
Digital Object Identifier (DOI) 10.1007/s00530-002-0062-3
Multimedia Systems 8: 406–419 (2002) Multimedia Systems

Springer-Verlag 2002

Infopipes: An abstraction for multimedia streaming

Andrew P. Black1, Jie Huang1, Rainer Koster2, Jonathan Walpole1, Calton Pu3

1 Department of Computer Science and Engineering, OGI School of Science and Engineering, Oregon Health and Science University
(e-mail: black@cse.ogi.edu)

2 Fachbereich Informatik, University of Kaiserslautern
3 School of Computing, Georgia Institute of Technology

Abstract. To simplify the task of building distributed stream-
ing applications, we propose a new abstraction for information
flow – Infopipes. Infopipes make information flow primary,
not an auxiliary mechanism that is hidden away. Systems are
built by connecting predefined component Infopipes such as
sources, sinks, buffers, filters, broadcasting pipes, and multi-
plexing pipes. The goal of Infopipes is not to hide communi-
cation, like an RPC system, but to reify it: to represent commu-
nication explicitly as objects that the program can interrogate
and manipulate. Moreover, these objects represent communi-
cation in application-level terms, not in terms of network or
process implementation.

Keywords: Quality of service –Streaming –Communication
– Feedback – Real-rate systems

1 Introduction

Recent years have witnessed a revolution in the way people
use computers. In today’s Internet-dominated computing en-
vironment, information exchange has replaced computation
as the primary activity of most computers. This revolution
began with the use of the World Wide Web for accessing rela-
tively static information. It has continued with the emergence
of streaming applications, such as video and music on de-
mand, IP-telephony, Internet radio, video conferencing and
remote surveillance systems. Recent traffic studies (Chesire et
al. 2001; Thompson et al. 1997) show that these applications
are already major consumers of bandwidth on the Internet and
are likely to become dominant in the near future. The advent
of interconnected, embedded and sensor-based systems will
accelerate the development and deployment of new streaming
applications.
The salient characteristics of streaming applications are

their extensive use of communication among distributed com-
ponents and their real-time interaction with real-world pro-
cesses. Consequently, developers of streaming applications
spendmuch of their time reasoning about the communications
and I/O behaviour of their systems. This change of emphasis

from computation to communication is the motivation for our
research.
This paper describes Infopipes, a new abstraction, together

with associated middleware and tools, for simplifying the task
of constructing streaming applications. Themotivation for de-
veloping Infopipes as middleware is to provide a single set of
abstractions with a uniform interface that can be made avail-
able on a diverse set of hosts and devices. Wide availability is
important for streaming applications because, by their nature,
they tend to span many potentially heterogeneous computers
and networks, and interact with many different devices. The
abstractions must also be appropriate to the problem domain:
they should expose the primitives useful in that domain, and
control and hide the unnecessary details.
The essence of streaming applications is creation andman-

agement of information flows via producer–consumer interac-
tions among potentially distributed components. Hence, com-
munication is a primary concern and should be exposed, not
hidden.Moreover, it is application-level information that must
be communicated, not low-level data, so exposing low-level
network abstractions is inappropriate.
Exposing the basic communication elements, such as

sources, sinks and routes, is inadequate: streaming applica-
tions are frequently also concerned with the quality of service
(QoS) of that communication. For example, the correct ex-
ecution of a streaming-media application is often critically
dependent on the available bandwidth between the server and
client. Adaptive applications may actively monitor this QoS
aspect and adapt the media quality dynamically to match their
bandwidth requirements to the available bandwidth (Jacobs
and Eleftheriadis 1998; Karr et al. 2001;McCanne et al. 1997;
Walpole et al. 1997). When constructing streaming applica-
tions, these timing and resource-management tasks tend to
be the source of much complexity, since they touch on as-
pects of the environment that differ among applications, and
even among different deployments of the same application. In
contrast, the computation-intensive aspects of the application,
such as media encoding and decoding, can often be addressed
using standard components.
The desire to reify communication rather than hide it

is in contrast to many distributed-systems middleware plat-
forms that are based around remote procedure call (RPC)
mechanisms (ISO 1998; OMG 1998b; OSF 1991; Sun 2002).



A.P. Black et al.: Infopipes: An abstraction for multimedia streaming 407

Of course, it is also undesirable and unmanageable to ex-
pose all of the underlying details of communication. In gen-
eral, information-flow application developers will not want to
reimplement low-level protocol functionality – such as mar-
shalling, fragmentation, congestion control, ordered delivery
and reliability – for every application they build. Thus, what
we would like to do is to find a way to factor and prepackage
such functionality so that it can be selectedwhen needed to en-
sure a particular property. This emphasis on component-based
composition and property composition is a central character-
istic of the Infopipe approach.
This approach to dealing with the complexities of com-

munication can be reapplied when dealing with the complex-
ities of scheduling computation. Since timing is critical for
many streaming applications, they need some way to control
it. However, it is neither desirable nor necessary to expose
application developers to all of the ugly details of thread man-
agement, scheduling, and synchronization. Insteadwe attempt
to expose the QoS-related aspects of scheduling and hide the
unnecessary details.
Thus, our primary goal for Infopipes is to select a suitable

set of abstractions for the domain of streaming applications,
make them available over a wide range of hardware and oper-
ating systems, and allow tight control over the properties that
are important in this domain while hiding the unnecessary
details.
A further goal, which we discovered to be important

through our own experiences building real-time streaming
applications, is the ability to monitor and control proper-
ties dynamically and in application-specific terms. This ca-
pability enables applications to degrade or upgrade their be-
haviour gracefully in the presence of fluctuations in available
resource capacity. Since graceful adaptation is an application-
defined concept, it cannot be achieved using a one-size-fits-
all approach embedded in the underlying systems software.
The alternate approach of exposing system-level resource-
management information to application developers introduces
unnecessary complexity into the task of building applications.
Therefore, the goal for amiddleware solution is tomap system-
level resource-management details into application-level con-
cepts so that adaptive resource management can be performed
by application components in application-specific terms.
Afinal goal for Infopipemiddleware is to support tools that

automatically check the properties of a composite system. For
example, important correctness properties for a pipeline in a
streaming application are that information be able to flow from
the source to the sink, that latency bounds are not exceeded
and that the quality of the informationmeets the requirements.
Even though individual Infopipe components may exhibit the
necessary properties in isolation, it is often non-trivial to de-
rive the properties of a system that is composed from these
components.
The remainder of this paper presents more detail about

our ongoing research on Infopipes. Section 2 discusses the
Infopipe model, loosely based on a plumbing analogy, and
describes the behaviour of various basic Infopipe components.
Section 3 discusses some of the properties that are important
for composite Infopipes and introduces somepreliminary tools
we have developed. Section 4 discusses the implementation.
Some example Infopipe applications are presented in Sect. 5.

Section 6 discusses related work, and Sect. 7 concludes the
paper.

2 The Infopipe model and component library

Infopipes are both a model for describing and reasoning about
information-flow applications, and a realization of that model
in terms of objects that we call Infopipe components. It is cen-
tral to our approach that these components are real objects that
can be created, named, configured, connected and interrogated
at will; they exist at the same level of abstraction as the logic
of the application, and this exposes the application-specific
information flows to the application in its own terms. For ex-
ample, an application object might send a method invocation
to an Infopipe asking how many frames have passed through
it in a given time interval, or it might invoke a method of an
Infopipe that will connect it to a second Infopipe passed as an
argument.
An analogy with plumbing captures our vision: just as a

water-distribution system is built by connecting together pre-
existing pipes, tees, valves and application-specific fixtures,
so an information-flow system is built by connecting together
predefined and application-specific Infopipes. Moreover, we
see Infopipes as a useful tool for modelling not only the com-
munication of information from place to place, but also the
transformation and filtering of that information. The Infopipe
component library therefore includes processing and control
Infopipes as well as communication Infopipes. We can also
compose more complex Infopipes with hybrid functionality
from these basic components. Our goal is to provide a rich
enough set of components that we can construct information-
flow networks, which we call Infopipelines, for a wide variety
of applications.

2.1 Anatomy of an Infopipe

Information flows into and out of an Infopipe through ports;
push and pull operations on these ports constitute the In-
fopipe’s data interface. An Infopipe also has a control interface
that allows dynamic monitoring and control of its properties,
and hence the properties of the information flowing through it.
Infopipes also support connection interfaces that allow them
to be composed, i.e., connected together at runtime, to form
Infopipelines. The major interfaces required for an object to
be an Infopipe are shown in Fig. 1.
It is central to our approach that Infopipes are composi-

tional. By this we mean that the properties of a pipeline can be
calculated from the properties of its individual Infopipe com-
ponents. For example, if an Infopipe with a latency of 1ms is
connected in series with an Infopipe with a latency of 2ms, the
resulting pipeline should have a latency of 3ms – not 3.5ms
or 10ms.
Compositionality requires that connections between com-

ponents are seamless: the cost of the connection itself must
be insignificant. Pragmatically, we treat a single procedure
call or method invocation as having insignificant cost. In con-
trast, a remote procedure call, or a method that might block
the invoker, have potentially large costs: we do not allow such
costs to be introduced automatically when two Infopipes are



408 A.P. Black et al.: Infopipes: An abstraction for multimedia streaming

Fig. 1. Principal interfaces of an Infopipe

connected. Instead, we encapsulate remote communication
and flow synchronization as Infopipe components, and re-
quire that the client include these components explicitly in the
Infopipeline. In this way, the costs that they represent can also
be included explicitly.
Other properties may not compose so simply as latency.

For example, CPU load may not be additive: memory locality
effects can cause either positive or negative interference be-
tween two filters that massage the same data. While we do not
yet have solutions to all of the problems of interference, we
do feel strongly that addressing these problems requires us to
be explicit about all of the stages in an information flow.

2.2 Control interfaces

The control interface of an Infopipe exposes and manages
two sets of properties: the properties of the Infopipe itself,
and the properties of the information flowing through it. To
see the distinction, consider an Infopipe implemented over a
dedicated network connection. The bandwidth of this Netpipe
is a property of the underlying network connection. However,
the actual data flow rate, although bounded by the bandwidth,
may vary with the demands of the application.
We regard both pipe and flow properties as control proper-

ties because they are clearly related. Indeed, expressing pipe
properties such as bandwidth in application-level terms (e.g.,
frames per second rather than bytes per second) requires in-
formation about the flow.
Different kinds of Infopipe provide different control inter-

faces. For example, we have fillLevel for buffers and slower
and faster for pumps. We are investigating the properties and
control information that should be maintained in Infopipes
and in information flows to support comprehensive control
interfaces.

2.3 Ports

To be useful as a component in an Infopipeline, an Infopipe
must have at least one port. Ports are the means by which
information flows from one Infopipe to another, and are cate-
gorized by the direction of information flow as either Inports
(into which information flows, indicated by the symbol )
or Outports (from which information flows, indicated by the
symbol ).
Each Infopipe has a set of named Inports and a set of

named Outports; each port is owned by exactly one Infopipe.
For straight-line pipes, both the Inport set and the Outport set
have a single element, which is named Primary.
OutPorts have a method anInPort that sets up a con-

nection to anInPort. Infopipes also have a method, which
is defined as connecting the primary OutPort of the upstream
pipe to the primary InPort of the downstream pipe.
Information can be passed from one Infopipe to another

in two ways. In push mode, the Outport of the upstream com-
ponent invokes the method push: anItem1 on the Inport of the
downstream component, as shown in Fig. 2a. In pull mode,
shown in Fig. 2b, the situation is dual: the Inport of the down-
stream component invokes the pull method of the Outport of
the upstream component, which replies with the information
item. The portsP andS (shaded in the figure) invokemeth-
ods; we say that they are positive. PortsQ and R (shaded )
execute methods when invoked; we say that they are nega-
tive. In a well-formed pipeline, connected ports have opposite
direction and opposite polarity. Any attempt to connect, for ex-
ample, an Inport to another Inport, or a positive port to another
positive port, should be rejected.
It is not obvious that Infopipes need the concept of port.

Indeed, our first prototypes of straight-line Infopipes did not
have ports: a pipe was connected directly to its upstream and
downstream neighbours, and each pipe had two connection

1 We follow the Smalltalk convention of using a colon (rather than
parenthesis) to indicatewhere an argument is required.Often, as here,
we will provide an example argument with a meaningful name.



A.P. Black et al.: Infopipes: An abstraction for multimedia streaming 409

Fig. 2. (a) Pushmode communication; (b) pull mode communication

Fig. 3. Some Infopipe components

methods, input: and output:. However, the introduction of Tees
– that is, pipes with multiple inputs and outputs – would have
made the connection protocolmore complex and less uniform.
Ports avoid this complexity, and turn out to be useful in build-
ing RemotePipes and CompositePipes as well, as we shall
explain later.

2.4 Common components

Figure 3 illustrates some Infopipe components. Sources are
Infopipes in which the set of Inports is empty; Sinks have an
empty set of Outports. Tees are Infopipes in which one or
both of these sets have multiple members. These ports can be
accessed by sending the Tee the messages inPortAt: aName
and outPortAt: aName; the ports can then be connected as
required. Figure 4 shows an example.
In addition, we can identify various other Infopipes.

• A buffer is an Infopipe with a negative Inport, a negative
Outport, and some storage. The control interface of the
buffer allows us to determine how much storage it should
provide, and to ascertain what fraction is in use.

• A pump is an Infopipe with a positive Inport and a positive
Outport. Its control interface lets us set the rate at which
the pump should consume and emit information items.

• A remote pipe is an Infopipe that transports information
from one address space to another. Although the Infopipe

abstraction is at a higher level than that of address space,
a middleware implementation must recognize that a host
program executes in an address space that is likely to en-
compass only part of the Infopipeline.Remote pipes bridge
this gap; the Inport and Outport of a remote pipe exist in
different address spaces, and the remote pipe itself pro-
vides an information portal between those address spaces.
Remote pipes can be constructed with different polarities,
reflecting the different kinds of communication path. An
IPCPipe between two address spaces on the samemachine
might provide reliable, low-latency, communication be-
tween a negative Inport and a positive Outport; such a pipe
emits items as they arrive from the other address space. A
Netpipe that connects two address spaces on different ma-
chines has twonegative ports and provides buffering; items
are kept until they are requested by the next connected In-
fopipe in the downstream address space.

An important aspect of component-based systems is the
ability to create new components by aggregating old ones, and
then to use the newcomponents as if theywere primitive.Com-
posite pipes provide this functionality; any connected sub-
network of Infopipes can be converted into a CompositePipe,
which clients can treat as a new primitive.
In order for clients to connect to a composite pipe in the

same way as to a primitive Infopipe, without knowing any-
thing about its internal structure, and indeed without know-
ing that it is a composite rather than a primitive, a compos-
ite pipe must have its own ports. We call these ports For-
wardedPorts. The ForwardedPorts are in one-to-one corre-
spondence with, but are distinct from, the open ports of the
sub-components. We cannot use the same object for the For-
wardedPort and the real port because the real port is owned
by the sub-component while the ForwardedPort is owned by
the CompositePipe itself. Figure 5 shows the internal structure
of a composite pipe. From the outside, it is just an ordinary
Infopipe with two Inports and two Outports. Open ports of
different sub-components may have the same name, but their
ForwardedPorts must have different names because the ports
of an Infopipe must be distinguishable.
One inevitable difference between composite and primi-

tive Infopipes is that the former need more complex initiali-
sation: the internal structure of the Composite must be estab-
lished before it can be used. It is therefore convenient to adopt a
prototype-oriented style of programming, where a Composite
is first constructed and then cloned to create as many instances
as required. To support this style uniformly, all Infopipes (not
just composite pipes) have a clone method, which makes a
pipe-specific set of choices about what parameters to copy and
what parameters to reinitialise. For example, when a pump is
cloned, the pumping rate is copied from the prototype, but the
ports of the clone are left open.

3 From pipes to pipelines: analysis and tools

3.1 Polarity checking and polymorphism

The concept of port polarity introduced in Sect. 2.3 is the basis
for several useful checks that an Infopipeline is well-formed.
From the polarity of an Infopipe’s ports, we can construct

an expression that represents the polarity of the Infopipe itself.



410 A.P. Black et al.: Infopipes: An abstraction for multimedia streaming

Fig. 4. Building a pipeline with Tees

Fig. 5. Internal structure of a CompositePipe

We use a notation reminiscent of a functional type signature.
Thus, a buffer, which has a negative Inport and a negative
Outport, has a polarity signature− → −, while a pump,which
has two positive ports, has signature + → +.
Whereas buffers seem to be inherently negative and pumps

inherently positive, somecomponents canbemodelled equally
well with either polarity. For example, consider the function of
a defragmenter that combines a pair of information items into a
single item. Such functionality could be packaged as a− → +
Infopipe, which accepts a sequence of two items pushed into
its Inport and pushes a single item from its Outport. However,
the same functionality could also be packaged as a + → −
Infopipe, which pulls two items into its Inport and replies to a
pull request on its Outport with the combined item.
Rather than having two distinct Infopipes with the same

functionality but opposite polarities, it is convenient to com-
bine both into a single component, to which we assign the
polarity signature α → ᾱ. This should be read like a type sig-
nature for a polymorphic function, with an implicit universal
quantifier introducing the variable α. It means that the ports
must have opposite polarities. For example, if a filter with sig-
nature α → ᾱ is connected to the Outport of a pump with
signature+ → +, the α would be instantiated as− and the ᾱ
as +, and hence the filter would acquire the induced polarity
− → +.

The polarity-checking algorithm that we have imple-
mented is very similar to the usual polymorphic type check-
ing and inference algorithm used for programming languages
(Cardelli 1987). The main extension is the addition of a nega-
tion operation.

3.2 Ensuring information flow

Polarity correctness is a necessary condition for information to
flow through a pipeline. For example, if two buffers (both with
signature− → −) were directly connected, it would never be
possible for information to flow from the first to the second.
The polarity check prohibits this. In contrast, a pipeline that
contains a pump (with signature + → +) between the two
buffers will pass the polarity check and will also permit infor-
mation to pass from the first buffer to the second.
However, polarity correctness is not by itself sufficient to

guarantee timely information flow. In studying these issues, it
is useful to think of an Infopipeline as an energy-flow system.
Initially, energy comes from pumps and other components
with only positive ports, such as positive sources. Eventually,
energy will be dissipated in buffers and sinks.
Components such as broadcast tees, which have signature

−↗+

↘+
, can be thought of as amplifying the energy in the infor-



A.P. Black et al.: Infopipes: An abstraction for multimedia streaming 411

mation flow, since every information item pushed into the tee
causes two items to be pushed out. However, a switching tee,
which redirects its input to one or other of its two Outports, is
not an amplifier, even though it has the samepolarity signature.
This can be seen by examining the flows quantitatively. If the
input flow has bandwidth b items per second, aggregate output
from the broadcast tee is 2b items per second, whereas from
the switching tee it is b items per second. Similar arguments
can be made for droppers and tees that aggregate information;
they can be thought of as energy attenuators.
From these considerations we can see that the “energy”

flow in a pipeline cannot be ascertained by inspection of the
polarities of the components alone. It is also necessary to
examine the quantitative properties of the flow through the
pipeline, such as information flow rates.

3.3 Buffering, capacity and cycles

So far, our discussions have focused on linear pipelines and
branching pipelines without cycles. However, we do not wish
to eliminate the possibility of cyclic pipelines, where outputs
are “recycled” to become inputs. Examples in which cycles
may be useful include implementation of chained block ci-
phers, samplers, and forward error correction.
It appears that a sufficient condition to avoid deadlock and

infinite recursion in a cycle is to require that any cycle contains
at least one buffer. This condition can easily be ensured by a
configuration-checking tool. The polarity check will then also
ensure that the cycle contains a pump. However, this rule may
not be a necessary condition for all possible implementations
of pipeline components, and it remains to be seen if it will
disallow pipeline configurations that are useful and would in
fact function correctly.
Three other properties that one might like to ensure in

a pipeline are (1) that no information items are lost, unless
explicitly dropped by a component, (2) that the flow of in-
formation does not block, and (3) that no component uses
unbounded resources. However, although it may be possible
to prove all of these properties for certain flows with known
rate and bandwidth, in general it is impossible to maintain all
three. This is because a source of unbounded bandwidth can
overwhelm whatever Infopipes we assemble to deal with the
flow – unless we allow them unbounded resources. We are
investigating the use of queuing theory models to do quick
checks on pipeline capacity.

3.4 The Infopipe configuration language

We have prototyped a textual pipeline configuration language
by providing Infopipe components with appropriate opera-
tors in the Smalltalk implementation. This can be viewed as
an implementation of a domain-specific language for pipeline
construction by means of a shallow embedding in a host lan-
guage.
The most important operator for pipeline construction is
,which, asmentioned in Sect. 2.3, is understood by both In-

fopipes and ports. This enables simple straight-line Infopipes
to be built with one line of text, such as SequentialSource new

(p := Pump new) Sink new. The ability to name the

Fig. 6. Inspecting a simple straight pipeline

Inports and Outports of an Infopipe explicitly permits us to
construct arbitrary topologies with only slightly less conve-
nience, as has already been illustrated in Fig. 4.
Using an existing programming language as a host pro-

vides us with a number of benefits, including the use of host
language variables to refer to Infopipes, such as p in the above
example. Because Smalltalk is interactive, the Infopipe pro-
grammer can not only start the pipeline (by issuing the control
invocation p startPumping) but can also debug it using host
language facilities. For example, p inspectPipleine will open
a window (shown in Fig. 6) that allows the programmer to
examine and change the state of any of the Infopipes in the
pipeline.

4 Implementation issues

4.1 Threads and pipes

One of the trickiest issues in implementing Infopipes is the
allocation of threads to a pipeline. Port polarity in the Infopipe
abstraction has a relationship to threading, but the relationship
is not as simple as it may at first appear.
A component that is implemented with a thread is said to

be active. Clearly, a pump is active. In fact, any component
that has only positive ports must be active, for there is no other
way in which it can acquire a thread to make invocations on
other objects.
Avery straightforwardwayof implementing apumpwith a

frequency f Hz is to generate a new thread every 1/f seconds,
and to have each such thread execute the code

outport push: (inport pull)

exactly once. The objection to this approach is that it may
generate many threads unnecessarily, and thread creation is
often an expensive activity. Moreover, because it is possible
for many threads to be active simultaneously, every connected
component must behave correctly in the presence of concur-
rency. In essence, this implementation gives each information
item its own thread, and may thus have good cache locality.
An alternative approach is to give the pump a single thread,

and to have that thread execute



412 A.P. Black et al.: Infopipes: An abstraction for multimedia streaming

Fig. 7. A pump drives a series of transformation Infopipes

outport push: (inport pull).
strokeDelay wait

repeatedly, where strokeDelay wait suspends the caller for the
appropriate inter-stroke interval. However, with the usual syn-
chronous interpretation for method invocation, the pump has
no idea how long it will take to execute outport push: or inport
pull. Thus, it cannot know what delay is appropriate: the value
of the delay is a property of the pipeline as a whole, not a local
property of the pump.
From the perspective of a particular component making

a synchronous invocation, the time that elapses between in-
voking push: or pull on an adjacent component and the return
of that invocation is an interval in which it has “loaned” its
thread to others in the pipeline; we call this interval the thread
latency. Note that thread latency, like the thread itself, is an
implementation-level concept, and is quite distinct from in-
formation latency, the time taken for an information item to
pass through a component. Thread latency can be reduced by
adding additional threads, provided that the CPU scheduler
is willing and able to make additional CPU time available.
Information latency is harder to reduce!
Consider a number of passive components I1, I2, . . . In,

that are connected in series. Suppose that each Ii has polarity
− → +, and that it performs some transformation on the infor-
mation that is pushed into it that takes time ti. The transformed
information item is then pushed into component Ii+1. If all
of the push messages are synchronous, the time that elapses
between invoking push: on I1 and receiving the reply is given
by

ttotal =
n∑

i=1

ti .

Now suppose that a pump P with frequency f is connected
to the Inport of I1, as shown in Fig. 7. If the required interval
between strokes of the pump, tp = 1/f , is less than ttotal,
then the single-threaded version of the pump will be unable to
maintain the specified frequency. It will be necessary to use
multiple threads in the pump, and other components in the
pipeline will need to incorporate the appropriate synchroniza-
tion code to deal correctly with this concurrency. (The pump
may also need to use multiple CPUs; this depends on the pro-
portion of ttotal during which the processor is actually busy.
If some of the In access external devices, tn may be much
greater than the CPU time used by In.)
Thread latency is an important pa-

rameter not only for pumps but also for
other Infopipes. Consider a broadcast
Tee that accepts an information item
at its negative Inport and replicates it
at two or more positive Outports. This
can be implemented with two threads,

which will give the Tee’s push: method the lowest thread la-
tency, zero threads, in which case the pushes that the Tee per-
forms on its downstream neighbours will be serialized, or one
thread, which can be used either to provide concurrency at the
Outports, or to reduce the Tee’s thread latency at its Inport.
It should now be clear that allocating the right number

of threads to a pipeline is not an easy problem. If there are
too few, the pipeline may not satisfy its rate specification; if
there are toomany, wemay squander resources in unnecessary
bookkeeping and synchronization. Application programmers
are relieved of the task of thread allocation by working with
pumps and similar high-level abstractions and dealing instead
with application domain concepts such as stroke frequency.
But this leaves the Infopipe implementation the responsibility
to perform thread allocation.
We have considered two approaches. The first, which we

have prototyped, is entirely dynamic. Pump uses a timer to
wake up after the desired stroke interval. It keeps a stack of
spare threads; if a thread is available, it is used to execute the
stroke. If no thread is available, a new thread is created. Once
the thread has completed the stroke, it adds itself to the stack
(or deletes itself if the stack is full).
The second approach,whichwehave not yet implemented,

analyses the pipeline before information starts to flow. The
components adjacent to the pump are asked for their thread la-
tencies, the total thread latency for pull and push is computed.
If this is less than tp, we know that a single thread should be
sufficient, and simpler single-threaded pipeline components
can be utilized.

4.2 Creating polymorphic Infopipes

A polymorphic Infopipe must have methods for both pull and
push:, and the behaviour of these methods should be coherent,
in the sense that the transformation that the Infopipe performs
on the information, if any, should be the same in each case.
Although polymorphic Infopipes are clearly more use-

ful than their monomorphic instances, it is not in general a
simple matter to create push: and pull methods with the re-
quired correspondence. Figure 8 shows sample code for a
defragmenter. We assume that the component has a method
assemble: i1 and: i2 that returns the composite item built from
input fragments i1 and i2. The pull method, which implements
the+ → − functionality, and the push:method, which imple-
ments the − → + functionality, both use the assemble:and:
method, but, even so, it is not clear how to verify that pull and
push: both do the same thing.
Indeed, a third implementation style is possible, providing

the+ → + polarity; this is shown in Fig. 9. This defragmenter
understands neither pull nor push:, but instead has an internal
thread that repeatedly executes stroke.
It is clearly undesirable to have to write multiple forms

of the same code, particularly when there must be semantic
coherence between them. We can avoid this in various ways.

• Most simply, we can eliminate polymorphic pipes com-
pletely. In this situation, the defragmenter would be writ-
ten with whatever polarity is simplest, probably + → −.
If a different polarity is required, this would be constructed
as a composition of more primitive Infopipes. For exam-



A.P. Black et al.: Infopipes: An abstraction for multimedia streaming 413

Fig. 8.Methods of a polymorphic defragmenter

Fig. 9. Defragmenter in the +→+ style

ple, a buffer, a+ → − defragmenter and a pump could be
composed to create a − → + defragmenter.

• The second approach is to use a layer of middleware to
“wrap” whichever method is most easily written by hand,
in order to generate the other methods. This is possible
because the hand-written methods do not send messages
to the adjacent components directly, but instead use a level
of indirection. For example, the defragmenter pullmethod
sends pull to its own inport rather than pull to the upstream
component. A clever implementation of inport pull can ac-
tually wait for the upstream component to send a push:
message. We have explored this solution in some depth
(Koster et al. 2001b); whenever adjacent Infopipes do not
need to be scheduled independently of each other, they
are run as coroutines in the same thread, thus avoiding
scheduling overhead.

• A third possibility is to automatically transform the source
code, so that one version would be written by hand and
the others generated automatically. Even with the simple
example shown in Fig. 8, this seems to be very hard; in
the general case, we do not believe that it is feasible. The
difficulty is that the transformation engine would need to
“understand” all of the complexity of a general-purpose
programming language like Smalltalk or C++.

• It is possible that this objection could be overcome by us-
ing a domain-specific source language, with higher-level
semantics and more limited expressiveness. From a more
abstract form of the method written in such a language,
it might be possible to generate executable code in what-
ever form is required. This approach is currently under
investigation.

4.3 Netpipes

Netpipes implement network information flows using what-
ever mechanisms are appropriate to the underlying medium
and the application. For example, we have built a low-latency,
unreliable Netpipe using UDP.
A Netpipe has the same polarity and data interface as a

buffer; this models the existence of buffering in the network
and in the receiving socket. However, the control interface of a
Netpipe is different, since it reflects the properties of the under-
lying network. For example, the latency of a Netpipe depends

Fig. 10.Working with a Netpipe

on the latency of its network connection and the capacity of
its buffer.
The motivation for Netpipes is to allow Infopipe middle-

ware components in two different address spaces to connect to
each other. It is certainly true that an existing distributed com-
puting platform, such as remote method invocation or remote
procedure call, would allow such connections. However, if we
used such a platform, we could be hiding the communication
between the address spaces, and thus giving up any ability to
control it – which was the reason that we originally created In-
fopipes. We would also be violating the seamless connection
property described in Sect. 2.1.
However, it is not necessary to reimplement an entire dis-

tributed computing environment in order to retain control over
the information flow in a Netpipe. Instead, we have boot-
strapped the Netpipe implementation by using the features of
an existing environment, such as naming and remote method
invocation.
A Netpipe is an Infopipe with an Inport in one address

space and an Outport in another, as shown in Fig. 10. This
means that the Inport can be in the same address space as its
upstream neighbour, and thus invocations of push: can use
seamless local mechanisms for method invocation. Similarly,
the Outport is in the same address space as its downstream
neighbour, which can seamlessly invoke pull on the Netpipe.
The Netpipe object itself, containing the buffering and the
code, is co-located with the Outport.
Our prototyping environment, Squeak Smalltalk (Guzdial

2001; Squeak2000), is equippedwith a remotemethod invoca-
tion package called S2S,which stands for “Squeak to Squeak”.



414 A.P. Black et al.: Infopipes: An abstraction for multimedia streaming

source := 's2s://MusicStore/source1' asRemoteObject.
pump:= 's2s://MusicStore/pump1' asRemoteObject.
netPipe := Netpipe from: 's2s://MusicStore/'.
sink := MIDIPlayer new.
source pump netPipe sink.
monitor := Monitor monitored: netPipe controlled: pump.
pump startPumping: 100.
monitor startMonitoring: 1000.
sink startPlaying.

Fig. 11. Code for a streaming MIDI pipeline

S2S provides access transparency and location transparency
in a similar way to CORBA and Java RMI. A local proxy can
be created for a remote object; the proxy can then be invoked
without callers needing to be aware that they are really us-
ing a remote object – except that the call is several orders of
magnitude slower.
We take care that we use S2S only to configure and name

Infopipe components, and not for transmitting information
through the pipeline. For example, aNetpipe uses S2S to create
an Inport on the remote machine, and an S2S proxy for this
Inport is stored in theNetpipe.However,when the Inport needs
to push information into the Netpipe, it uses a custom protocol
implemented directly on UDP.
In this way, we arrange that Infopipes exhibit access trans-

parency: the same protocol is used to establish local and re-
mote Infopipe connections. However, we choose not to pro-
vide location transparency: connections between adjacent In-
fopipes must be local, and the method checks explicitly
that the ports that it is about to connect are co-located.Without
this check, ports in different address spaces could be connected
directly: information would still flow through the pipeline, but
the push: or pull of each item would require a remote method
invocation. As well as being very much less efficient, this
would mean that the application would have no control over
network communication.
Instead of signalling an error in the face of an attempt to

connect non-co-located ports, an alternative solution would
be to introduce a Netpipe automatically. We have not pursued
this alternative, because in practice it is usually important for
the programmer to be aware of the use of the network. For
example, it may be necessary to include Infopipe components
to monitor the available QoS and adapt the information flow
over the Netpipe accordingly.
Figure 11 shows the code for setting up a MIDI pipeline

using a Netpipe. The first two statements obtain S2S proxies
for source and pump objects that already exist on a remote
machine called MusicStore. We will refer to these remote ob-
jects as s and p, The third statement builds a Netpipe from
MusicStore to the local machine. The fifth statement, source

pump . . . , constructs the pipeline. It is interesting to
see in detail how this is accomplished.
The invocation is sent to source, which is a local proxy

for remote object s. S2S translates this into a remote method
invocation on the real object s on MusicStore. Moreover, be-
cause the argument, pump, is a proxy for p, and p is co-located
with s, S2S will present p (rather than a proxy for pump) as
the argument to the invocation. The method for will then

execute locally to both s and p, creating a connection with no
residual dependencies on the machine that built the pipeline.
A similar thing happens with netPipe. Although netPipe

itself is local, its Inport is on the host MusicStore. Thus, the
connection between p and netPipe’s Inport is also on Music-
Store. Information transmitted between netPipe’s Inport and
OutPort does of course traverse the network, but it does not use
S2S; it uses a customized transport that is fully encapsulated
in and controlled by netPipe.

4.4 Smart proxies

When information flows from one address space to another, it
is necessary not only to agree on the form that the information
flow should take but also to install the Infopipe components
necessary to construct that flow. For example, amonitoring ap-
plication that produces a video stream from a camera should
be able to access a logging service that records a video in a file
as well as a surveillance service that scans a video stream for
suspicious activity. In the case where the video is sent to a file,
the file sink and the camera might be on the same machine,
and the communication between them might be implemented
by a shared-memory pipe. In the case of the surveillance ap-
plication, the communication could involve a Netpipe with
compression, encryption and feedback mechanisms over the
Internet.
Notice that the Infopipe components that need to be co-

located with the camera are different in these two cases. Since
we wish to allow Infopipes to be dynamically established, we
must address the problem of how such components are to be
installed and configured.
Koster and Kramp proposed to solve this problem in

a client–server environment by using dynamically loadable
smart proxies (Koster and Kramp 2000). Their idea is that
the server functionality is partly implemented on the client
node; this enables the server to control the network part of the
pipeline, as shown in Fig. 12. At connection setup, the server
chooses a communication mechanism based on information
about the available resources. A video server, for instance,
could use shared memory if it happens to be on the same node
as the client, a compression mechanism and UDP across the
Internet, or raw Ethernet on a dedicated LAN. It then trans-
mits the code for a smart proxy to the address space containing
the client. In this way, application-specific remote communi-
cation can be used without making the network protocol the
actual service interface; that would be undesirable because all
client applications would have to implement all protocols used
by any server to which they may ever connect. Smart prox-
ies enable the service interface to be described at a high level
using an IDL. Client applications can be programmed to this

Fig. 12. Smart proxies



A.P. Black et al.: Infopipes: An abstraction for multimedia streaming 415

Fig. 13. The Quasar video pipeline

interface as if the server were local, although they actually
communicate with the proxy.
The idea of smart proxies can be generalized and applied

to Infopipes (Koster et al. 2001a). Since there are high-level
interfaces between all elements of a pipeline, the granularity of
composition can be finer. It is not necessary to send to the con-
sumer address space a monolithic proxy implementing every
transformation that needs to be performed on the information
stream. Instead, it may be possible to compose the required
transformation from standard pipeline elements that may al-
ready be available on the consumer side. Thus, it is sufficient
to send a description or blueprint of the required proxy, and if
necessary to send small specialized Infopipes that implement
those pieces of the pipeline that are not already available.

5 Some example Infopipelines

5.1 The Quasar video pipeline

The Quasar video pipeline is a player for adaptive MPEG
video streaming over TCP. It supports QoS adaptation in both
temporal and spatial dimensions.MPEG-1 video is transcoded
into SPEG (Krasic andWalpole 1999) to add spatial scalability
through layered quantization of DCT data. To suit the features
of TCP,MPEGvideo is delivered in a priority-progress stream
(Krasic et al. 2001), which is a sequence of packets, each
with a timestamp and a priority. The timestamps expose the
timeliness requirements of the stream, and allow progress to
be monitored; the priorities allow informed dropping in times
of resource overload.
The Quasar video pipeline is shown as an Infopipeline in

Fig. 13. At the producer side (the top part of the figure), the
video frames first flow through an SPEG transcoding filter,
and are buffered. The QoS mapper pulls them from the buffer
and gives each packet a priority according to the importance
of the packet and the preference of the user. For example, the
usermight bemore concernedwith spatial resolution thanwith
frame rate, or vice versa. A group of prioritised packets are
pushed in priority order into the reordering buffer. The dropper
is a filter that discards stale packets, and low priority packets,
when the network is unable to deliver them in time.

Fig. 14. The MIDI pipeline

The producer and consumer pipelines are connected by a
TCP Netpipe. On the consumer side (at the bottom of the fig-
ure) the reordering buffer arranges packets in time order. The
detranscoder and decoder are filters that convert the packets to
MPEG and then to image format, after which they are pushed
into the playing buffer. The synchronizer pulls them from that
buffer at the time that they are required, and presents them
to the video sink. The audio stream is handled in a similar
way; the two streams are merged and split using Tees. The
controller coordinates the rates of all the components through
control interfaces.

5.2 The MIDI pipeline

The MIDI pipeline (see Fig. 14) was built using some exist-
ing libraries from the Squeak Smalltalk system. The Squeak
MIDI player buffered an entireMIDI file before playing it.We
adapted this player to deal with streaming data and wrapped
it as three Infopipe components: the MIDISource, the MIDI-
Filter, and the MIDISink.
The MIDISource reads “note-on” and “note-off” com-

mands from a MIDI file; the MIDIFilter combines a note-on
command and its corresponding note-off command to gener-
ate a note event, which consists of a key and its duration. The
MIDISink plays a stream of note events. To make the MIDI
player stream over the Internet, we needed only to insert two
pre-existing Infopipe components: a pump and a UDP Net-
pipe. To ensure that the MIDISink plays smoothly, we added
a controller that monitors the fill level of the Netpipe and
adjusts the pumping rate accordingly. In this prototype, the
connections to the controller were not implemented using In-
fopipes; whether they should be is an open question. Instead,



416 A.P. Black et al.: Infopipes: An abstraction for multimedia streaming

we used direct method invocation, which means that invoca-
tions from the controller to the pump used S2S, which is very
much slower than an Infopipe. We found that a buffer suffi-
cient to hold 30 note events produced smooth playout while
still minimizing the number of control messages.

6 Related work

Some related work aims at integrating streaming services with
middleware platforms based on remote method invocations
such as CORBA. The CORBA Telecoms specification (OMG
1998a) defines streammanagement interfaces, but not the data
transmission. Only extensions to CORBA such as TAO’s plug-
gable protocol framework allow the use of different transport
protocols and, hence, the efficient implementationof audio and
video applications (Mungee et al. 1999). Asynchronous mes-
saging (OMG 2001a) and event channels (OMG 2001b) allow
evading the synchronousRMI-based interaction and introduce
the concurrency needed in an information pipeline. Finally,
Real-time CORBA (OMG 2001a; Schmidt and Kuhns 2000),
adds priority-basedmechanisms to support predictable service
quality end to end. As extensions of an RMI-based architec-
ture, these mechanisms facilitate the integration of streams
into a distributed object system. Infopipes, however, provide
a high-level interface tailored to information flows and more
flexibility in controlling concurrency and pipeline setup.
Structuring data-processing applications as components

that run asynchronously and communicate by passing on
streams of data items is a common pattern in concurrent pro-
gramming (see, for example, Lea 1997). Flow-based program-
ming applies this concept to the development of business ap-
plications (Morrison 1994). While the flow- based structure
is well-suited for building multimedia applications, it must be
supplemented by support for timing requirements. Besides in-
tegrating this timing control via pumps and buffers, Infopipes
facilitate component development and pipeline setup by pro-
viding a framework for communication and threading.
QoSDREAM uses a two-layer representation to construct

multimedia applications (Naguib and Coulouris 2001). On the
model layer, the programmer builds the application by com-
bining abstract components and specifying their QoS proper-
ties. The system then maps this description to the active layer
consisting of the actual executable components. The setup
procedure includes integrity checks and admission tests. The
active-layer representation may be more fine-grained than the
model specification, introducing additional components such
as filters, if needed. In this way, the system supports partially
automatic configuration. While the current Infopipe imple-
mentation provides less sophisticated QoS control, it provides
a better model of flow properties by explicitly using pumps
and buffers.
Blair and co-workers have proposed an open architecture

for next-generation middleware (Blair et al. 1998; Eliassen et
al. 1999). They present an elegant way to support open engi-
neering and adaptation using reflection, a technique borrowed
from the field of programming languages (Blair and Coul-
son 1998). In their multimedia middleware system, TOAST
(Eliassen et al. 2000; Fitzpatrick et al. 2001), they reify com-
munication through open bindings, which are similar to our

remote pipes. The scope of this work is wider than that of
Infopipes, which are specialized for streaming applications.
The MULTE middleware project also features open bind-

ings (Eliassen et al. 2000; Plagemann et al. 2000) and supports
flexibleQoS (Kristensen andPlagemann 2000). It provides ap-
plications with several ways to specify QoS using a mapping
or negotiation in advance to translate among different levels of
QoS specification. In our approach, we typically use dynamic
monitoring and adaptation of QoS at the application-level to
implicitly manage resource-level QoS.
Ensemble (van Renesse et al. 1997) and Da CaPo (Vogt

et al. 1993) are protocol frameworks that support the compo-
sition and reconfiguration of protocol stacks from modules.
Both provide mechanisms to check the usability of configu-
rations and automatically configure the stacks. Unlike these
frameworks for local protocols, Infopipes use a uniform ab-
straction for handling information flows from source to sink,
possibly across several network nodes; the Infopipe setup is
controlled by the application. A similarity is that both allow
for dynamic configuration: protocol frameworks dynamically
(re)configure protocol stacks between a network interface and
an application interface, while smart proxies dynamically con-
struct part of an Infopipeline between a client-side service in-
terface and a remote server, providing protocol-independent
service access.
The Scout operating system (Mosberger and Peterson

1996) combines linear flows of data into paths. Paths pro-
vide an abstraction to which the invariants associated with
the flow can be attached. These invariants represent informa-
tion that is true of the path as a whole, but which may not
be apparent to any particular component acting only on local
information. This idea – providing an abstraction that can be
used to transmit non-local information – is applicable to many
aspects of information flows, and is one of the principles that
Infopipes seek to exploit. For instance, in Scout, paths are the
unit of scheduling, and a path, representing all of the process-
ing steps along its length, makes information about all of those
steps available to the scheduler.

7 Summary and future work

Infopipes are a subject of continuing research; the work de-
scribedhere does not pretend to be complete, although early re-
sults have been encouraging. The applications that have driven
the work described here have primarily been streaming video
and audio. However, Infopipes also form part of the commu-
nications infrastructure of the Infosphere project (Liu et al.
2000; Pu et al. 2001), and we intend that Infopipes are also
useful for applications such as environmental observation and
forecasting (Steere et al. 2000) and continual queries (Liu et
al. 1999).
We have been pursuing three threads of research simul-

taneously. The first, which pre-dates the development of In-
fopipes themselves, is the design and implementation of a se-
ries of video players that stream video over the Internet, adapt-
ing their behaviour to make the best possible use of the avail-
able bandwidth (Cen et al. 1995; Cowan et al. 1995; Inouye
et al. 1997; Koster 1996; Krasic and Walpole 2001; Staehli et
al. 1995). The second thread is related to the underlying tech-
nologies that support streaming media, in particular, adaptive



A.P. Black et al.: Infopipes: An abstraction for multimedia streaming 417

and rate-sensitive resource scheduling (Li et al. 2000; Steere
et al. 1999a; Steere et al. 1999b) and congestion control (Cen
et al. 1998; Li et al. 2001a; Li et al. 2001b). It is these tech-
nologies that enable us to design and build the Infopipes that
are necessary for interesting applications.
The final thread is a prototyping effort that has explored

possible interfaces for Infopipes in an object-oriented setting.
We have used Squeak Smalltalk as a research vehicle; this has
been a very productive choice, as it enabled us to quickly try
out – and discard – many alternative interfaces for Infopipes
before settling on those describedhere. TheSqueak implemen-
tation is not real-time, but it is quite adequate for the streaming
MIDI application (Sect. 5.2).
We are currently embarked on the next stage of this re-

search, which involves weaving these threads together into a
fabric that will provide a new set of abstractions for streaming
applications. We are in the process of using the Infopipe ab-
stractions described here to reimplement our video pipelines
on a range of platforms including desktop, laptop and wire-
less handheld computers as well as a mobile robot. We are
also exploring kernel-level support for Infopipes under Linux,
with a view to providing more precise timing control and an
application-friendly interface for timing-sensitive communi-
cation and device I/O.

Acknowledgements. This work was partially supported by
DARPA/ITO under the Information Technology Expeditions,
Ubiquitous Computing, Quorum, and PCES programs, by NSF
Grants CCR-9988440 and CCR-0219686, by the Murdock Trust,
and by Intel. We thank Paul McKenney for useful discussions and
Nathanael Schärli for help with the Squeak graphics code.

References

BlairGS,CoulsonG (1998) The case for reflectivemiddleware. Inter-
nal report MPG-98-38, DistributedMultimedia Research Group,
Department of Computing, Lancaster University, Lancaster, UK

Blair GS, Coulson G, Robin P, PapathomasM (1998) An architecture
for next generation middleware. In: Davies N, Raymond K, Seitz
J (eds) IFIP international conference on distributed systems plat-
forms and open distributed processing (Middleware ’98), Lake
District, UK. Springer, Berlin Heidelberg New York

Cardelli L (1987) Basic polymorphic typechecking. Sci Comput Pro-
gram 8(2):147–172

Cen S, PuC, Staehli R, CowanC,Walpole J (1995)A distributed real-
time MPEG video audio player. In: Fifth international workshop
on network and operating system support of digital audio and
video (NOSSDAV’95), Durham, N.H. Lecture notes in computer
science, vol 1018. Springer, Berlin Heidelberg New York

Cen S, Pu C, Walpole J (1998) Flow and congestion control for
Internet streaming applications. In: Multimedia computing and
networking 1998, San Jose, Calif., 26–28 January 1998. SPIE,
Bellingham, Wash.

Chesire M,Wolman A, Voelker GM, Levy HM (2001) Measurement
and analysis of a streaming media workload. In: Proceedings of
the 3rd USENIX symposium on internet technologies and sys-
tems (USITS’01), San Francisco, Calif. USENIX Association,
Berkerley, Calif.

Cowan C, Cen S, Walpole J, Pu C (1995) Adaptive methods for
distributed video presentation. ACM Comput Surv 27(4):580–
583

Eliassen F, Andersen A, Blair GS, Costa F, Coulson G, Goebel V,
Hansen Ø, Kristensen T, Plagemann T, Rafaelsen HO, Saikoski
KB, Yu W (1999) Next generation middleware: requirements,
architecture, and prototypes. In: Proceedings of the 7thworkshop
on future trends of distributed computing systems (FTDCS’99),
Cape Town, South-Africa. IEEE Press, Los Alamitis, Calif.

Eliassen F, Kristensen T, Plagemann T, Raffaelsen HO (2000)
MULTE-ORB: adaptiveQoS aware binding. In: RM2000,work-
shop on reflective middleware, New York, 7–8 April 2000

Fitzpatrick T, Gallop J, Blair G, Cooper C, Coulson G, Duce D,
Johnson I (2001) Design and application of TOAST: an adap-
tive distributed multimedia middleware platform. In: Interactive
distributed multimedia systems (IDMS 2001), Lancaster, UK.
Lecture notes in computer science vol 2158. Springer, Berlin
Heidelberg New York

Guzdial M (2001) Squeak: object-oriented design with multimedia
applications. Prentice Hall, Upper Saddle River, N.J.

Inouye J, Cen S, Pu C, Walpole J (1997) System support for mobile
multimedia applications. In: Proceedings of the 7th international
workshop on network and operating systems support for digital
audio and video, St. Louis, Mo. IEEE, Piscataway, N.J.

ISO (1998) Information technology: opendistributedprocessing. ISO
Standard ISO/IEC 10746, International Standards Organization

Jacobs S, Eleftheriadis A (1998) Streaming video using dynamic rate
shaping and TCP flow control. J Vis Commun Image Represent
9(3):211–222

Karr DA, Rodrigues C, Loyall JP, Schantz RE, Krishnamurthy Y,
Pyarali I, Schmidt DC (2001) Application of the QuO quality-
of-service framework to a distributed video application. In: 3rd
international symposium on distributed objects and applications,
Rome. IEEE Press, Los Alamitos, Calif.

Koster R.(1996) Design of a multmedia player with advanced QoS
control. MS thesis, Oregon Graduate Institute of Science and
Technology, Beaverton, Ore.

Koster R, Black AP, Huang J, Walpole J, Pu C (2001a) Infopipes
for composing distributed information flows. In: International
workshop on multimedia middleware. ACM Press, New York

Koster R, Black AP, Huang J, Walpole J, Pu C (2001b) Thread trans-
parency in information flow middleware. In: Guerraoui R (ed)
Middleware 2001, IFIP/ACM international conference on dis-
tributed systems platforms, Heidelberg, Germany. Lecture notes
in computer science, vol 2218. Springer, Berlin Heidelberg New
York

Koster R, Kramp T (2000) Structuring QoS-supporting services with
smart proxies. In: Second international conference on distributed
systems platforms and open distributed processing (Middleware
2000). Lecture notes in computer science, vol 1795. Springer,
Berlin Heidelberg New York

Krasic B, Walpole J (2001) Priority-progress streaming for quality-
adaptive multimedia. ACM Multimedia Doctoral Symposium,
Ottawa, Canada

Krasic C, Li K, Walpole J (2001) The case for streaming multimedia
with TCP. In: Interactive distributed multimedia systems, 8th
international workshop, IDMS 2001, Lancaster, UK, 2–7 Sept
2001. Lecture notes in computer science, vol 2158. Springer,
Berlin Heidelberg New York

Krasic C, Walpole J (1999) QoS scalability for streamed media de-
livery. Technical report CSE-99-11, Department of Computer
Science and Engineering, Oregon Graduate Institute, Beaverton,
Ore.

Kristensen T, Plagemann T (2000) Enabling flexible QoS support
in the object request broker COOL. IEEE ICDCS International
Workshop on Distributed Real-Time Systems (IWDRS 2000),
Taipei, 10–13 April 2000. IEEE Press, Los Alamitos, Calif.



418 A.P. Black et al.: Infopipes: An abstraction for multimedia streaming

Lea D (1997) Concurrent programming in Java. Addison-Wesley,
Reading, Mass.

Li K, Krasic C,Walpole J, ShorM, Pu C (2001a) Theminimal buffer-
ing requirements of congestion controlled interactivemultimedia
applications. In: Interactive distributed multimedia systems, 8th
international workshop, IDMS 2001, Lancaster, UK, 2–7 Sept
2001. Lecture notes in computer science, vol 2158. Springer,
Berlin Heidelberg New York

Li K, ShorM,Walpole J, Pu C, Steere D (2001b)Modeling the effect
of short-term rate variations on TCP-friendly congestion control
behavior. In: American Control Conference, Arlington, Va., 25–
27 June 2001. American Automatic Control Council, New York

Li K, Walpole J, McNamee D, Pu C, Steere DC (2000) A rate-
matching packet scheduler for real-rate applications. In: Multi-
media computing and networking 2000, San Jose, Calif., 24–26
January 2000. SPIE, Bellingham, Wash.

Liu L, Pu C, Schwan K, Walpole J (2000). InfoFilter: supporting
quality of service for fresh information delivery. NewGeneration
Comput J 18(4):305–321

Liu L, Pu C, Tang W (1999). Continual queries for internet scale
event-driven information delivery. IEEE Trans Knowl Data Eng
11(4):610–628

McCanne S, Vetterli M, Jacobson V (1997). Low-complexity video
coding for receiver-driven layered multicast. IEEE J Sel Areas
Commun 16(6):983–1001

Morrison JP (1994) Flow-based programming: a new approach to
application development. Van Nostrand Reinhold, New York

Mosberger D, Peterson LL (1996) Making paths explicit in the Scout
operating system. In: Petersen K, Zwaenepoel W (eds) Proceed-
ings of the second USENIX symposium on operating systems
design and implementation. ACM Press, New York

Mungee S, Surendran N, Krishnamurthy Y, Schmidt DC (1999) The
design and performance of a CORBA audio/video streaming
service. In: Thirty-second Hawaiian international conference on
system sciences, Maui, Hawaii, 3–6 January 1999. IEEE Press,
Los Alamitos, Calif.

Naguib H, Coulouris G (2001) Towards automatically configurable
multimedia applications. In: International workshop on multi-
media middleware, Ottawa, 5 October 2001. ACM Press, New
York

OMG (1998a) CORBA telecoms specification. Object Manage-
ment Group, Framingham, Mass. http://www.omg.org/cgi-
bin/doc?formal/98-07-12. Cited 16 September 2002

OMG (1998b) CORBA/IIOP 2.3 Specification. Object Man-
agement Group, Framingham, Mass. http://www.omg.org/cgi-
bib/formal/98-12-01. Cited 16 September 2002

OMG (2001a) The Common Object Request Broker: architecture
and specification. Object Management Group, Framingham,
Mass. http://www.omg.org/cgi-bin/doc?formal/01-09-34. Cited
16 September 2002

OMG (2001b) Event service specification. Object Manage-
ment Group, Framingham, Mass. http://www.omg.org/cgi-
bin/doc?formal/01-03-01. Cited 16 September 2002

OSF (1991) Remote procedure call in a distributed computing envi-
ronment: a white paper. Open Software Foundation

Plagemann T, Eliassen F, Hafskjold B, Kristensen T, Macdonald
RH, Rafaelsen HO (2000) Managing cross-cutting QoS issues
in MULTE middleware. In: Elisa Bertino (ed) ECOOP 2000,
object-oriented programming: Proceedings of the 14th European
conference, Sophia Antipolis and Cannes, France, 12-16 June
2000. Springer, Berlin Heidelberg New York

Pu C, Schwan K, Walpole J (2001). Infosphere project: system
support for information flow applications. ACM SIGMOD Rec
30(1):25–34

Schmidt DC, Kuhns F (2000). An overview of the real-time CORBA
specification. IEEE Comput 33(6):56–63

Squeak (2000) Squeak. http://www.squeak.org/. Cited 15 September
2002

Staehli R,Walpole J,Maier D (1995). Quality of service specification
for multimedia presentations. Multimedia Syst 3(5/6):251–263

Steere D, Baptista A, McNamee D, Pu C,Walpole J (2000) Research
Challenges in Environmental Observation and Forecasting Sys-
tems. In: Mobicom 2000, proceedings of the sixth annual inter-
national conference on mobile computing and networking, 6–11
August, 2000, Boston, Mass. ACM Press, New York

Steere DC, Goel A, Gruenberg J, McNamee D, Pu C, Walpole
J (1999a) A feedback-driven proportion allocator for real-rate
scheduling. In: Hand, SM (ed) Proceedings of the third sympo-
sium on operating systems design and implementation. USENIX
Association, Berkeley, Calif.

Steere DC, Walpole J, Pu C (1999b) Automating proportion/period
scheduling. In: 20th IEEE real-time systems symposium,
Phoenix, Ariz. IEEE Press, New York

Sun (2002) Java remote method invocation specification. JavaTM

2 SDK v1.4, standard edition. Sun Microsystems Corp.
http://java.sun.com/j2se/1.4/docs/guide/rmi/spec/rmiTOC.html.
Cited 15 September 2002

Thompson K, Miller GJ, Wilder R (1997). Wide-area internet traffic
patterns and characteristics. IEEE Network Mag 11(6):10–23

van Renesse R, Birman K, Hayden M, Vaysburd A, Karr D (1997)
Building adaptive systems using Ensemble. Technical report
TR97-1638, Computer Science Department, Cornell University

Vogt M, Plattner B, Plagemann T, Walter T (1993) A run-time envi-
ronment for Da CaPo. In: Proceedings of INET’93, international
networking conference. Internet Society, Reston, Va.

Walpole J, Koster R, Cen S, Cowan C, Maier D, McNamee D, Pu C,
SteereD,YuL (1997)A player for adaptiveMPEGvideo stream-
ing over the Internet. In: 26th Applied Imagery Pattern Recogni-
tion Workshop AIPR-97, Washington, D.C. SPIE, Bellingham,
Wash.

Andrew P. Black holds a D.Phil in com-
putation from the University of Oxford.
At the University of Washington (1981–
1986) he was part of a team that built two
of the earliest distributed object-oriented
systems. From 1987 until 1994 he was
with the Distributed Systems Advanced
Development group and the Cambridge
ResearchLaboratoryofDigitalEquipment
Corporation. Subsequently, he joined the
faculty of the OregonGraduate Institute as
professor and head of the Computer Sci-
ence Department. Since 2000 he has been

pursuing his research interests in programming languages, program-
ming methodology, and system support for distributed computing.



A.P. Black et al.: Infopipes: An abstraction for multimedia streaming 419

Jie Huang received a BS degree in com-
puter and communications in 1992 and
an MS degree in computer science in
1995, both from Beijing University of
Posts and Telecommunications. She then
held the post of assistant professor at
the same school. Since September 1999
she has been a PhD student at the Ore-
gon Graduate Institute, now the Oregon
Health and Science University. Her inter-
ests are in software development method-
ology and programming languages, espe-

cially a domain-specific approach for building multimedia network-
ing applications.

Rainer Koster received a MS in com-
puter science and engineering in 1997
from the Oregon Graduate Institute of Sci-
ence and Technology and a diploma in
computer science in 1998 from the Uni-
versity of Kaiserslautern. He currently is a
member of the Distributed Systems Group
at the University of Kaiserslautern. His in-
terests and research focus on quality-of-
service support anddistributedmultimedia
systems.

Jonathan Walpole received his PhD in
computer science from Lancaster Univer-
sity, UK, in 1987. Heworked for two years
as a post-doctoral research fellow at Lan-
caster University before taking a faculty
position at the Oregon Graduate Institute
(OGI). He is now a full professor and di-
rector of the Systems Software Laboratory
at the OGI School of Science and Engi-
neering atOregonHealth andScienceUni-
versity. His research interests are in oper-
ating systems, distributed systems, multi-
media computing, and environmental in-
formation technology.

Calton Pu received his PhD in com-
puter science fromUniversity ofWashing-
ton in 1986, and has served on the faculty
of Columbia University and the Oregon
Graduate Institute. He is currently a pro-
fessor at the College of Computing, Geor-
gia Institute of Technology where he oc-
cupies the John P. Imlay, Jr., Chair in Soft-
ware, and is a co-director of the Center for
Experimental Research in Computer Sys-
tems. Dr. Pu leads the Infosphere project, a
collaboration between Georgia Tech. and
OGI that is building systems support for

information-driven distributed applications; his other research inter-
ests include operating systems, transaction processing and Internet
data management.


