An Introduction to
Programming in Haskell

Mark P Jones
Portland State University

Haskell Resources:

Haskell Resources:

@ The focal point for information about
Haskell programming, implementations,
libraries, etc... is www.haskell.org

@ I'll be using:
= the Hugs interpreter (haskell.org/hugs)

s the Glasgow Haskell compiler, GHC, and
interpreter, GHCi (haskell.org/ghc)

€ Online tutorials/references:
s |learnyouahaskell.com
s book.realworldhaskell.org

The Language Report:

The definition of the Haskell 98
standard

Haskell 98

[anguage and [ibraries

Lots of technical details ... not a
great read! [he Revised Report

Available in hard copy from
Cambridge University Press

Or in pdf/html/etc... from
www.haskell.org/definition

CAMBRIDGE
UNIVERSITY PRESS

Textbooks

The Craft of

“':!3. SRR 3
. :_i The Haskell School of Expression ; Graham Hutton
X R Functional L
| LEARNING FUNCTIONAL PROGRAMMING 2 /
THROUGH MULTIMEDIA Programming .
- 1

PAUL HUDAK

@ Introduction to Functional Programming using
Haskell (2nd edition), Richard Bird

@ The Haskell School of Expression, Paul Hudak

@ Haskell: The Craft of Functional Programming
(2nd edition), Simon Thompson

@® Programming in Haskell, Graham Hutton

What is Functional
Programming?

What is Functional Programming?

@ Functional programming is a style of
programming that emphasizes the
evaluation of expressions, rather than
execution of commands

@ Expressions are formed by using functions
to combine basic values

@ A functional language is a language that
supports and encourages programming in a
functional style

7/

Functions:

In a pure functional language:

@ The result of a function depends only on
the values of its inputs:
s Like functions in mathematics
= No global variables / side-effects

€ Functions are first-class values:

= They can be stored in data structures

= They can be passed as arguments or returned
as results of other functions

Example:

@ Write a program to add up the
numbers from 1 to 10

In C, C++, Java, C#, ..

initialization
/ initialization
int tot = O;/%éiz//

for (int i=1; 1i<10; i++)
tot = tot + 1;

update

/ iteration

update

implicit result returned in the variable tot

10

In ML: accumulating parameter

s

let fun sum 1 tot
= 1f 1>10
then tot
else sum (1+1) (tot+1)

in sum 1 O

end . .
(tail) recursion

initialization

result is the value of this expression

In Haskell:

S UIm

/I

(1.

.10]

AN

combining
function

result is the value of this expression

the list of numbers to add

12

Raising the Level of Abstraction:

"If you want to reduce [design time], you
have to stop thinking about something you
used to have to think about.” (Joe Stoy,
recently quoted on the Haskell mailing list)

@ Example: memory allocation

€ Example: data representation

@ Example: order of evaluation

@ Example: (restrictive) type annotations

13

Computing by Calculating:

@ Calculators are a great tool
for manipulating numbers

€ Buttons for:
= entering digits
= combining values
= Using stored values

¢ Not so good for manipulating . 7
large quantities of data =

@ Not good for manipulating
other types of data

Computing by Calculating:

€ What if we could “calculate”
with other types of value?

€ Buttons for:

= entering pixels
= combining pictures
= Using stored pictures

¢ I wouldnt want to calculate a
whole picture this way!

€ I probably want to deal with
several different types of data at
the same time

Computing by Calculatlng

866

7 travel plan

@ Spreadsheets are | =
better suited for | me
dealing with larger
quantities of data -

10

4 Gas Price

P50 Cost
6

7

11
12

8 Miles Per Gallon:

"1 Sheetl

B C D E
Winter Spring Summer Fall

TOTAL
1000 500 2000 500 4000
2.71 2.65 3.15 2.85
| 96.79 47.32 225.00 50.89] =SUM(B5:E5)

28

Values can be

) 4 4 > >
|
EIEE=)e

named (but not operations)

v
y [———] < »M

Calculations (i.e., programs) are recorded so that

they can be repeated, inspected, modified

@ Good if data fits an “array”

@ Not so good for multiple types of data

16

Functional Languages:

@ Multiple types of data
= Primitive types, lists, functions, ...
= Flexible user defined types ...

@ Operations for combining values to build new
values (combinators)

@ Ability to name values and operations
(abstraction)

@ Scale to arbitrary size and shape data

@ “Algebra of programming” supports reasoning

17

Getting Started with
Haskell

Starting Hugs:

users$S

hugs

| | Version:

Haskell 98 mode:

Type
Hugs>

:? for help

- Hugs 98: Based on the Haskell 98 standard
1 Copyright (c) 1994-2005

World Wide Web: http://haskell.org/hugs
Bugs: http://hackage.haskell.org/trac/hugs
September 2006

Restart with command line option -98 to enable extensions

The most important commands:
° g quit

e :| file load file

o e file edit file

o EXpr evaluate expression

19

The read-eval-print loop:

1. Enter expression at the prompt
2. Hit return

3. The expression is read, checked, and
evaluated

4. Result is displayed
5. Repeat at Step 1

20

Simple Expressions:

Expressions can be constructed using:
@ The usual arithmetic operations:

1+2%*3
€@ Comparisons:

1 == 'a' < 'Z
@ Boolean operators:

True && False not False
@ Built-in primitives:

odd 2 sin 0.5

@ Parentheses:

odd (2 + 1) (1+2)*3

¢ Etc ...

Expressions Have Types:

@ The type of an expression tells you what
kind of value you will get when you
evaluate that expression:

@ In Haskell, read ™::" as “has type”

@ Examples:
= 1::Int, '@’ :: Char, True :: Bool, 1.2 :: Float, ...

@ You can even ask Hugs for the type of an
expression: :t expr

22

Type Errors:

Hugs> 'a' && True
ERROR - Type error 1n application

**x Expression : 'a' && True
**%*% Term : 'a’

*xx Type : Char

*** Does not match : Bool

Hugs> odd 1 + 2

ERROR - Cannot 1nfer 1nstance
*** Instance : Num Bool

*** Expression : odd 1 + 2

Hugs>

23

Pairs:

@ A pair packages two values into one
(1, 2) (‘a', 'z") (True, False)

€ Components can have different types
(1, '2") ('a', False) (True, 2)

@ The type of a pair whose first component is
of type A and second component is of type
B is written (A,B)

@ What are the types of the pairs above?

24

Operating on Pairs:

@ There are built-in functions for
extracting the first and second
component of a pair:

fst (True, 2) = True

snd (0,7) =7

25

Lists:

@ Lists can be used to store zero or more
elements, in sequence, in a single value:

[1 [1,2,3] [@&','Z] [True, True, False]

@ All of the elements in a list must have the
same type

@ The type of a list whose elements are of
type A is written as [A]

@ What are the types of the lists above?

26

Operating on Lists:

€ There are built-in functions for extracting
the head and the tail components of a list:

= head [1,2,3,4] =1
s tail [1,2,3,4] = [2,3,4]

@ Conversely, we can build a list from a given
head and tail using the “cons” operator:

x1:[2,3,4] =11, 2, 3, 4]

27

More Operations on Lists:

@ Finding the length of a list:
length [1,2,3,4,5] =5

@ Finding the sum of a list:
sum [1,2,3,4,5] = 15

@ Finding the product of a list:
product [1,2,3,4,5] = 120

@ Applying a function to the elements of a
list:
map odd [1,2,3,4] = [True, False, True, False]

28

Continued ...

@ Selecting an element (by position):
[1,2,3,4,5] 1! 3 =4

@ Taking an initial prefix (by number):
take 3 [1,2,3,4,5] = [1,2,3]

@ Taking an initial prefix (by property):

takeWhile odd [1,2,3,4,5] = [1]

@ Checking for an empty list:
null [1,2,3,4,5] = False

29

More ways to Construct Lists:

€ Concatenation:
[1,2,3] ++ [4,5] = [1,2,3,4,5]

@ Arithmetic sequences:
[1..10]1 =11, 2,3,4,5,6,7,8,9, 10]
[1,3..10] =[1, 3, 5, 7, 9]

@ Comprehensions:
[2 *X | X <- [112131415]] —
[Yy | y <- [1121314]1 odd Yy] =

4, 6, 8, 10]

[2,
[1,3]

30

Strings are Lists:

@A String is just a list of Characters
['w', ‘o, 'w', "I'] = "wow!"
['a'..']'] = "abcdefghij”
"hello, world" I 7 ='W
length "abcdef" = 6
"hello, " ++ "world" = "hello, world"
take 3 "functional” = "fun”

31

Functions:

@ The type of a function that maps
values of type A to values of type B is
written A -> B

@ Examples:
= 0odd :: Int -> Bool
mfst::(a, b)->a (a,bare type variables)
= length :: [a] -> Int

32

Operations on Functions:

@ Function Application. Iff:: A->Band x ::
A thenfx::B

@ Notice that function application associates
more tightly than any infix operator:

fx+y = (fx)+y

@ In types, arrows associate to the right:
A->B->C=A->(B->0C)
Example: take :: Int -> [a] -> [&]
take 2 [1,2,3,4] = (take 2) [1,2,3,4]

33

Sections:

@If ® is a binary op of type A-> B -> C,
then we can use “sections”:
s (®) A->B->C
= (expr @) :: B-> C (assuming expr::A)
s (®expr):: A->C (assuming expr::B)

@ Examples:
w (14), (2%), (1/), (<10), ...

34

Higher-order Functions:

®map :: (a->b)->[a] -> [b]
= map (1+) [1..5] = [2,3,4,5,6]

®takeWhile :: (a -> Bool) -> [a] -> [a]
= takeWhile (<5) [1..10] = [1,2,3,4]

®()::(@->b)->(c->a)->c->b
= (0odd . (1+)) 2 = True

\[“composition”} 35

Definitions:

@ So far, we've been focusing on expressions
that we might want to evaluate.

€ What if we wanted to:

= Define a new constant (i.e., Give a name to the
result of an expression)?

s Define a new function?
= Define a new type?

@ Definitions are placed in files with a .hs
suffix that can be loaded into the interpreter
36

Simple Definitions:

Put the following text in a file “defs.hs”:
greet name = "hello " ++ name
square X = X * X

fact n = product [1..n]

37

Loading Defined Values:

Pass the filename as a command line argument to
Hugs, or use the :I command from inside Hugs:

Main> :1 defs

Main> greet "everybody"

"hello everybody"

Main> square 172

144

Main> fact 32
2063130836933693530167218012160000000

1 N>
Mailn 28

Using Libraries:

@ Many useful functions are provided as part
of the “Prelude”

€ Many more are provided by libraries that
must be imported before they can be used
@ Example:
import Char
nextChar ¢ = chr (1 + ord ¢)
@ (The Char library also provides functions for

converting to upper/lower case, testing for
alphabetic or numeric chars, etc...)

39

Typeful Programming:

@ Types are an inescapable feature of
programming in Haskell

= Programs, definitions, and expressions that do
not type check are not valid Haskell programs

= Compilation of Haskell code depends on
information that is obtained by type checking

@ Haskell provides several predefined types:
= Some built-in (functions, numeric types, ...)
= Some defined in the Prelude (Bool, lists, ...)

@ What if you need a type that isn’t built-in?

40

Type Synonyms:

41

Type Synonym:

@ A type synonym (or type abbreviation) gives
a new name for an existing type.

@ Examples:
type String = [Char]
type Length = Float
type Angle = Float
type Radius = Length
type Point = (Float, Float)
type Seta = a-> Bool

42

Algebraic Datatypes:

43

In Haskell Notation:

data Bool = False | True
introduces:

= A type, Bool
= A constructor function, False :: Bool
= A constructor function, True :: Bool

data List a = Nil | Cons a (List a)
introduces

= Atype, Listt, for each type t
= A constructor function, Nil :: List a

= A constructor function, Cons :: a -> List a -> Lﬁ,t a

More Enumerations:

data Rainbow = Red | Orange | Yellow
| Green | Blue | Indigo | Violet

introduces:
= A type, Rainbow
= A constructor function, Red :: Rainbow

= A constructor function, Violet :: Rainbow

45

More Recursive Types.

data Shape = Circle Radius
| Rect Length Length
| Transform Transform Shape

data Transform
= Translate Point
| Rotate Angle
| Compose Transform Transform

introduces:
= Two types, Shape and Transform
= Circle :: Radius -> Shape
= Rect :: Length -> Length -> Shape
= Transform :: Transform -> Shape -> Shape

46
m ...

Using New Data Types:

@ Building values of these new types is

easy:
Nil .. List Rainbow
Cons Red Nil .+ List Rainbow
Cons Blue (Cons Red Nil) :: List Rainbow

@ But how do we inspect them or take
them apart?

Pattern Matching:

@ In addition to introducing a new type and a
collection of constructor functions, each data
definition also adds the ability to pattern match
over values of the new type

@ Example:

first

first (X, y)

wave
wave
wave

engt
engt
engt

:(a,b)->a
= X

NS :: Rainbow -> (Length,Length)
NS Red = (620*nm, 750*nm)

ns Orange = (590*nm, 620*nm)

nm = 1e-9 :: Float 48

More Examples:

neac : [a] -> a

nead [] = error “head of []”
nead (X:xs) = X

ength :: [a] -> Int

ength [] =0

ength (x:xs) = 1 + length xs
area :: Shape -> Float
area (Circle r) =pi*r*r

area (Rect w h) =w *h

area (Transform t s) = areas

49

Pattern Matching & Substitution:

@ The result of a pattern match is either:
= A failure

= A success, accompanied by a substitution
that provides a value for each of the
values in the pattern

@ Examples:
= [] does not match the pattern (x:xs)

m [1,2,3] matches the pattern (x:xs) with
x=1 and xs=[2,3]

50

Patterns:

More formally, a pattern is either:
@ An identifier

= Matches any value, binds result to the identifier

€ An underscore (a “wildcard™)
= Matches any value, discards the result

@ A constructed pattern of the form C p, ... p,,
where C is a constructor of arity n and py, ... ,p,
are patterns of the appropriate type

= Matches any value of the form C e, ... e, provided that
each of the e, values matches the corresponding p,

pattern.

51

Other Pattern Forms:

For completeness:

@ "Sugared” constructor patterns:
= Tuple patterns (p4,p,)
= Cons patterns (ph : pt)
= List patterns [py, p,, Ps]
= Strings, for example: "hi" = Ch" : %" : [])

@ Character and numeric Literals:

= Can be considered as constructor patterns, but the
implementation uses equality (==) to test for matches

52

Function Definitions:

@ In general, a function definition is written as
a list of adjacent equations of the form:

fpy..p,=rhs
where:

= f is the name of the function that is being defined
= Py, ..., P, are patterns, and rhs is an expression

@ All equations in the definition of f must have
the same number of arguments (the “arity”

of f)

53

... continued:

@ Given a function definition with m
equations:

fp1,1 o Ppy = rhs,
f Pis. Pn2 = rhs,

f Pim - Pam = rhs,,

® The value of f e, ... ,is S rhs, where i is
the smallest integer such that the
expressions e; match the patterns p;; and S
is the corresponding substitution. 54

Example: filter

fi
fi
fi

/l

ter
ter
ter

:: (a -> Bool) -> [a] -> [a]

D] =[]

D (X:XS)

D X = X : rest
otherwise = rest

where rest = filter p xs

A

guards “where” clause

55

Example: Binary Search Trees

data Tree = Leaf | Fork Tree Int Tree
insert » Int -> Tree -> Tree
insert n Leaf = Fork Leaf n Leaf
insert n (Fork | mr)

| n <=m = Fork (insertnl) mr

| otherwise = Fork I m (insert nr)
ookup :: Int -> Tree -> Bool
ookup n Leaf = False
ookup n (Fork I mr)

n<m = lookup n |

n>m = lookup n r

otherwise = True

56

Summary:

€ An appealing, high-level approach to
program construction in which
independent aspects of program
behavior are neatly separated

@ It is possible to program in a similar
compositional / calculational manner in
other languages ...

@ ... but it seems particularly natural in a
functional language like Haskell ...

57

Assignment #1

N4

&

Your goal is to write a function:
s tolnt :: String -> Int

To accomplish this, consider the following functions:
= explode :: String -> [Char]
= digitValue :: [Char] -> [Int]
= reverse :: [Int] -> [Int]
= pairedWithPowersOf10 :: [Int] -> [(Int,Int)]
= pairwiseProduct :: [(Int,Int)] -> [Int]
= sum :: [Int] -> Int

Write definitions for four of these functions (reverse and sum are built-

in), using pattern matching and recursion where necessary

Turn in an elegant program that communicates your solution well,
including appropriate tests for each part.

58

