
Object-oriented programming:

Some history, and challenges for the next fifty years

Andrew P. Black

Portland State University, Portland, Oregon, USA

Abstract

Object-oriented programming is inextricably bound up with the pioneering
work of Ole-Johan Dahl and Kristen Nygaard on the design of the Simula
language, which started at the Norwegian Computing Center in the Spring
of 1961. However, object orientation, as we think of it today — fifty years
later — is the result of a complex interplay of ideas, constraints and people.
Dahl and Nygaard would certainly recognize it as their progeny, but might
also be amazed at how much it has grown up.

This article is based on a lecture given on 22nd August 2011, on the
occasion of the scientific opening of the Ole-Johan Dahl Hus at the University
of Oslo. It looks at the foundational ideas from Simula that stand behind
object-orientation, how those ideas have evolved to become the dominant
programming paradigm, and what they have to offer as we approach the
challenges of the next fifty years of informatics.

Keywords:

1. Introduction

On 22nd August 2011, a public event was scheduled to open both the 18th

International Symposium on Fundamentals of Computation Theory and the
Ole-Johan Dahl hus, the new building that is home to the University of Oslo’s
Department of Informatics, and which is shown in Figure 1. The morning

Email address: black@cs.pdx.edu (Andrew P. Black)
URL: http://www.cs.pdx.edu/~black (Andrew P. Black)

Preprint submitted to Information and Computation May 16, 2012

session opened with an Introduction by Morten Dæhlen, which was followed
by two invited talks, one by Andrew Black and one by Jose Meseguer, and
a discussion panel on the future of object-orientation and programming lan-
guages, which was chaired by Arne Maus, and comprised Andrew P. Black,
Yuri Gurevich, Eric Jul, Stein Krogdahl, Jose Meseguer, and Olaf Owe.

Figure 1: The Ole Johan Dahl Hus. (Photograph
c© the author)

As it happened, none of
these events took place in
the Dahl hus, because the
beautiful lecture room that
had been scheduled for the
conference was put out of
commission, less than half
an hour before the start of
the session, by an electrical
fault: the scientific opening
of the Dahl hus was actually
conducted in the neighbour-
ing Kristen Nygaard build-
ing. Thus, nine years after
their deaths, Dahl and Ny-
gaard were able to form a
symbolic partnership to solve a pressing problem.

This article is based on the invited talk given by the author. It is not a
transcript, and I have taken the opportunity to elaborate on some themes
and to précises others, to add references, and to tidy up some arguments that
seemed, in hindsight, a bit too ragged to set down in print.

2. The Birth of Simula

In American usage, the word “drafted” has many related meanings. It
can mean that you have been conscripted into military service, and it can
mean that you have been given a job that is necessary, but that no one else
wants to take on.

In 1948, Kristen Nygaard was drafted, in both of these senses. He
started his conscript service at the Norwegian Defence Research Establish-
ment, where his assignment was to carry out calculations related to the con-
struction of Norway’s first nuclear reactor [1]. Years later, Nygaard recalled

2

that he had no wish to be responsible for the first nuclear accident on the
continent of Europe1.

After extensive work on a traditional numerical approach, Nygaard turned
to Monte Carol simulation methods, and first headed the “computing office”
at the Defence Establishment, later (in 1952) turning full-time to operational
research. He earned a Master of Science degree from the University of Oslo
in 1956, with a thesis on probability theory entitled “Theoretical Aspects of
Monte Carlo Methods” [2]. In 1960, Nygaard moved to the Norwegian Com-
puting Center (NCC), a semi-governmental research institute that had been
established in 1958. His brief was to expand the NCC’s research capabilities
in computer science and operational research. He wrote “Many of the civilian
tasks turned out to present the same kind of methodological problems [as his
earlier military work]: the necessity of using simulation, the need of concepts
and a language for system description, lack of tools for generating simulation
programs” [1]. In 1961, he started designing a simulation language as a way
of attacking those problems.

In January 1962, Nygaard wrote what has become a famous letter. It
was addressed to the French operational research specialist Charles Salz-
mann. Nygaard wrote: “The status of the Simulation Language (Monte
Carlo Compiler) is that I have rather clear ideas on how to describe queue-
ing systems, and have developed concepts which I feel allow a reasonably
easy description of large classes of situations. I believe that these results
have some interest even isolated from the compiler, since the presently used
ways of describing such systems are not very satisfactory. . . . The work on
the compiler could not start before the language was fairly well developed,
but this stage seems now to have been reached. The expert programmer who
is interested in this part of the job will meet me tomorrow. He has been
rather optimistic during our previous meetings.”

The “expert programmer” was of course Ole-Johan Dahl, shown in Fig-
ure 2, and widely recognized as Norway’s foremost computer scientist. Along
with Nygaard, Dahl produced the initial ideas for object-oriented program-
ming, which is now the dominant style of programming for commercial and
industrial applications. Dahl was made Commander of The Order of Saint
Olav by the King of Norway in 2000; along with Nygaard he received the
ACM Turing Award in 2001 for ideas fundamental to the emergence of object

1David Ungar, private communication.

3

oriented programming, through their design of the programming languages
Simula I and Simula 67, and in 2002 he was awarded the IEEE’s von
Neumann medal, once again with Nygaard. Dahl died on 29th June 2002.

In this article, I will try to identify the core concepts embodied in Dahl
and Nygaard’s early languages, and see how these concepts have evolved in
the fifty years that have passed since their invention. I will also hazard some
guesses as to how they will adapt to the future.

3. History in Context

Figure 2: Ole-Johan Dahl (Photo-
graph courtesy of Stein Krogdahl)

In seeking guidance for the hazardous
process of predicting the future, I looked at
another event that also took place in 1961:
the Centennial Celebration of the Mas-
sachusetts Institute of Technology. Richard
Feynman joined Sir John Cockcroft (known
for splitting the atom), Rudolf Peierls (who
first conceptualized a bomb based on U-
235) and Chen Ning Yang (who received the
1957 Nobel Prize for his work on parity laws
for elementary particles), to speak on “The
Future in the Physical Sciences.” While the
other speakers contented themselves with
predicting 10, or perhaps 25, years ahead,
Feynman, who was not to receive his own
Nobel Prize for another four years, decided
to be really safe by predicting 1000 years
ahead. He said “I do not think that you
can read history without wondering what is
the future of your own field, in a wider sense. I do not think that you can
predict the future of physics alone [without] the context of the political and
social world in which it lies.” Feynman argued that in 1000 years the dis-
covery of fundamental physical laws would have ended, but his argument
was based on the social and political context in which physics must operate,
rather than on any intrinsic property of physics itself [3].

If social and political context is ultimately what determines the future of
science, we must start our exploration of the Simula languages by looking
at the context that gave them birth. Nygaard’s concern with modelling the

4

phenomena associated with nuclear fission meant that Simula was designed
as a process description language as well as a programming language. “When
Simula I was put to practical work it turned out that to a large extent it
was used as a system description language. A common attitude among its
simulation users seemed to be: sometimes actual simulation runs on the com-
puter provided useful information. The writing of the Simula program was
almost always useful, since . . . it resulted in a better understanding of the
system”[1]. Notice that modelling means that the actions and interactions of
the objects created by the program model the actions and interactions of the
real-world objects that they are designed to simulate. It is not the Simula
code that models the real-world system, but the objects created by that code.
The ability to see “through” the code to the objects that it creates seems to
have been key to the success of Simula’s designers.

Because of Nygaard’s concern with modeling nuclear phenomena, Simula
followed Algol 60 in providing what was then called “security”: the language
was designed to reduce the possibility of programming errors, and so that
those errors that remained could be cheaply detected at run time [4]. A Sim-
ula program could never give rise to machine- or implementation-dependent
effects, so the behavior of a program could be explained entirely in terms of
the semantics of the programming language in which it was written [1].

Dahl took a more technical view, as he explained in his role as discussant
at the first HOPL conference [5]. For Dahl, Simula’s contribution was the
generalization and liberalization of the Algol 60 block, which gave the new
language

1. record structures (blocks with variable declarations but no statements);

2. procedural data abstraction (blocks with variable and procedure dec-
larations, but liberated from the stack discipline so that they could
outlast their callers);

3. processes (blocks that continue to execute after they have been de-
tached from their callers);

4. prefixing of one “detached” block with the name of another; and

5. prefixing of an ordinary Algol-60–style in-line block with the name of
another, which let the prefix block play the rôle of what Dahl called a
context object.

5

This generalized block was the Simula “class”; nowadays item 4 would be
called inheritance, and item 5 would be called packaging, or modularity.

This list of features might lead one to think that the real contribution
of Simula was the class construct, and that object-oriented programming
is nothing more than class-oriented programming. However, I don’t believe
that this is historically correct. Dahl himself wrote “I know that Simula
has been criticized for perhaps having put too many things into that single
basket of class. Maybe that is correct; I’m not sure myself. . . . It was great
fun to see how easily the block concept could be remodeled and used for
all these purposes. It is quite possible, however, that it would have been
wiser to introduce a few more specialized concepts, for instance, a “context”
concept for the contextlike classes.” [5]. I interpret these remarks as Dahl
saying that the important contributions of Simula were the five individual
features, and not the fact that they were all realized by a single piece of
syntax. While semantic unification can lead to a true simplification in the
design of a language, syntactic unification may be a mistake.

4. The Origin of Simula’s Core Ideas

As the above quotations reveal, Dahl was inspired to create the Simula
class by visualizing the runtime representation of an Algol 60 program. To
those with sufficient vision, objects were already in existence inside every
executing Algol program — they just needed to be freed from the “stack
discipline”. In 1972 Dahl wrote:

In Algol 60, the rules of the language have been carefully de-
signed to ensure that the lifetimes of block instances are nested,
in the sense that those instances that are latest activated are
the first to go out of existence. It is this feature that permits
an Algol 60 implementation to take advantage of a stack as a
method of dynamic storage allocation and relinquishment. But it
has the disadvantage that a program which creates a new block in-
stance can never interact with it as an object which exists and has
attributes, since it has disappeared by the time the calling pro-
gram regains control. Thus the calling program can observe only
the results of the actions of the procedures it calls. Consequently,
the operational aspects of a block are overemphasised; and algo-
rithms (for example, matrix multiplication) are the only concepts
that can be modelled. [6]

6

In Simula, Dahl made two changes to the Algol 60 block: small changes,
but changes with far-reaching consequences. First, “a block instance is per-
mitted to outlive its calling statement, and to remain in existence for as long
as the program needs to refer to it” [6]. Second, object references are treated
as data, which gives the program a way to refer to those block instances.
As a consequence of these changes, a more general storage allocation mech-
anism than the stack is needed: a garbage collector is required to reclaim
those areas of storage occupied by objects that can no longer be referenced
by the running program. Dahl and Nygaard may not have been the first to
see the possibilities of generalizing the Algol block, but they were the first to
realize that the extra complexity of a garbage collector was a small price to
pay for the wide range of concepts that could be expressed using blocks that
outlive their calling creators. It was Dahl’s creation of a storage manage-
ment package “based on a two-dimensional free area list” that made possible
the Simula class [1]. This package seems to have been completed by May
1963, the date of a preliminary presentation of the Simula Language. The
Simula I compiler was completed in January 1965, and accepted by Univac,
who had partially financed its development, a year later — see Figure 3.

Figure 3: Dahl and Nygaard during the devel-
opment of Simula, around 1962. The Univac
1107 was obtained by Nygaard for the NCC
at a favorable price in exchange for a contract
to implement Simula I. (Photograph from the
Virtual Exhibition People Behind Informatics,
http://cs-exhibitions.uni-klu.ac.at/)

The idea of the Class Pre-
fixing — now called subclass-
ing, or inheritance — came to
Simula from the work of
Tony Hoare on record han-
dling [7]. Hoare had in-
troduced the notion of a
class of record instances; a
class could be specialized
into several subclasses, but
the class and its subclasses
had to be declared together,
with the subclass definitions
nested inside the class defini-
tion. Dahl and Nygaard real-
ized that it would be useful if
a class could be declared sep-
arately from its subclasses, so
that it could be specialized
separately for diverse purposes. However, nesting precluded such a sepa-

7

ration. “The solution came with the idea of class prefixing: using C as a
prefix to another class, the latter would be taken to be a subclass of C in-
heriting all properties of C.” [8]. The semantics of prefixing was defined as
concatenation, but the syntactic separation of class and subclass turned the
class of Simula 67 into a unit of reuse. This was so successful that the
special-purpose simulation facilities of Simula were replaced in Simula 67
by a simulation class, which was defined in Simula 67 itself.

Inheritance has become the sine qua non of object-orientation, indeed,
an influential 1987 paper of Wegner’s defined “object-oriented” as “objects
+ classes + inheritance” [9]. Some of us objected to this definition at the
time — it seemed more reasonable for the term “object-oriented” to imply
only the use of objects — particularly since Wegner’s definition excluded any
delegation-based language from being object-oriented. Wegner did admit
that delegation, which he defined as “a mechanism that allows objects to
delegate responsibility for performing an operation or finding a value to one
or more designated ‘ancestors’ ”, was actually the purer feature. In any case,
inheritance has stood the test of time as a useful feature. Since 1989, thanks
to Cook, we have known that inheritance can be explained using fixpoints of
generators of higher-order functions [10]. What this means is that, in theory,
functions parameterized by functions are “as good as” inheritance, in the
sense that they can enable equivalent reuse. However, they are not as good
in practice, because, to enable reuse, the programmer has to plan ahead and
make every part that could possibly change into a parameter.

Functional programmers call this process of parameterization“abstraction”.
It has two problems: life is uncertain, and most people think better about the
concrete than the abstract. Let’s examine those problems briefly. We have
all experienced trying to plan ahead for change. Inevitably, when change
comes, it is not the change we anticipated. We find that we have paid the
price of generality and forward planning, but still have to modify the software
to adapt to the change in requirements. Agile methodologies use this: they
tell us to eschew generality, and instead make the software ready to embrace
change by being changeable. Inheritance aids in this process by allowing us
to write software in terms of the concrete, specific actions that the applica-
tion needs now, and to abstract over them only when we know — because the
change request is in our hands — that the abstraction is needed.

The second problem derives from the way that we think. There are people
who are able to grasp abstractions directly, and then apply them: we call
such people mathematicians. However, most of us can more easily grasp new

8

ideas if we are first introduced to one or two concrete instances, and are
then shown the generalization. Putting it another way: people learn from
examples. That is, we might first solve a problem for n = 4, and then make
the changes necessary for 4 to approach infinity. Inheritance uses this: it
first provides a concrete example, and then generalizes from it.

To make this hand-waving argument a bit more concrete, let’s look at
an an example from the functional programming literature. In Programming
Erlang [11, Chapter 16], Armstrong introduces the OTP (Open Telecom
Platform) generic server. He comments: “This is the most important section
of the entire book, so read it once, read it twice, read it 100 times — just make
sure the message sinks in”. To make sure that the message about the way
that the OTP server works does sink in, Armstrong writes “four little servers
. . . each slightly different from the last. server1 runs some supplied code in
a server, where it responds to remote requests; server2 makes each remote
request an atomic transaction; server3 adds hot code swapping, and server4
provides both transactions and hot code swapping.” Each of these fragments
of sever code is self-contained: server4, for example, makes no reference to
any of the preceding three servers.

Why does Armstrong describe the OTP sever in this way, rather than just
presenting server4, which is his destination? Because he views server4 as too
complicated for the reader to understand in one go (it is, after all, 31 lines
long!) Something as complex as server4 needs to be introduced step-by-step.
However, his language, lacking inheritance (and higher-order functions) does
not provide a way of capturing this stepwise development.

In an effort to understand the OTP server, I coded it up in Smalltalk.
As George Forsythe is reputed to have said: “People have said you don’t
understand something until you’ve taught it in a class. The truth is you don’t
understand something until you’ve taught it to a computer — until you’ve
been able to program it.” [12]. First I translated server1 into Smalltalk; I
called it BasicServer, and it had three methods and 21 lines of code. Then I
needed to test my code, so I wrote a name server “plug-in” for BasicServer,
and set up unit tests, and made them run green. In the process, as Forsyth
had predicted, I gained a much clearer understanding of how Armstrong’s
server1 worked. Thus equipped, I was able to implement TransactionServer by
subclassing BasicServer, and HotSwapServer by subclassing TransactionServer,
bringing me to something that was equivalent to Armstrong’s server4 in two
steps, each of which added just one new concern. Then I refactored the code
to increase the commonality between TransactionServer and BasicServer, a

9

commonality that had been obscured by following Armstrong in simply re-
writing the whole of the main server loop to implement transactions. This
refactoring added one method and one line of code.

Once I was done, I discussed what I had learned with Phil Wadler. Walder
has been writing, and thinking deeply, about functional programming since
the 1980s; amongst other influential articles he has authored “The Essence of
Functional Programming” [13] and “Comprehending Monads” [14]. His first
reaction was that the Erlang version was simpler because it could be described
in straight-line code with no need for inheritance. I pointed out that I could
refactor the Smalltalk version to remove the inheritance, simply by copying
down all of the methods from the superclasses into HotSwapServer, but that
doing so would be a bad idea. Why? Because the series of three classes, each
building on its superclass, explained how HotSwapServer worked in much the
same way that Armstrong explained it in Chapter 16 of Programming Erlang.
I believe that this was an “ah-ha moment” for Phil.

To summarize: most people understand complex ideas incrementally.
Properly used, code that uses inheritance can explain complex code incre-
mentally, that is, in a way that is well-adapted to the way that people think.

5. Object-Oriented Frameworks

In my view, one of the most significant contributions of Simula 67 was
the idea of the Object-Oriented Framework. By the 1960s, subroutine li-
braries were well-known. A subroutine, as its name suggests, is always sub-
ordinate to the main program. The relationship is always “don’t call us, we’ll
call you”. The only exception to this is when a user-written subroutine p is
passed as an argument to a library subroutine q; in this case, q can indeed
call p. However, in the languages of the time, any such “callback” to p could
occur only during the lifetime of the original call from the main program to
q. An Object-Oriented framework allows subroutines, but also enables the
reverse relationship: the “main program” is now a component that can be
invoked by the framework.

This reversal of roles enabled the special-purpose simulation constructs of
Simula I to be expressed as a framework within Simula 67. The program-
mer of a simulation wrote code that described the behavior of the individual
objects in the system: the nuclear fuel rods, or the air masses, or the products
and customers, depending on the domain being simulated. The simulation
framework then called those user-defined objects. The framework was in

10

control, but users were able to populate it with objects that achieved their
diverse goals.

Of course, for this scheme to work, the user-provided objects called by
the framework must have methods for all of the requests made of them. Pro-
viding these methods might be a lot of work, but the work is generally made
manageable by having the user-provided objects inherit from a framework
object that already understands the majority of these requests; all the user
need do is override the inherited behaviour selectively.

One of the most common instantiations of this idea is the user-interface
framework. In most object-oriented languages, objects that are to appear on
the computer’s screen are sent requests by the display framework. They must
respond to enquires such as those that ask for their bounds on the screen,
and to draw themselves within these bounds. This is normally achieved
by having displayable objects subclass a framework-provided class, such as
Squeak’s Morph or java.awt.Component.

Dahl and Nygaard realized that these ideas could be used to provide
the simulation features of Simula I. Simula 67 is a general-purpose lan-
guage; its simulation features are provided by an object-oriented framework
called simulation. simulation is itself implemented using a more primitive
framework called simset.

6. From Simula to Smalltalk

Smalltalk-72 was an early version of Smalltalk, used only within Xerox
PARC. It was clearly inspired by Simula, and took from Simula the ideas
of classes, objects, object references, and inheritance. It is described by Alan
Kay in his paper on the Early History of Smalltalk [15].

Smalltalk-72 refined and explored the idea of objects as little computers,
or, as Kay puts it: “a recursion on the notion of computer itself”. Objects
combined data with the operations on that data, in the same way that a
computer combines a memory to store data with an arithmetic and logic
unit to operate on the data.

However, Smalltalk-72 dropped some of Simula’s key ideas, notably the
idea that objects were also processes, and that classes, used as prefixes to
inline blocks, were also modules. Smalltalk 80 made the same omissions; as a
result, what we may call the “North-American School” of object-orientation
views these features as relatively unimportant, and perhaps not really part
of what it means to support objects.

11

By the late 1980s, objects had attracted significant industrial interest.
May different object-oriented languages had been developed, differing in the
weight that they gave to classes, objects, inheritance, and other features. In
1991, Alan Snyder of Hewlett Packard wrote an influential survey paper “The
Essence of Objects” [16], which was later published in IEEE Software [17].

Unlike Simula and Smalltalk, Snyder’s is a descriptive work, not a pre-
scriptive one. He describes and classifies the features of contemporary object-
oriented languages, including Smalltalk, C++, the Common Lisp Object Sys-
tem, and the Xerox Star, as well as a handful of other systems. In Snyder’s
view, the essential concepts were as follows:

• An object embodies an abstraction.

• Objects provide services.

• Clients issue requests for those services.

• Objects are encapsulated.

• Requests identify operations.

• Requests can identify objects.

• New Objects can be created.

• The same operation on distinct objects can have different implementa-
tions and observably different behaviour.

• Objects can be classified in terms of their services (interface hierarchy).

• Objects can share implementations.

– Objects can share a common implementation (multiple instances).

– Objects can share partial implementations (implementation inher-
itance or delegation).

We see that objects as processes and classes as modules are not on this
list. Snyder does mention “Active Objects” as an “associated concept”, that
is, an idea “associated with the notion of objects, but not essential to it”.
The idea that classes can serve as modules does not appear at all. Table 1
compares the features of objects as viewed by Simula, Smalltalk and Snyder.

7. Objects as Abstractions

The word “Abstraction” is used in Informatics in many different senses.
As I mentioned previously, it is used by functional programmers to mean

12

Table 1: Evolution of the features of an “object”. Simula’s idea of procedural encapsula-
tion became more complete, both over time and as objects migrated across the Atlantic.
However, other features of the Simula Class, such as Active Objects and Classes as Mod-
ules, have not persisted.

Feature Simula 67 Smalltalk 80 Snyder (1981)

Procedural
Abstraction

Attributes
exposed

Attributes
encapsulated

Objects characterized
by services

Active Objects Yes No “Associated Concept”

Dynamic object
creation

Yes Yes Yes

Classes Yes Yes Shared
implementations

Inheritance class prefixing subclassing “Shared partial
implementations”

Overriding Under control of
superclass

Under control of
subclass

Optional; delegation
as alternative

Classes as
Modules

Yes No No

“parameterisation”. In the context of objects, I’m going to use the word
abstraction to capture the idea that what matters about an object is its
protocol: the set of messages that it understands, and the way that it behaves
in response to those messages. Nowadays, this is sometimes also referred to
as the object’s interface. The key idea is that when we use an object, we
“abstract away from” its internal structure; more simply, that the internal
structure of an object is hidden from all other objects.

Abstraction, in this sense, is one of the key ideas behind objects, but
it does not appear explicitly until Snyder’s 1991 survey. Simula doesn’t
mention abstraction specifically; it speaks of instead of modelling, which
captures the importance of interacting with the object, but not the infor-
mation hiding aspect. Dahl remarks [8] “According to a comment in [the
Simula user’s manual, 1965] it was a pity that the variable attributes of
a Car process could not be hidden away in a subblock”, but this was not
possible in Simula without also hiding the procedures that defined the Car’s
behaviour — and exposing those procedures was the whole reason for defining

13

the Car.
Smalltalk 80 fixed this problem by making the instance variables that

contain the representation of an object accessible only to the methods of that
object. However, Dan Ingalls’ sweeping 1981 Byte article “Design Principles
behind Smalltalk” refers to abstraction only indirectly. Ingalls singles out
Classification as the key idea embodied in the Smalltalk class. He writes:

Classification is the objectification of nessness. In other words,
when a human sees a chair, the experience is taken both literally
as “that very thing” and abstractly as “that chair-like thing”.
Such abstraction results from the marvelous ability of the mind to
merge “similar” experience, and this abstraction manifests itself
as another object in the mind, the Platonic chair or chairness.

However, Smalltalk classes do not classify objects on the basis of their be-
havior, but by representation. It seems that the the idea of separating the
internal (concrete) and external (abstract) view of an object was yet to ma-
ture. It can be glimpsed elsewhere in Ingall’s article. After Classification,
his next principle is “Polymorphism: A program should specify only the be-
havior of objects [that it uses], not their representation”, and in the “Future
Work” section, where he remarks that

message protocols have not been formalized. The organization
provides for protocols, but it is currently only a matter of style
for protocols to be consistent from one class to another. This
can be remedied easily by providing proper protocol objects that
can be consistently shared. This will then allow formal typing of
variables by protocol without losing the advantages of polymor-
phism.

Borning and Ingalls did indeed attempt just that [18], but it proved not to
be as easy to get the details right as Ingalls had predicted. Still, Smalltalk as
defined in 1980 did succeed in abstracting away from representation details:
it never assumes that two objects that exhibit the same protocol must also
have the same representation.

The related concept of data abstraction can be traced back to the 1970s.
Landmarks in its evolution are of course Hoare’s “Proof of Correctness of
Data Representations” [19], and Parnas’ “On the Criteria to be used in De-
composing Systems into Modules” [20], both published in 1972, and the CLU

14

programming language, which provided explicit conversion between the con-
crete data representation seen by the implementation and the abstract view
seen by the client [21]. However, none of these papers pursues the idea that
multiple representations of a single abstraction could co-exist. They assume
that abstraction is either a personal discipline backed by training the pro-
grammer, or a linguistic discipline backed by types. The latter view — that
abstraction comes from types — has been heavily marketed by the proponents
of ML and Haskell.

Objects follow a different route to abstraction, which can be traced back
to Alonzo Church’s work on representing numbers in the lambda-calculus [22].
In 1975 John Reynolds named it “procedural abstraction” and showed how
it could be used to support data abstraction in a programming language [23],
as well as contrasting it with the approach based on types. Procedural ab-
straction is characterized by using a computational mechanism — a repre-
sentation of a function as executable code — rather than type discipline or
self-discipline — to enforce abstraction boundaries. Reynolds writes:

Procedural data structures provide a decentralized form of data
abstraction. Each part of the program which creates procedural
data will specify its own form of representation, independently
of the representations used elsewhere for the same kind of data,
and will provide versions of the primitive operations (the compo-
nents of the procedural data item) suitable for this representation.
There need be no part of the program, corresponding to a type
definition, in which all forms of representation for the same kind
of data are known.

Unfortunately, neither this paper nor a later version [24] are widely known,
and many practitioners do not understand the fundamental distinction be-
tween type abstraction and procedural abstraction. Why is this distinction
important? Because there is a trade-off to be made when choosing between
the two approaches. Procedural abstraction provides secure data abstraction
without types, and allows multiple implementations of the same abstraction
to co-exist; this supports change, and helps to keep software soft. The cost
is that it is harder to program “binary operations” — those that work on two
or more objects — with maximal efficiency.

William Cook made another attempt to explain the difference in a 2009
OOPSLA Essay [25]. Cook coined the term “Autognostic”, meaning “self-
knowing”, for what Reynolds called “decentralization”: an object can have

15

detailed knowledge only of itself. All other objects are abstract. Cook re-
marks: “The converse is quite useful: any programming model that allows
inspection of the representation of more than one abstraction at a time is
not object-oriented.”

The idea of procedural data abstraction was certainly in Simula I —
indeed, I will argue that it was the genesis of Simula I. As Dahl and Hoare
observe in “Hierarchical Program Structures” [6], the key concept is already
present in Algol 60: an Algol 60 block is a single mechanism that can contain
both procedures and data. The limitation of Algol is that blocks are con-
strained not to outlive their callers. Dahl saw this, and “set blocks free” by
devising a dynamic storage allocation scheme to replace Algol 60’s stack [1].

Simula’s class construct can be used to generate both records (unpro-
tected, or protected by type abstraction) and objects (protected by proce-
dural abstraction). The same is true for some later languages, for example,
C++.

The encapsulation of objects in Simula derives directly from the encap-
sulation offered by the Algol 60 block. Just as code in one block cannot access
variables declared in another block (unless it is nested inside), the code inside
one object cannot access the variables declared inside another. While Sim-
ula introduced the inspect statement specifically to expose those variables,
Smalltalk made them inaccessible to all other objects. Indeed, the modern
view is that it is only the behaviour of an object that matters: whether or
not that behaviour is ultimately supported by methods or variables is one of
the hidden implementation details of the object. Thus, while the approach to
data abstraction from types makes a fundamental distinction between a rep-
resentation — a value protected by an existential type — and the functions
that operate on it, the procedural approach requires only methods: there
may be no representation variables at all.

Perhaps the clearest example of this is the implementation of the Booleans
in Smalltalk, which is outlined in Figure 4. The objects true and false im-
plement methods &, |, not, ifTrue:ifFalse:, etc. (The colon introduces an
argument, in the same way that parentheses are used to indicate arguments
in other languages, and ↑ means “return from this method with the following
answer”.) For example, the & method of true answers its argument, while
the | method always answers self, i.e., true.

The ifTrue:ifFalse: methods are a bit more complicated, because the ar-
guments must be evaluated conditionally. The ifTrue:ifFalse: method of false
ignores its first argument, evaluates its second, and returns the result, while

16

==> aBlock
↑self not or: [aBlock value]

eqv: aBoolean
↑self == aBoolean

class Boolean

& aBoolean
↑self

| aBooolean
↑aBoolean

not
↑true

ifTrue: trueBlock ifFalse: falseBlock
↑falseBlock value

class False
& aBoolean

↑aBoolean
| aBoolean

↑self
not

↑false
ifTrue: trueBlock ifFalse: falseBlock

↑trueBlock value

class True

Figure 4: An extract from the Boolean classes in Smalltalk. Boolean is an abstract class
with no instances; true and false are the only instances of the classes True and False, which
inherit from Boolean. There is no “hidden state”; the methods themselves are sufficient
to define the expected behavior of the Booleans.

the ifTrue:ifFalse: method of true does the reverse.
A more complicated example is a selection of objects implementing num-

bers. The objects 1 and 2 might include a representation as a machine
integer, and methods +, −, etc., that eventually use hardware arithmetic.
However, the object representing 267 could use a three-digit representation
in radix 232, and the methods for + and − would then perform multi-digit
arithmetic. This scheme, augmented with operations to convert machine
integers to the multi-digit representation, is essentially how Smalltalk im-
plements numbers. Notice that new number objects can be added at any
time, without having to change existing code, so long as they provide the
necessary conversion methods. Because the representation of an object can
never be observed by any other object, there is no need to protect it with an
existential type.

17

8. Active Objects

Active objects seem to be one idea from Simula that has become lost to
the object-oriented community. Activity was an important part of Simula;
after all, the original purpose of the language was to simulate activities that
from the real world. Simula’s “quasi-parallelism” was a sweet-spot in 1961:
it allowed programmers to think about concurrency while ignoring synchro-
nization. Because another task could execute only when explicitly resumed,
programmers could be confident that their data would not change “out from
under them” at unexpected times.

Hewitt’s Actor model [26] built on this idea, as did Emerald [27], in which
every object could potentially contain a process. However, activity has gone
from “mainstream” object-oriented languages. Since Smalltalk, processes
and objects have been independent concepts.

Why are Smalltalk objects passive? I don’t know. Perhaps Kay and
Ingalls had a philosophical objection to combining what they saw as separate
ideas. Perhaps the realities of programming on the Alto set limits as to
what was possible at that time. Perhaps they wanted real processes, not
co-routines; this requires explicit synchronization, and thus a significantly
different language design. Smalltalk does indeed have processes, rather than
coroutines. However, they are realized as separate objects, rather than being
a part of every object.

9. Classes and Objects

It’s interesting to revisit Wegner’s idea, discussed in Section 4, that
object-orientation is characterized by the existence of classes. As we have
seen, historically, most of the concepts that we recognize as making up object-
orientation came from the class concept of Simula. However, as both Dahl
and Nygaard would be quick to point out, it’s the dynamic objects, not the
classes, that form the system model, and modeling was the raison d’être of
Simula: classes were interesting only as a way of creating the dynamic sys-
tem model, which comprised interacting objects. They are indeed a most
convenient tool if you want hundreds of similar objects. But what if you
want just one object? In that case they impose a conceptual overhead. The
fact is that classes are meta, and meta isn’t always better!

Classes are meta, relative to objects, because a class is a factory that
describes how to make an object, and describes the implementation and

18

behavior of those embryonic objects. If you need just one or two objects, it’s
simpler and more direct to describe those objects in the program directly,
rather than to describe a factory (that is, a class) to make them, and then
use it once or twice. This is the idea behind Self, Emerald, NewtonScript and
JavaScript, which take the object, rather than the class, as their fundamental
concept. Which is not to say that classes are not useful: just that, at least
in their role of object factories, they can be represented as objects.

In class-based languages, classes play many roles. Borning, in an early
paper contrasting class-based and object-based languages [28], lists eight. In
addition to creating objects, Smalltalk classes describe the representation of
those objects and define their message protocol, serve as repositories for the
methods that implement that protocol, provide a taxonomy for classifying
objects, and, of course, serve as the unit of inheritance. However, as we saw
when discussing Ingalls’ view of classification (Section 7 above), this taxon-
omy, being based on implementation rather than behaviour, is fundamentally
at odds with the autognosis that other researchers, such as Cook, believe to
be fundamental to object-orientation.

If the only thing that we can know about an object is its behaviour, the
most useful way of classifying objects must be according to their behaviour.
This brings us back to types. Recall that types are not needed to provide
abstraction in object-oriented systems. The true role of types is to provide
a behavioural taxonomy: types provide a way of classifying objects so that
programmers can better understand what roles a parameter is expected to
play, or what can be requested of an answer returned from some “foreign”
code.

Why is such a taxonomy useful? To add redundancy. A type annotation
is an assertion about the value of a variable, no different in concept from
asserting that a collection is empty or that an object is not nil. Redundancy
is in general a good thing: it provides additional information for readers, and
it means that more errors — at least those errors that manifest themselves as
an inconsistency between the type annotation and the code — can be detected
sooner. Nevertheless, I’m about to argue that types can be harmful.

On the surface, this is a ridiculous argument. If types add redundancy,
and redundancy is good, how can types be harmful? The problem is not that
adding type annotations will mess up your program, but that adding types
to a language can, unless one is very careful, mess up the language design.

I’ve been an advocate of types for many years. The Emerald type sys-
tem [29, 30] was one of the ways in which the Emerald project attempted

19

to improve on Smalltalk. I spent many years working on type-checking and
type systems, but have only recently really understood the sage advice that I
was given by Butler Lampson in the late 1980s: stay away from types — they
are just too difficult.

The difficulty springs from two sources. One is Gödel’s incompleteness
theorem, which tells us that there will be true facts about any (sufficiently
rich) formal system that cannot be proved, no matter what system of proof
we adopt. In this case, the formal system is our programming language, and
the system of proof is that language’s type system. The other source is our
very natural desire to know that our program won’t go wrong, or at least that
it won’t go wrong in certain circumscribed ways. This has led most statically-
typed languages to adopt an interpretation of type-checking that I am going
to refer to as “The Wilson interpretation”. The name honors Harold Wilson,
prime minister of the UK 1964–70 and 1974–76. Wilson fostered what has
been called “the Nanny State”, a social and political apparatus that said the
government will look after you: if it even remotely possible that something
will go wrong, we won’t even let you try. The Wilson interpretation of type-
checking embraces two tenets: first, that the type system must be complete,
that is, every type assertion that can be made in it must be provably true
or false, and second, that every part of the program must be type-checked
before it can be executed. The consequence is that if it is even remotely
possible that something may go wrong when executing your program, then
the language implementation won’t even let you try to run it — assuming
that the “something” that might go wrong is a thing over which the type
system believes it has control.

The Wilson interpretation is not the only interpretation of type-checking.
At the other extreme is what I will call the “Bush interpretation”, hon-
oring George W. Bush, president of the USA 2001 — 2009, who abolished
many government regulations and weakened the enforcement of those that
remained. The Bush interpretation of type checking is that type information
is advisory. The program should be allowed to do what you, the programmer,
said that it should do. The type-checker won’t stop it; if you mess up, the
PDIC — the Program Debugger and Interactive Checker — will bail you out.
The Bush interpretation amounts to not having static type-checking at all:
the programmer is allowed to write type annotations in the program, but
they won’t be checked until runtime.

There is a third interpretation of type-checking that lies between these
extremes. This might be called the “Proceed with caution” approach. If the

20

type-checker has been unable to prove that there are no type errors in your
program, you are given a warning. “It may work; it may give you a run-time
error. Good night, and good luck.” I’m going to name this interpretation in
honour of Edward R. Murrow, 1908–1965, an American broadcaster, whose
signature line that was.

I’m referencing to Wilson, Murrow, and Bush as interpretations of type-
checking, because I’m taking a decidedly “Churchian” view of types: the
semantics of the program, in the absence of errors, is independent of the
type system. The rôle of the type system does is to control how and when
errors are reported. There is an alternative view in which programs that
don’t type-check have no semantics ; with this view, Wilson, Murrow, and
Bush define different languages, connected by a superset relation. Since, as
we have seen, types are not necessary to define object-based abstraction, I feel
that the Churchian view is simpler and more appropriate, but the comparison
of these views is a topic worthy of its own essay, and I’m not going to discuss
it further here.

So, under all three interpretations, an error-free program has the same
meaning. Under Wilson, we have conventional static typing. An erroneous
program will result in a static error, and won’t be permitted to run. Because
of Gödel, this means that some error-free programs won’t be permitted to
run either, no matter how complex the type system becomes.

Under Bush, we have conventional dynamic typing. All checks will be
performed at runtime — even those that are guaranteed to fail. Enthusiasts
for dynamic typing point out that a counter-example is often more useful
than a type-error message. The disadvantage is that the programmer will
not receive any static warnings. Under the Murrow interpretation, the pro-
grammer will get a mix of compile-time warnings and run-time checks. A
Murrow warning may say that a certain construct is provably a type error,
or it may say that the type-checker has been unable to prove that it is type
safe. The difference between these two warnings is dramatic, but Wilson
treats them as if they were the same, confounding a programming error with
a deficiency in the type system.

Let me say here that I’m for Murrow! I believe that the Murrow inter-
pretation of types is the most useful, not only for programmers, but also for
language designers. Wilson’s “Nanny Statism” is an invitation to mess up
your language design. The temptation for the language designer is to exclude
any construct that can’t be statically checked, regardless of how useful it may
be.

21

I believe that Simula was for Murrow too! Recall that, according to Ny-
gaard, the core Ideas of SIMULA were first modelling, and second, security.
Modelling meant that the actions and interactions of the objects created by
the program model the actions and interactions of the real-world objects that
they were designed to simulate. Security meant that the behavior of a pro-
gram could be understood and explained entirely in terms of the semantics
of the programming language in which it is written. Modelling came first!
Simula did not compromise its modelling ability to achieve security; it com-
promised its run-time performance, by incorporating explicit checks when a
construct necessary for modelling was not statically provable to be safe.

I feel that many current language designers are suffering from a Wilson
obsession. This obsession has resulted in type systems of overwhelming com-
plexity, and languages that are larger, less regular, and less expressive than
they need to be. The fallacy is the assumption that, because type checking
is good, more type-checking is necessarily better.

Let’s consider an example of how the insistence on static type-checking
can mess a language design. I’m currently engaged, with Kim Bruce and
James Noble, in the design of a language for student programmers. The
language is called Grace, both to honour Rear Admiral Grace Hopper, and
because we hope that it will enable the Graceful expression of algorithms.
Grace is an object-oriented language, and contains an inheritance facility,
based on early proposals by Antero Taivalsaari [31]. Here is an example, using
a syntax invented for this article that is intended to need little explanation.

class Dictionary .new { initialSize →
extends Hashtable.new(initialSize)
method findIndex (predicate) override { . . . }
method at (key) put (value) { . . . } . . .
}

The idea is that the object created by the execution of Dictionary.new(10)
will have (copies of) all of the methods of the object Hashtable.new(10),
except that the given method for findIndex() will override that inherited from
Hashtable, and the given method for at()put() will be added.

Static checks that one might expect to take place on such a definition
would include that Hashtable actually has a method new, and that the object
answered by that method have a findIndex() method and not have an at()put()
method. There is no problem with that expectation so long as Hashtable is a
globally known class. However, suppose that I want to let the client choose

22

the actual object that is extended, in other words, suppose that I make the
super-object a parameter.

class Dictionary .new { superObj , initialSize →
extends superObj
method findIndex (predicate) override { . . . }
method at (key) put (value) { . . . } . . .
}

Although the same implementation mechanisms will still work, static
checking is no longer simple. What arguments may be substituted for su-
perObj? The requirement that superObj have a (possibly private) method
findIndex and that it not have a method at()put() cannot be captured by the
usual notion of type, which holds only the information necessary to use an
object, not the information necessary to inherit from it. Type-checking this
definition in a modular way seems to require a new notion of “heir types”,
that is, types that capture the information needed to check inheritance. An-
other possible solution is to make classes a new sort of entity, different from
objects, and to give them their own, non-Turning complete sublanguage, in-
cluding class-specific function, parameter and choice mechanisms. A third
possibility is to ban parametric super-objects. How then does one use in-
heritance, that is, how does the programmer gain access to a superclass to
extend? The classical solution is to refer to classes by global variables, and to
require that the superclass be globally known. This is a premature commit-
ment that runs in opposition to the late-binding that otherwise characterizes
object-orientation; its effect is to reduce reusability. Some languages allevi-
ate this problem by introducing yet another feature, known as open classes,
which allows the programmer to add methods to, or override methods in, an
existing globally-known class.

Regardless of the path chosen, the resulting language is both larger and
less-expressive than the simple parametric scheme sketched above. Indeed, in
the scheme suggested by the Dictionary example, a new object could extend
any existing object, and classes did not need to be “special” in any way;
they were ordinary objects that did not require any dedicated mechanisms
for their creation, categorization or use.

Virtual classes, as found in beta, are another approach to this prob-
lem [32]. Virtual classes feature co-variant methods — methods whose argu-
ments are specialized along with their results. This means that they cannot
be guaranteed to be safe by a modular static analysis. Nevertheless, they are

23

useful for modelling real systems.
Another example of this sort of problem is collections that are param-

eterized by types. If types are desirable, it certainly seems reasonable to
give programmers the opportunity to parameterize their collection objects,
so that a library implementor can offer Bags of Employees as well as Bags
of Numbers. The obvious solution is to represent types as objects, and use
the normal method and parameter mechanisms to parameterize collections —
which is exactly what we did in Emerald [33]. Unfortunately, the consequence
of this is that type checking is no longer decidable [34]. The reaction of the
Wilsonian faction to this is to recoil in shock and horror. After all, if the
mission of types is to prevent the execution of any program that might pos-
sibly go wrong, and the very act of deciding whether the program will go
wrong might not terminate, what is the language implementor to do?

However, a language that takes the Murrow interpretation of type can
react to the possibility that type-checking is statically undecidable more
pragmatically. The language implementation will in any case need perform
run-time type checks, to deal with situations in which the program cannot be
statically guaranteed to be free of type errors. So, if a type assertion cannot
be proved true or false after a reasonable amount of effort, it suffices to insert
a run-time check.

The alternative way of parameterising objects by types is to invent a new
parameter passing mechanism for types, with new syntax and semantics, but
with restricted expressivity to ensure decidability. Nevertheless, because of
Gödel’s first incompleteness theorem, some programs will still be un-typeable.
The consequence is that the language becomes larger, while at the same time
less expressive.

10. The Future of Objects

Now I’m going to turn to some speculations about the programming lan-
guages of the future. I could follow Feynman, and predict, with a certain
confidence, that in 1000 years object-oriented programming will no longer ex-
ist as we know it. This is either because our civilization will have collapsed,
or because it has not; in the latter case humans will no longer be engaged in
any activity resembling programming, which will instead be something that
computers do for themselves.

However, I think that it is probably more useful, and certainly more
within my capabilities, to look 10 or 20 years ahead. The changes in com-

24

puting that will challenge our ability to write programs over that time span
are already clear: the trend from multicore towards manycore, the need for
energy-efficiency, the growth of mobility and “computing in the cloud”, the
demand for increased reliability and failure resilience, and the emergence of
distributed software development teams.

10.1. Multicore and Manycore

Although the exact number of “cores”, that is, processing units, that will
be present on the computer chips of 2021–31 is unknown, we can predict that
with current technology trends we will be able to provide at least thousands,
and perhaps hundreds of thousands. It also seems clear that manycore chips
will be much more heterogeneous than the two- and four-processor multicore
chips of today, exactly because not all algorithms can take advantage of
thousands of small, slow but power-efficient cores, and will need larger, more
power-hungry cores to perform acceptably. The degree of parallelism that will
be available on commodity chips will thus depend both on the imperatives
of electronic design and on whether we can solve the problem of writing
programs that use many small cores effectively.

What do objects have to offer us in the era of manycore? The answer
seems obvious. Processes that interact through messages, which are the
essence of Simula’s view of computation, are exactly what populate a many-
core chip. The similarity becomes even clearer if we recall Kay’s vision of
objects as little computers. Objects are also offer us heterogeneity. There
are many different classes of objects interacting in a typical program, and
there is no reason that these different classes of objects need be coded in the
same programming language, or compiled to the same instruction set. This
is because the “encapsulation boundary” around each object means that no
other object need know about its implementation. For example, objects that
perform matrix arithmetic to calculate an image might be compiled to run
on a general-purpose graphical processing unit, while other parts of the same
application might be compiled to more conventional architectures.

Objects can also provide us with a “Cost Model” for manycore, that is,
a way of thinking about computation that is closely-enough aligned with the
real costs of execution that it can help us reason about performance. Most
current computing models date from the 1950s and treat computation as the
expensive resource — which was the case when those models were developed,
and computation made use of expensive valve or discrete transistor logic.
Data movement, in contrast, is regarded as free, since it was implemented by

25

copper wires. As a consequence, these models lead us to think, for example,
of moving an operation out of a loop and caching the result in memory as an
“optimization”. The reality today is very different: computation is essentially
free, because it happens “in the cracks” between data fetch and data store. In
contrast, data movement is expensive, in that it uses both time and energy.
Today’s programming languages are unable to even express the thing that
needs to be carefully controlled on a manycore chip: data movement.

I would like to propose an object-oriented cost model for manycore com-
puting. To the traditional object model we need add only two things: each
object has a size and a spatial location. The size of an object is important
because it needs to fit into the cache memory available at its location. “Size”
includes not just the data inside the object, but also the code that makes
up its method suite. Local operations on an object can be regarded as free,
since they require only local computations on local data. Optimizing an ob-
ject means reducing its size until it fits into the available cache, or, if this
is not possible, partitioning the object into two or more smaller objects. In
contrast, requesting that a method be evaluated in another object may be
costly, since this requires sending a message to another location. The cost
of a message is proportional to the product of the distance to the receiver
and the amount of data; we can imagine measuring it in byte nanometers.
The cost of a whole computation can be estimated as proportional to the
number of messages sent and the cost of each message. We can reduce this
cost by relocating objects so that frequent communication partners are close
together, and by recomputing answers locally rather than requesting them
from a remote location. Such a model does not, of course, capture all of the
costs of a real computation, but it seems to me that it will provide a better
guide for optimization than models from the 1950s.

10.2. Mobility and the Cloud

The world of mobile computing is a world in which communication is
transient, failure is common, and replication and caching are the main tech-
niques used to improve performance and availability. The best models for
accessing objects in such an environment seem to me to those used for dis-
tributed version control, as realized in systems like subversion and git [35, 36].
In such systems all objects are immutable; updating an object creates a new
version. Objects can be referred to in two ways: by version identifier, and by
name. A version identifier is typically a large numeric string and refers to (a
copy of) a particular immutable object. In contrast, a name is designed for

26

human consumption, but the binding of a name to a version object changes
over time: when a name is resolved, it is by default bound to a recent version
of the object that it describes.

Erlang uses a similar naming mechanism to realise its fail-over facility.
Erlang messages can be sent either to a process identifier, or to a process
name. A particular process identifier will always refer to the same process;
sending a message to a process identifier will fail if the process is no longer
running. In contrast, a process name indirects through the name server, so
messages sent to a process name will be delivered to the most recent process
to register that name. When a process crashes and its monitor creates a
replacement process, the replacement will usually register itself with the name
sever under the same name. This ensures that messages sent to the process
name will still be delivered, although successive messages may be delivered
to different processes [11]. Perhaps a similar mechanism should be part of
every object-oriented system? This would mean that we would be able to
reference an object either by a descriptor, such as “Most recent version of the
Oslo talk”, or by a unique identifier, such as Object16x45d023f. The former
would resolve to one replica of a recent version; the latter would resolve to a
specific object.

10.3. Reliability

Total failures are easy to handle, but will become increasingly rare as
distributed and manycore systems become the norm. It is often possible
to mask a failure using replication in time or space, but this is not always
wise. Resending lost messages is not a good idea if they contain out-of
date information; it may be better to send a new message containing fresh
information. Similarly, it may be more cost-effective to recompute lost data
than to retrieve it from a remote replica. Thus it seems to me that facilities
for dealing with failures must be visible in the programming model, so that
programmers can choose whether or not to use them. What, then, should
the unit of failure be in an object-oriented model of computation? Is it the
object, or is there some other unit? Whatever unit we choose, it must “leak
failure”, in the sense that its clients must be able to see it fail and take action
appropriate to the context.

10.4. Distributed Development Teams

With the ubiquity of computing equipment and the globalization of in-
dustry, distributed software development teams have become common. You

27

may wonder what this trend has to do with objects. The answer is packaging:
collaborating in loosely-knit teams demands better tools for packaging code
and sharing it between the parts of a distributed team. Modules, which I
regard as the unit of code sharing, are typically prameterised by other mod-
ules. The point is that module parameters should be bound at the time that
a module is used, not when it is written. In other words, module parameters
should be “late bound”. This means that there is no need for a global
namespace in the programming language itself; URLs or versioned objects
provide a perfectly adequate mechanism for referring to the arguments of
modules.

11. The Value of Dynamism

Before I conclude, I’m going to offer some speculations on the value of
dynamism. These speculations are motivated by the fact that in designing
Simula, Dahl recognized that the runtime structures of Algol 60 already
contained the mechanisms that were necessary for simulation, and the recog-
nition of Nygaard and Dahl that it is the runtime behavior of a simulation
program that models the real world, not the program’s text. I see a simi-
lar recognition of the value of dynamism in “Agile” software development, a
methodology in which a program is developed in small increments, in close
consultation with the customer. The idea is that (a primitive version of)
the code runs at the end of the first week, and new functionality is added
every week, under the guidance of the customer, who determines which func-
tions have the greatest value. Extensive test suites make sure that the old
functionality continues to work while new functionality is added.

If you have never tried such a methodology, you may wonder how it
could possibly work! After all, isn’t it important to design the program?
The answer is yes: design is important. In fact, it is so important, that agile
practitioners don’t do it only at the start of the software creation process,
when they know nothing about the program. Instead, they design every day:
the program is continuously re-designed as the programmers learn from the
code, and from the behavior of the running system.

The observation that I wish to make about the Agile design process is
that the program’s run-time behavior is a powerful teaching tool. This is
obvious if you view programs as existing to control computers, but perhaps
less obvious if you view programs as static descriptions of a system, like a
set of mathematical equations. However, as Dahl and Nygaard discovered, it

28

is a program’s behavior, not the program itself, that models the real-world
system. The program’s text is a meta-description of the program behavior,
and it is not always easy to infer the behavior from the meta-description.

In my own practice as a teacher of object-oriented programming, I know
that I have succeeded when students anthropomorphize their objects, that
is, when they turn to their partners and start to speak of one object asking
another object to do something. I have found that his happens more often
and more quickly when I teach with Smalltalk than when I teach with Java:
Smalltalk programmers tend to talk about objects, while Java programmers
tend to talk about classes. I suspect that this is because Smalltalk is the
more dynamic language: many features of the language and the programing
environment help the programmer to interact with objects, rather than with
code. Indeed, I am tempted to define a “Dynamic Programming Language”
as one designed to help the programmer learn from the run-time behavior of
the program.

12. Summary

Fifty years ago, Dahl and Nygaard had some profound insights about
the nature of both computation and human understanding. “Modelling the
world” is not only a powerful technique for designing and re-designing a
computer program: it is also one of the most effective ways yet found of
communicating that design to other humans.

What are the major concepts of object-orientation? The answer depends
on the social and political context. Dahl listed five, including the use of
objects as record structures and as procedurally-encapsulated data abstrac-
tions, and the use of inheritance for incremental definition. Some of what he
though were key ideas, such as active objects and objects as modules, have
been neglected over the last 30 years, but may yet be revived as the context
in which we program becomes increasingly distributed and heterogeneous,
in terms of both execution platform and programming team. It certainly
seems to me that, after 50 years, there are still ideas in Simula that can be
mined to solve twenty-first century problems. There may not be any pro-
gramming a thousand years from now, but I’m willing to wager that some
form of Dahl’s ideas will still be familiar to programmers in fifty years, when
Simula celebrates its centenary.

29

Acknowledgements

I thank Stein Krogdahl, Olaf Owe and the committee of FCT11 for hon-
ouring me with the invitation to speak at the scientific opening of the Ole-
Johan Dahl hus, as well as supplying me with information about Dahl and
Simula. I also thank Olaf for convincing me to turn my lecture into this
article. William Cook was an encouraging and through critic; Ivan Suther-
land helped me understand where the costs lie in modern processors, and
provided useful feedback on a draft of my manuscript. David Ungar shared
many insights with me and helped to improve both my lecture and this ar-
ticle.

References

[1] K. Nygaard, O.-J. Dahl, The development of the SIMULA languages,
in: R. L. Wexelblat (Ed.), History of programming languages I, ACM,
New York, NY, USA, 1981, pp. 439–480.

[2] University of Oslo, Department of Informatics, Kristen Nygaard — Ed-
ucation and Career, 2011. Web page last visited 25 December 2011.
http://www.mn.uio.no/ifi/english/about/kristen-nygaard/career/.

[3] R. Feynman, Speech at centenial celebration of Massachusetts Institute
of Technology (version C), 1961. The Feynman Archives at California
Institute of Technology.

[4] C. Hoare, Hints on Programming Language Design, Memo AIM-224,
Stanford Artificial Intelligence Laboratory, 1973. Invited address, 1st
POPL conference.

[5] O.-J. Dahl, Transcript of discussant’s remarks, in: R. L. Wexelblat
(Ed.), History of programming languages I, ACM, New York, NY, USA,
1981, pp. 488–490.

[6] O.-J. Dahl, C. Hoare, Hierarchical program structures, in: Structured
Programming, Academic Press, 1972, pp. 175–220.

[7] C. Hoare, Record handling, Lectures at the NATO summer school, 1966.

30

[8] O.-J. Dahl, The roots of object-oriented programming: the Simula lan-
guage, in: M. Broy, E. Denert (Eds.), Software Pioneers: Contributions
to Software Engineering, Springer-Verlag, Berlin, Heidelberg, 2002, pp.
79–90.

[9] P. Wegner, Dimensions of object-based language design, in: N. Mey-
rowitz (Ed.), Proceedings Second ACM Conference on Object-Oriented
Programming Systems, Languages and Applications, ACM Press, Or-
lando, Florida, 1987, pp. 168–182.

[10] W. Cook, J. Palsberg, A denotational semantics of inheritance and its
correctness, in: Conference on Object-oriented programming systems,
languages and applications, ACM Press, New Orleans, LA USA, 1989,
pp. 433–443.

[11] J. Armstrong, Programming Erlang: Software for a concurrent world,
Pragmatic Bookshelf, 2007.

[12] B. Archer, Programming quotations, 2011. Web page last visited 22
January 2012. http://www.bobarcher.org/software/programming quotes.
html.

[13] P. Wadler, The essence of functional programming, in: Conference
Record of the Nineteenth ACM Symposium on Principles of Program-
ming Languages, ACM Press, Albuquerque, NM, 1992, pp. 1–14.

[14] P. Wadler, Comprehending monads, Mathematical Structures in Com-
puter Science 2 (1992) 461–493. Originally published in ACM Conference
on Lisp and Functional Programming, June 1990.

[15] A. C. Kay, The early history of Smalltalk, in: The second ACM
SIGPLAN conference on History of programming languages, HOPL-II,
ACM, New York, NY, USA, 1993, pp. 511–598.

[16] A. Snyder, The Essence of Objects: Common Concepts and Terminol-
ogy, Technical Report HPL-91-50, Hewlett Packard Laboratories, 1991.

[17] A. Snyder, The essence of objects: Concepts and terms, IEEE Softw.
10 (1993) 31–42.

31

[18] A. H. Borning, D. H. H. Ingalls, A type declaration and inference system
for smalltalk, in: Conference Record of the Ninth ACM Symposium
on Principles of Programming Languages, Albuquerque, NM, USA, pp.
133–141.

[19] C. Hoare, Proof of correctness of data representations, Acta Informatica
1 (1972) 271–281.

[20] D. L. Parnas, On the criteria to be used in decomposing systems into
modules, CACM 15 (1972) 1053–1058.

[21] B. Liskov, A. Snyder, R. Atkinson, C. Schaffert, Abstraction mecha-
nisms in CLU, Comm. ACM 20 (1977) 564–576.

[22] A. Church, The Calculi of Lambda-Conversion, volume 6 of Annals of
Mathematical Studies, Princeton University Press, 1941.

[23] J. C. Reynolds, User-defined types and procedural data structures as
complementary approaches to data abstraction, in: Conference on New
Directions in Algorithmic Languages, IFIP Working Group 2.1, Munich,
Germany, p. 12.

[24] J. C. Reynolds, User defined types and procedural data structures as
complementary approaches to data abstraction, in: D. Gries (Ed.),
Programming Methodology, A Collection of Articles by IFIP WG2.3,
Springer Verlag, 1978, pp. 309–317. Reprinted from S. A. Schuman
(ed.), New Advances in Algorithmic Languages 1975 Inst. de Recherche
d’Informatique et d’Automatique, Rocquencourt, 1975, pages 157-168.

[25] W. R. Cook, On understanding data abstraction, revisited, in: S. Arora,
G. T. Leavens (Eds.), OOPSLA, ACM, 2009, pp. 557–572.

[26] C. Hewitt, P. Bishop, R. Steiger, A universal modular actor formal-
ism for artificial intelligence, in: IJCAI, Stanford University, Stanford,
California, pp. 235–245.

[27] A. Black, N. Hutchinson, E. Jul, H. Levy, Object structure in the Emer-
ald system, in: Proceedings of the First ACM Conf. on Object-Oriented
Programming Systems, Languages and Applications, volume 21, ACM,
Portland, Oregon, pp. 78–86. Published as SIGPLAN Notices 21(11),
November 1986.

32

[28] A. Borning, Classes versus prototypes in object-oriented languages, in:
FJCC, IEEE Computer Society, 1986, pp. 36–40.

[29] A. P. Black, N. Hutchinson, E. Jul, H. M. Levy, L. Carter, Distribution
and abstract types in emerald, IEEE Tran Software Eng. SE-13 (1987)
65–76.

[30] A. P. Black, N. Hutchinson, Typechecking Polymorphism in Emerald,
Technical Report Technical Report CRL 91/1 (Revised), Digital Equip-
ment Corporation Cambridge Research Laboratory, 1991.

[31] A. Taivalsaari, Delegation versus concatenation, or cloning is inheritance
too, SIGPLAN OOPS Mess. 6 (1995) 20–49.

[32] O. L. Madsen, An overview of beta, in: J. Knudsen, O. Madsen,
B. Magnusson (Eds.), Object-Oriented Environments, Prentice Hall, En-
glewood Cliffs, NJ, 1993, pp. 99–118.

[33] A. P. Black, N. C. Hutchinson, E. Jul, H. M. Levy, The development
of the Emerald programming language, in: B. G. Ryder, B. Hailpern
(Eds.), HOPL III: Proceedings of the third ACM SIGPLAN conference
on History of Programming Languages, ACM, San Diego, CA, 2007, pp.
11–1–11–51.

[34] A. R. Meyer, M. B. Reinhold, ‘Type’ is not a Type: Preliminary report,
in: Conference Record of the Thirteenth ACM Symposium on Principles
of Programming Languages, St Petersburg Beach, FL, USA, pp. 287–
295.

[35] M. Mason, Pragmatic Version Control Using Subversion, Pragmatic
Bookshelf, Pragmatic Programmers, 2005.

[36] C. Duan, Understanding Git: Repositories, 2010. Accessed on 13 Feb
2012.

33

