
Post-Javaism

Andrew P. Black • OGI School of Science & Engineering, Oregon Health & Science University

The Java programming language
has been a phenomenal success.
It’s a significant improvement

over C and C++, and its libraries for
network and GUI programming have
introduced large numbers of program-
mers to previously esoteric disciplines.
But Java isn’t the end of programming
language history. What language will
we use 10 or 20 years from now?

Although good news for most pro-
grammers, Java has been a mixed
blessing for programming language
researchers. On the positive side, Java
has demonstrated that a quality lan-
guage can make complex program-
ming tasks much simpler: it shows that
language design is still a relevant dis-
cipline. On the negative side, Java’s
success has made obtaining support for
research into new languages — and
publishing the results of that research
— more difficult. The effect is that
object-oriented language research
focuses on fixing Java’s trouble spots
or extending it to provide missing
functionality. These are not bad activi-
ties, but they are necessarily limited to
Java-like languages: statically typed,
class-based, single-inheritance lan-
guages with a weak notion of interface.

The recent European Conference for
Object-Oriented Programming (ECOOP)
included the Workshop on Object-Ori-
ented Language Engineering for the
Post-Java Era at which researchers
gathered to examine languages that
diverge from this model.

What is Post-Javaism?
The prefix “post” is used in art and
architecture to indicate not just chronol-

ogy — that one period or movement fol-
lows another in time — but also a
change in direction or philosophy. Post-
modernism, for example, is a reaction
against modernism’s established princi-
ples. Similarly, the call for participation
to the ECOOP workshop effectively
defines post-Javaism as a reaction
against Java’s established principles.

In architecture, the modernists used
scientific principles to create stark,
functional designs that flouted con-
vention. Architectural modernism’s
defining moment was the 1958 con-
struction of the Seagram building in
New York (see Figure 1). With its func-
tional, clean, and simple lines, it
quickly became one of the US’s most
architecturally influential office build-
ings. With its ethos captured in phras-
es that have passed into our cultural
heritage (think “less is more” and
“form follows function”), modernism
became the dominant style of the
1960s and 1970s.

In Complexity and Contradiction in
Architecture (1966), Robert Venturi
responded with a definition of post-
modernism. He celebrated the rich mix
of historic styles found in great cities
such as Rome and observed that many
people find this complex, sometimes
contradictory, mix more comfortable
than stark minimalism. That said,
postmodernism is not a return to clas-
sical architecture; rather, it takes clas-
sical elements and uses them in incon-
gruous ways. The AT&T building in
New York, which incorporates classi-
cal arcades and a pediment reminis-
cent of a Chippendale highboy, is a
defining example (see Figure 2).

Modernism in
Programming Language Design
It is Smalltalk, not Java, that provides
an analog to architectural modernism.
Smalltalk was a sparse, simple language
with few unnecessary features; its form
was unconventional but functional.

96 JANUARY • FEBRUARY 2004 Published by the IEEE Computer Society 1089-7801/04/$20.00 © 2004 IEEE IEEE INTERNET COMPUTING

Peer to Peer

continued on p. 93

Editor : Li Gong • l i . gong@sun .com

Figure 2. AT&T building (now Sony
Plaza). Postmodernism: using classical
elements in inconguous ways.

Figure 1. Seagram building, New York.
Modernism: less is more.

 2004 Andrew P. Black. Used by permission.

 2004 Andrew P. Black. Used by permission.

IEEE INTERNET COMPUTING www.computer.org/internet/ JANUARY • FEBRUARY 2004 93

Post-Javaism

Indeed, “form follows function” de-
scribes Smalltalk well. Smalltalk reject-
ed established conventions, such as stor-
ing programs in files, using lots of
keywords, declaring types for identifiers,
and sprinkling everything with paren-
theses regardless of necessity. Instead,
Smalltalk embraced an architectural
model of amazing purity: everything
was an object, from classes to closures,
dictionaries to methods, messages to
numbers. Everything that supported the
language — compilers, browsers, execu-
tion contexts, debuggers — was an
object, too. Less was more.

The result was breathtaking: a
palace that seemed to defy gravity and
certainly challenged conventional wis-
dom. Smalltalk provided the seed that
blossomed into many of the past 30
years’ innovations, including Java,
graphical interfaces, programming in
the debugger, and contextual menus.
However, most of the tourists who
came to admire this modernist palace
went back home to their Victorian row
houses. Only a few visionaries felt they
could live there.

Java as Postmodernism
Taking the analogy to architecture one
step further, we can say that Java
defined postmodernism. It celebrated the
mix of styles in historic bodies of code
and blended classical elements such as
bytes, Bools, and curly braces with the
functional modernist forms of objects
and instance variables. It gave people
back the conventions that made them
feel comfortable — along with a healthy
dose of complexity and contradiction.

The result was that people liked
Java. They didn’t just visit on Sunday
afternoon tours: they gave up their
Victorian row houses and moved in.
Java represented not innovation, but
consolidation.

The Forces of Evolution
I don’t have enough space to pursue
the architectural analogy too much
further, but I’m constantly surprised by

its strength. Is this just coincidence, or
do similar forces shape the evolution
of both architectural styles and pro-
gramming languages?

Evolution in Architecture
Four major forces have shaped archi-
tecture’s evolution: technology, eco-
nomics, function, and fashion.

New technology leads to structures
that were never before possible:
dressed stone arches, cast-iron facades,
reinforced concrete, steel girders, plate
glass, mechanical ventilation, insula-
tion, engineered wood products — the
list goes on. Simultaneously, econom-
ic changes help one technology
advance as another recedes. Large
plate-glass windows, for example,
were once the prerogative of the fabu-
lously wealthy; the rest of us had to be
content with arrays of small panes
divided by mullions. The situation
today is reversed: large expanses of
glass are inexpensive, and we must
pay extra for true divided lights.

New functions are another major
source of innovation. The Romans did
not build railway stations, and the Vic-
torians did not build multistory park-
ing structures. Each new function cat-
alyzed the creation of new forms, and
often of the technology that made
these forms possible.

Finally, we can’t underestimate fash-
ion’s importance. The powerful display
their wealth by creating new fashions;
the rest of us often have the urge to fol-
low them. I won’t try to explain fashion,
but denying that it’s a powerful force for
change would be foolish.

The result of these forces has pushed
architecture toward larger, more open
buildings, with such huge oscillations
about the mean that this trend
becomes apparent only decades or
centuries later. Will the same be true
for programming languages?

Evolution in
Programming Languages
The forces that effect programming
languages are similar to those in

architecture. New technology is the
most obvious: type inference, parser
generators, garbage collection, large
and inexpensive memories, peephole
optimizers, just-in-time compilers, and
advances in raw hardware speed have
changed languages in ways that For-
tran’s designers could not conceive.

Layered over this is the effect of
economics. Computation is a young
field, but we’ve already seen it progress
from a dozen programmers sharing a
$100,000, room-sized computer to
dozens of smaller computers compet-
ing for the attention of a $100,000
programmer.

Although each of those smaller
computers is a thousand times more
powerful than one of the old room-
sized machines, our languages are still
designed as if the computer’s time
were more valuable than the program-
mer’s. A similar revolution has oc-
curred in the economics of memory,
but perhaps with a more obvious
effect: most of us program as if mem-
ory were free, which indeed it is —
until it runs out.

These changes have made garbage
collection and virtual machines the
norm, instead of esoterica of the
research laboratory. Technology and
economics have enabled us to take one
step away from the raw hardware —
but only one step.

The demand for increased function-
ality has forced a minority of language
designers to look seriously at declara-
tive notations like SQL, used for defin-
ing searches over databases, and
HTML, used for defining Web pages.
Others work with languages that don’t
even have names: their sentences are
sequences of gestures and clicks in a
user interface. Approximately 95 per-
cent of all the people who program
computers today use these or other
domain-specific languages. Of course,
the remaining 5 percent — people, like
us, who read IEEE Computer Society
publications — realize that these aren’t
“real” languages at all, and that the
programmers who use them aren’t

continued from p. 96

94 JANUARY • FEBRUARY 2004 www.computer.org/internet/ IEEE INTERNET COMPUTING

Peer to Peer

“real” programmers. We’ve even
coined a separate name for them: users
(or sometimes, lusers).1 This catego-
rization is similar to the way that
“real” architects recognize that food
processing plants, fabs, bridges, and
municipal housing projects aren’t
architecture at all, but mere engineer-
ing. Yet it has led to a situation in
which “real” programming languages
are very poor at describing 95 percent
of what computers do.

Because of our propensity to ignore
new technology and to keep out
domain-specific function, fashion has
had a disproportionately large effect
on programming language design.
Because fashion tends to be cyclic, we
can reliably predict that the trend will
swing away from postmodernism and
back to something that looks a lot
more like modernism. In other words,
the next post-Java language will look
a lot like Smalltalk.

The Smalltalk Revolution
Rather than just repeating history, we
should study it; rather than just going
back to Smalltalk, we should learn
from it. How can we repair Small-
talk’s weak points without diluting its
strengths?

Small is Beautiful
One of the great strengths of Smalltalk
is that it’s small — really small. The
Blue Book’s syntax diagrams define 27
syntactic categories for Smalltalk,
compared to 31 for Pascal.2 This
includes cascades, symbols, and array
constants, which I think I would take
out if I were designing Smalltalk
today. Small is beautiful.

One thing I used to consider
Smalltalk’s greatest shortcoming, I
now believe to be one of its strengths:
the absence of type declarations. I
think the principal reason for this
omission was not that the designers
were philosophically opposed to get-
ting early warnings of programming
errors, but rather that the technology
to check them didn’t exist in the

1970s. I can’t find anything in Ingall’s
design principles paper that argues
against type declarations.3 In fact,
when we designed Emerald in the
early 1980s, we had to invent a type
system that was adequate for letting
programmers define their own
List.of[something] data types.4

So why do I now believe that type
declarations are a mistake? Let’s look
at a fragment from a Java program
that plays a card game:5

public DiscardPile discardPile;
...
discardPile =

new DiscardPile(268, 30);

Now consider the following conceptu-
ally equivalent Smalltalk code:

instanceVariableNames:
‘... discardPile ...’

...
discardPile :=
DiscardPile locatedAt: 268@30.

The redundancy in type name, class
name, and instance variable name in
the Java just clutters the code without
adding any extra information. We now
have the technology to infer most
variables’ types and present them
unobtrusively in a programming tool
when requested. In fact, Haskell and
ML have done this for years. Let’s
admit that — when supported by prop-
er browsing tools — inference is a bet-
ter technology, adopt it and move on.

Reflection
Another great thing about Smalltalk,
which the Java folks seemed to miss at
first, is that the programming environ-
ment is fully accessible from the lan-
guage. Smalltalk is, in fact, a metapro-
gramming system: through the
wonders of computational reflection,
you can access and change the sys-
tem’s internals from within the system
itself.6 Smalltalk had the advantage of
casting off the boat anchor of a file-
based representation early in its devel-

opment; Java has not been able to do
this yet, despite the valiant efforts of
Object Technology International and
VisualAge for Java. Because Smalltalk
represents programs as objects instead
of files, tools are amazingly easy to
build. As good tools become available
to the community, they become step-
ping-stones to even better tools, and
the process accelerates.

The disadvantage of Smalltalk’s
easy access to metaprogramming is
that it’s too easy to use reflective
operations “by accident.” Java’s solu-
tion is to label some interfaces as
part of a reflect package. The
Strongtalk language did something
more sophisticated: to perform a
reflective operation on an object, it
required you to first obtain a mirror
on that object and then reflect on the
mirror.7 This makes the distinction
between reflective and ordinary oper-
ations quite clear. I think we can take
this idea a bit further and use colored
types to distinguish between the
results of reflective and ordinary
operations. For example, the result of
counting the number of classes
between a given class and the root of
the hierarchy might be a red integer,
as opposed to an ordinary white inte-
ger. The sum of a red and a white
integer would also be red; we could
use this scheme to ascertain, by
examining their colors, which results
depend on reflection.

You might ask why it’s important to
be able to delimit the effects of reflec-
tive operations in this way. The answer
is that refactoring is one of our most
powerful tools in the constant battle
against software entropy.8 In general,
refactorings are semantics-preserving
only in the absence of reflection. To
see this, consider a program that uses
reflection to obtain the name of an
instance variable, extracts the fifth and
the seventh letters, converts them to
ASCII codes, and prints their product.
Clearly, changing the name of that
instance variable will change the
behavior of the program, or even cause

it to crash if the new name is only six
characters long. Thus, we see that it is
important for the program maintainer
to know when it is safe to make what
is usually a harmless change, such as
renaming a variable, and when it
might have unexpected consequences.

Distribution
I’ve argued that although programs are
called on to perform vastly more, and
more varied, functions than anyone
could have dreamed of 20 years ago,
many of these functions are now the
province of domain-specific languages.
One functional category that isn’t is
distributed programming. This is
because it is really a metacategory.

One approach to distributed pro-
gramming is to do what Emerald did:
identify a particular programming par-
adigm suitable for distribution (in this
case, mobile objects) and support it in
the language. This works well if that
paradigm matches the application, but
badly otherwise.

Another approach is to provide
libraries that support a variety of para-
digms; this works particularly well if
the language is sufficiently reflective.
For example, suppose we want to
implement an object-oriented message
send to remote objects. Suppose further
that rather than stepping outside of the
language and resorting to a preproces-
sor, we prefer to implement this feature
in the language itself. This means that
the language’s metalevel features must
be sufficient not just to reify messages
and argument lists, but also to inter-
cede to change their semantics.

Mobile objects present a more com-
plex example: implementing mobility
as a library requires access not only to
the implementation of message send
but also to the underpinnings of the
object storage subsystem. For efficien-
cy, mobility also requires that the dis-
tinction between mutable and im-
mutable objects be manifest in the
language, and that the language does
not provide an object-identity opera-
tion as a primitive.

Failure
The defining characteristic of distrib-
uted computation on the Internet is
partial failure: part of the program
fails to satisfy its specification, while
other parts continue to function.
Failures are distinguished from
exceptions in that the latter are part
of the interface specification. Thus, a
procedure that generates an excep-
tion condition might be fulfilling its
specification.

Because a failure’s exact nature is
outside the scope of the specification,
recovery requires us to pick over the
failed computation’s debris to see what,
if anything, we can salvage and what
cleanup is necessary. Only a program
that has not failed can accomplish this
task. Thus, we need some kind of
watertight compartment that gives us a
dry place to stand while trying to pump
the water out of the failure. Operating
systems provide such compartments —
address spaces — but language design-
ers have heretofore ignored them. The
Internet programming language of the
21st century would do well to provide
for failure recovery.

Post-Post-Java
The only way to produce a language
over which one programmer can have
intellectual mastery is to start with a
really tiny kernel and add on what 30
years of experience has shown to be
absolutely necessary. Even then, we
must be prepared to learn that our
experience was inapplicable to the
changing environment in which we
work. We know that the opposite
approach does not work: it is not pos-
sible to start with a large language
and identify features to remove,
because the features are invariably
interdependent.

In addition to the fairly well-under-
stood additions I have described here —
failure-handling, distribution, reflection,
and immutability — other additions that
address serious issues in Internet com-
puting are certainly worthy of consid-
eration. Today, software quality and

security are two of the biggest problem
areas, and language designers are
indeed working to create language fea-
tures, such as universally quantified
assertions and security types, to help
address these problems. Perhaps, just as
code safety in the Internet was the killer
problem that lead to Java’s adoption,
the next language for the Internet might
be driven by the need to improve soft-
ware quality and security.

Acknowledgments
I am indebted to Richard Staehli, for fruitful dis-

cussions about programming languages, and Jes-

sica Black, for invaluable information about

architecture. This article is a revised and extended

version of a position paper originally submitted

to the ECOOP Workshop on Object-Oriented Lan-

guage Engineering for the Post-Java Era.

References
1. E.S. Raymond, ed., The New Hacker’s Dic-

tionary, 3rd ed., MIT Press, 1996.
2. A. Goldberg and D. Robson, Smalltalk-80:

The Language and Its Implementation, Addi-
son-Wesley, 1983.

3. D.H. Ingalls, “Design Principles Behind
Smalltalk,” Byte, vol. 6, no. 8, 1981, pp.
286–298.

4. R.K. Raj et al., “Emerald: A General Purpose
Programming Language,” Software-Practice
& Experience, vol. 21, no. 1, 1991, pp. 91–118.

5. T. Budd, Understanding Object-Oriented Pro-
gramming Using Java, Addison-Wesley,
2000.

6. F. Rivard, “Smalltalk: A Reflective Lan-
guage,” Proc. Int’l Conf. Metalevel Archi-
tectures and Reflection (Reflection ’96),
1996, pp. 21-38.

7. L. Bak and G. Bracha, “Mixins in Strongtalk,”
presented at the Inheritance Workshop,
European Conf. Object-Oriented Program-
ming (ECOOP), 2002; www.cs.ucsb.edu/
projects/strongtalk/pages/documents.html.

8. A. Hunt and D. Thomas, The Pragmatic Pro-
grammer, Addison-Wesley, 2000.

Andrew P. Black is a professor of computer sci-

ence at the OGI School of Science & Engi-

neering, Oregon Health & Science Universi-

ty. His research interests include distributed

systems, programming languages, and pro-

gramming methodology. He received his

D. Phil from the University of Oxford. He is

a member of the ACM. Contact him at

black@cse.ogi.edu.

IEEE INTERNET COMPUTING www.computer.org/internet/ JANUARY • FEBRUARY 2004 95

Post-Javaism

