
Classes Considered Harmful

Andrew P. Black
Portland State University

black@cs.pdx.edu

Abstract
Classes are as essential to object-oriented programming as
the goto statement: while there are probably circumstances
where both are useful, on the whole they do more harm than
good. Programmers should avoid them, and language de-
signers should provide simpler, comprehensible alternatives
with tractable semantics.

Categories and Subject Descriptors D.3.3 [Language
Constructs and Features]: Classes and Objects

Keywords class, object

1. Introduction
Donald Knuth famously wrote “We should forget about
small efficiencies, say about 97% of the time: premature op-
timization is the root of all evil” [6]. I take the position that
the introduction of classes into object-oriented programming
languages is just such a premature optimization. After all, as
languages implementors we know that there must be just
one copy of the code for all the objects that share similar be-
haviour, so before we have written a single program in our
language, before we know whether shared behaviour will be
important in the applications that will be written in it, and
before we have considered the alternatives, we decide that
our languages must have classes.

2. Why Classes?
The necessity, and even the advisability, of classes has long
been questioned. In 1986, Alan Borning pointed out the con-
ceptual cost of classes: “the emphasis on classes . . . is at odds
with the goal of interacting with the computer in a concrete
way. When designing a new object, one must first move to
the abstract level of the class, write a class definition, then
instantiate it and test it, rather than . . . incrementally build-
ing an object” [5]. In a Gedanken Experiment he proposed

[Copyright notice will appear here once ’preprint’ option is removed.]

instead a language in which “objects are completely self-
contained”, and the only way to create an object is to copy an
existing object — an idea that he traced back to Thinglab [4].

As coincidence would have it, at the same time that Born-
ing was writing, Emerald [2] had shown that it was indeed
possible to base a language on self-contained objects. In
Emerald, there are neither classes nor prototypes: instead
there is a language primitive, the object constructor, that
builds a new object out of whole cloth.

Let us also be clear that classes do not “model the real
world”. Objects may or may not model the real world, but
classes certainly don’t. Although there are many chairs in
the real world, there is no “chair class” in the real world.

Borning identified 8 functions for classes in Smalltalk,
of which two (updating objects when a method is changed
and locating all of the instances) relate to Smalltalk as a
dynamic programming system rather than as a language. Of
the remaining 6,
1. generators of new objects
2. descriptions of the representation of their instances
3. descriptions of the message protocol of their instances
4. elements in the object taxonomy
5. a means for implementing differential programming (like

this object, but with the following differences), and
6. repositories for methods,
functions 2, 3 and 4 are meta: they have to do with intro-
specting on objects rather than creating or using them, and
rightfully belong to object mirrors (2 and 3) and types (4),
not classes. The first function, generating new objects, is
not accomplished by the class alone: it requires collusion
with some “system magic”, for example, the new keyword
in Java, or the basicNew primitive in Pharo. Once we con-
clude that there has to be some such magic, it seems advis-
able to choose magic that is as self-contained as possible:
I claim that an object constructor, as found in Emerald and
Grace [3], is better magic than new.

Function 6 I have already dismissed as a premature opti-
mization: let us design our language and its semantics first,
and then decide how to implement method suites efficiently.
This leaves us with 5: how should we support differential
programming, or, in other words, how should we support the
reuse of code between objects?

Submission to NOOL 2015 1 2015/10/12



3. Alternatives
The known alternatives to Classes are delegation, trait ob-
jects, and copying prototypes. In the Treaty of Orlando,
Lieberman, Stein and Ungar seem to agree to a truce just in
time to avoid splitting the then-young OO community over
the question of how to best support differential program-
ming [7]. This was probably wise: the task then before the
OO community was to establish a united front, not to squab-
ble amongst ourselves. We have lived with that truce now for
18 years, and I believe that it is time to re-raise the question:
can’t we do better than classes?

So far I’ve argued that classes may not be necessary,
but not that they are bad, and indeed this is what I have
believed for the last 20 years. But recently, because of my
involvement in the design of Grace, I’ve spend many hours
looking at the options for class-like inheritance. I don’t like
any of them. A long discussion of the issues can be found in
my submission to MASPEGHI 2013 [1]; there is no space to
repeat it here. In brief, inheritance from classes seems to

1. require either metaclasses, meta-metaclasses, and so on
in infinite regress (as in Smalltalk), or the postulation of
a new kind of entity that is not an object and therefore
has no class (as in Java);

2. demand a complex semantics with two levels of fixpoints,
one to create the classes, and another to create the objects;

3. does not accommodate immutable objects, that is, objects
that are created with instance-specific data that never
changes. Moreover,

4. attempts to simulate the semantics of class-inheritance
without classes, using copying or delegation, create their
own problems which are arguably worse than those
caused by classes.

4. Conclusion
I’ve reluctantly come to the conclusion that the only viable
solution for behaviour-sharing in an egalitarian (i.e., class-
less) language is delegation. Delegation is a flexible prim-
itive that can allow for the re-use of code from multiple

sources, the overriding of features of the delegate, and a
compositional semantics. Protection concerns may convince
us that only certain objects be allowed as delegates, for ex-
ample, objects that explicitly declare their willingness to
serve in this capacity.

It is time to re-open the discussions of the mid-1980s
on the advantages and disadvantages of classes and of other
approaches to code-reuse. The NOOL workshop seems like
an excellent venue to do so.

References
[1] A. P. Black. What shall we tell the children (about inher-

itance)? In Workshop on MechAnisms for SPEcialization,
Generalization and inHerItance (MASPEGHI), 2013. URL
http://www.cs.jyu.fi/maspeghi2013/papers.html.

[2] A. P. Black, N. Hutchinson, E. Jul, and H. Levy. Object
structure in the Emerald system. In Proceedings First ACM
Conference on Object-Oriented Programming Systems, Lan-
guages and Applications, pages 78–86, Portland, Oregon, Oc-
tober 1986. ACM Press.

[3] A. P. Black, K. B. Bruce, M. Homer, and J. No-
ble. Grace: the absence of (inessential) difficulty. In
Onward! ’12: Proceedings 12th SIGPLAN Symp. on
New Ideas in Programming and Reflections on Soft-
ware, pages 85–98, New York, NY, 2012. ACM. URL
http://doi.acm.org/10.1145/2384592.2384601.

[4] A. Borning. The programming language aspects of ThingLab, a
constraint-oriented simulation laboratory. TOPLAS, 3(4):353–
387, 1981.

[5] A. Borning. Classes versus prototypes in object-oriented lan-
guages. In FJCC, pages 36–40. IEEE Computer Society, 1986.
ISBN 0-8186-0743-2.

[6] D. Knuth. Structured programming with go-to statements.
ACM Computing Surveys, 6(4):261–302, 1974.

[7] H. Lieberman, L. Stein, and D. Ungar. Treaty of or-
lando. In Addendum to the Proceedings on Object-
oriented Programming Systems, Languages and Applications
(Addendum), OOPSLA ’87, pages 43–44, New York, NY,
USA, 1987. ACM. ISBN 0-89791-266-7. . URL
http://doi.acm.org/10.1145/62138.62144.

Submission to NOOL 2015 2 2015/10/12


