in Eden [1-3, 6].

The tendency of many distributed systems is to hide
distribution from the programmer. For example, in Xerox
RPC [5], remote procedure calls were added to Cedar
Mesa. In so far as it was possible, remote procedure calls
were designed to be semantically identical to local
procedure calls. This is obviously a desirable property and
is what makes RPC so attractive; programs can be written
and debugged on a single node using local procedures and
then easily distributed.

Emerald supports the same notion with object
invocation. All objects are manipulated through
invocation, and all invocations are location independent;
it is the responsibility of the run-time system to locate and
transfer control to the target object. Remote invocation
achieves the same benefits as remote procedure call.

While it is crucial that invocation be location
independent, it is not necessary that an object's location be
invisible. Many applications may choose to ignore
distribution, but others may wish to benefit from location
dependence. For example, a replication manager may
wish to distribute object replicas on different nodes, or two
applications may wish to be co-located during periods of
high activity. Applications that are concerned with
distribution may wish to discover and modify objects'
locations, but they still benefit from location-independent
invocation.

For these reasons, the Emerald language includes a
small number of location primitives. Basic to these
primitives are node objects, which are the logical location
entities in the system. A node is an abstraction of the
concept of a physical machine, but it is possible for several
node objects to exist on a single machine. (in fact, in our
current implementation, a node is really an address space

in which objects are contained.) An object can:

i. Locate another object, i.e., determine on what node it
resides.

2. F/x another object at a particular node.

3. Unfix an object, i.e., make it movable following a fix.

4. Move an object to another location.

In all cases, location is specified through a reference to a
target object; the location thus described is the node on
which the target currently exists. The target can be an
explicit node object, or any other object.

The choice of parameter passing semantics is crucial to
both remote procedure call and object invocation. In an
object-based system, the obvious choice is cail-by-object-

reference. Since the value of a variable is a reference to
an object, it is that reference (the object name) that is
passed in an invocation. This presents a potentially
serious performance problem on distributed systems; any
invocation by a remotely invoked object of its parameters
is likely to cause another remote invocation. For this
reason, systems such as Argus have required that
parameters to remote calls be passed by value, not by
reference [15].

Because Emerald objects are mobile, it may be
possible to avoid many remote references by moving
parameter objects to the site of the callee. Whether or not
this is worthwhile depends on the size of the parameter
object, the number of active invocations, and the number
of invocations to be issued by the called object. We
expect that parameter objects will be moved in two cases.
First, based on compile-time information, the Emerald
compiler may decide to move an object along with an
invocation. For example, small immutable objects may be
copied cheaply and are obvious candidates. Second, the
programmer may decide that an object should be moved
based on knowledge about the application. To make this
possible, Emerald supports a parameter passing mode that
we call call-by-move. A call-by-move parameter is passed
by reference, as is any other parameter, but at the time of
the call it is relocated to the destination site. Following the

September 1986 OOPSLA '86 Proceedings 83

call i t is returned, unless it is a copy of an immutable
object, in which case it is garbage collected.

Call-by-move is a convenience and a performance
optimization. The move could be done explicitly with the
move primitive, but that would require more explicit code
and would not allow packaging of parameter objects in the
same message as the invocation. While call-by-move co-
locates the parameter with the target object, it increases
the cost of the call and may cause extra remote references
from the call's initiator. One of our goals is therefore to
experiment with various policies for using this parameter
passing mechanism.

8. Implementa t ion Aspects

The Emerald system is being prototyped on a small
network of DEC MicroVAX !1 workstations connected by
a ten Megabit/s Ethernet. The system runs on top of
Berkeley Unix. Using Unix has some performance
consequences, particularly in inter-machine
communication; however, it has litde impact on
performance within a node.

Emerald is implemented in two closely related parts,
the Emerald compiler and the Emerald kernel. An
Emerald node is a single Unix address space in which the
kernel and all objects located on that node execute.
Processes within objects are lightweight for fast context
switching and invocation. Processes and monitors are
implemented as in Concurrent Pascal [11]. Protection is
provided by the compiler, as in Xerox Mesa/Pilot [23].

As previously described, objects can be implemented
in several ways. Direct objects are supported directly
("inline") within other objects and =re invisible to the
kernel Other objects are created by kernel calls and
supported by kernel data structures.

To support remote referencing and mobility, object
references must be location independent. Since direct
objects are compiled inline or allocated direcdy in
invocation records, they can be referenced by offset within
the object or data structure. Al l other objects are
referenced by the address of a node-local object
descriptor. The object descriptor contains the object's
unique ID, a location hint i f the object is remote, and a
pointer to its data area, process, and code i f the object is
locally resident An object descriptor must exist on a node
as long as any references to the corresponding object
remain on that node. Object descriptors are heap allocated

by the kernel and garbage collected.

Each node also has an object table that contains an
entry for every remotely referable object on that node.
The object table is used to determine if an object exists on
a node, and if so to provide the address of its object

descriptor.

Because an object reference is the address of an object
descriptor, references are machine-dependent and must be
translated when an object moves. When the kernel moves
an object, it sends along a mapping of object descriptor
addresses to object IDs. On the receiving node, new
object descriptors are allocated as needed and the object
references are modified to point to them. On the sending
node, the object descriptor for a moved object is modified
to indicate the object's new location. The location is
treated as a hint; we are using a location protocol based
on forwarding addresses [13] supplemented by a reliable
broadcast that is used when forwarding addresses are lost
(due to crashes).

To help the kernel in finding references that need to be
translated, the compiler generates templates that describe
the structure of each objecL Code and templates are stored
in kernel structures called concrete types. One concrete
type exists for each object constructor. They are
immutable, and copies of them may exist on many nodes.
When an object is moved to another node, the concrete
type is not sent along; it is requested by the target node
only i f needed.

Locating the code for an invoked operation is
simplified by the Emerald type system. The abstract type
of a variable specifies the operations that can be performed
on the object i t names. At run time, the variable
references an object with a specific concrete type. Even
though the object may have more operations than the
abstract type, the additional operations cannot be invoked.

The data structure used to locate operations is called an
Abstract-Concrete vector. We associate with each
variable a vector with one entry for each operation defined
by its abstract type. The contents of the entry is the
address of the corresponding procedure entry point in the
concrete type. On invocation, a simple indexing operation
produces the address of the procedure to call.

When an assignment is made, the vector may have to
be changed if the new object is implemented by a different
concrete type. The compiler generates code to perform
this change if it cannot tell the concrete type of the object

84 OOPSLA '86 Proceedings September 1986

to be assigned. Note that an Abstract-Concrete vector
must exist for every pair <abstract type, concrete type>,
but these vectors can be shared by all variables (on the
same node) that have the same abstract/concrete binding.

9. Conclusions

The goal of Emerald is to support the construction of
object-based distributed programs while providing
excellent performance for local and private objects.
Emerald's novel features include its single object model
used for both small private objects and large mobile
objects, its abstract type system that permits static type
checking while allowing multiple implementations, and its
explicit notion of location.

Languages like Smalltalk rely heavily on the concept
of Class. However, Classes have at least three functions:
they generate instances, they act as a repository for the
code of those instances, and (through the inheritance
hierarchy) they provide a classification scheme for
instances. Emerald allocates these functions to separate
mechanisms: objects are created by explicit constructors,
code sharing is managed by the kernel, and abstract types
provide a classification scheme that is independent of an
object's implementation.

We have been designing Emerald for over a year and
are now building a prototype implementation. We
currently have a printitive single-node kernel and a

compiler capable of compiling simple Emerald objects
into VAX machine code. Early performance tests indicate
that we can execute a local invocation in approximately
the same time as that required by a comparable calling
sequence using the VAX Calls instruction, and a process
context switch in about seven times the Calls time.

References

[1] G. Almes and C. Holman, "Edmas: An Object
Oriented Locally Distributed Mail System",
Technical Report no. 84-08-03, December 13, 1984.

[2] G.T. Alines, A. P. Black, C. Bunje and D. Wiebe,
"Edmas: A Locally Distributed Mail System",
Proceedings of the Seventh International
Conference on Software Engineering, Orlando,
Florida, March 1984.

[3] O. Alines and C. Holman, "The Eden Shared
Calendar System", Technical Report 85-05-02,
Department of Computer Science, University of

Washington, June 22, 1985.

[4] G.T. Almes, A. P. Black, E. D. Lazowska and J. D.
Noe, "The Eden System: A Technical Review",
IEEE Transactions on Software Engineering SE-I I,
1 (January 1985), 43-59.

[5] A.D. Birreli and B. J. Nelson, "Implementing
Remote Procedure Calls", ACM Transactions on
Computer Systems 2, 1 (February 1984), 39-59.
Presented at the Ninth ACM Symposium on
Operating System Principles October, 1983.

[6] A.P. Black, "Supporting Distributed Applications:
Experience with Eden", Proceedings of the Tenth
ACM Symposium on Operating System Principles,
Orcas Island, Washington, December 1985, 181-93.

[7] A.P. Black, "The Eden Programming Language",
Technical Report 85-09-01, Dept. of Computer
Science, University of Washington, Seattle,
Washington, September 1985.

[8] A. Black, N. Hutchinson, E. Jul, H. Levy and L.
Carter, "Distribution and Abstract Types in
Emerald", Technical Report 86-02-04, Dept. of
Computer Science, University of Washington,
Seattle, Washington, February 1986. To appear in
IEEE Transactions on Software Engineering.

[9] H. Boehm, A. Demers and J. Donahue, "An
Informal Description of Russell", Technical Report
80-430, Dept. of Computer Science, Cornell
University, Ithaca, New York, October 1980.

[10] P. Brinch Hansen, "The Programming Language
Concurrent Pascal", IEEE Transactions on Software
Engineering 2 (June 1975), 199-205.

[11] P. Brinch Hansen, The Architecture of Concurrent
Programs, Prentice Hall, Inc., 1977.

[12] D. R. Cheriton, "The V Kernel: A Software Base
for Distributed Systems", IEEE Software I, 2 (April
1984), 19-42.

[13] R.J. Fowler, *'Decentralized Object Finding Using
Forwarding Addresses", Ph.D. Dissertation,
Technical Report 85-12-1, Dept. of Computer
Science, University of Washington, December 1985.

[141 A. Goldberg and D. Robson, Smalltalk-80: The
Language and its Implementation, Addison-Wesley
Publishing Company, 1983.

[15] M. Herlihy and B. Liskov, "A Value Transmission
Method for Abstract Data Types", Trans. Prog.
Lang and Systems 4 (October 1982), 527-51.

[16] C. A. R. Hoare, "Monitors: An Operating System
Structuring Concept", Comm. ACM 17, 10 (October
1974), 549-57.

[17] R.C. Holt, Concurrent Euclid, the Unix System, and
Tun/s, Addison-Wesley, 1983.

[18] M.R. Laff and B. Hailpem, "SW2 - An Object-base
Programming Environment", SIGPLAN Notices 20,
7 0 u l v 1985). In Proceedings of the ACM

September 1986 OOPSLA '86 Proceedings 85

SIOPLAN 85 Symposium on Language Issues in
Progl'zunming Environments.

[19] B.I.,iskov, A. Snyder, R. AIJcinson and C. Schaffert,
"Abstraction Mechanisms in CLU",
Conununications of dze ACM 20, 8 (August 1977),
564-576.

[20] B. Liskov and R. Scbeiffer, "Guardians and
Actions: Linguistic Support for Robust, Distributed
Programs", 9th ACM Syrup. on Prin. of Prog. Lang.,
1982.

[21] B. Liskov, "Overview of the Argus Language and
System", Programming Medlodology Group Memo
40, M.I.T., Laboratory for Computer Science,
February 1984.

[22] R. F. Rashid and G. G. Robertson, "Accent: A
Communication Oriented Network Operating
Systems Kernel", Proceedings of the Eighth ACM
Symposium on Operating Syslents Principles,
October 1981, 64-75.

[23] D. D. Redell, Y. K. Dalai, T. R. Horsley, H. C.
Lauer, W. C. Lynch, P. R. McJones, H. G. Murray
and S. C. Purcell, "Pilot: An Operating System for a
Personal Computer", Comm. ACM 23, 2 (February
1982), 81-92.

[24] C. Schaffert, T. Cooper and C. Wilpolt, Owl
Reference Manual, Eastern Research Lab, Digital
Equipment Corporation, Hudson, Massachusetts,
February 7, 1985.

86 OOPSLA '86 Proceedings September 1986

