
Longitudinal Analysis of Long-Timescale
Open Source Repository Data

Bart Massey
Computer Science Dept.
Portland State University

Portland, Oregon USA 97207-0751

bart@cs.pdx.edu

ABSTRACT
One of the more unique features of open source software devel-
opment is the continuity of projects over large time scales and in-
cremental development efforts. For this reason, the open develop-
ment process provides an interesting environment for investigation
of the software development process. The problems of data collec-
tion and analysis of two particular long-running repositories, the X
Window System and the Nickle Programming Language, are con-
sidered here as instructive examples. The use of uniform software
tools (CVS/RCS) with open formats and interfaces makes it possi-
ble to collect data that provide unique analysis opportunities.

Categories and Subject Descriptors
D.2 [Software]: Software Engineering; D.2.8 [Software Engi-
neering]: Metrics

General Terms
Measurement

Keywords
Open Source, Source Repositories

1. INTRODUCTION
When considering continuity of projects over large time scales,

open source comes immediately to mind. Open source codebases
tend to evolve incrementally over time instead of through catas-
trophic rebuilding. This is at least partly due to the lack of a need to
”re-sell” software to maintain a revenue stream, resulting in greater
acceptance of incremental user-visible change. In addition, while
management of a codebase may change hands as the result of a
“fork”, the developer pool tends to change gradually—mass exo-
duses or arrivals of developers are rare. The likelihood of invest-
ment of current developers in the codebase decreases the inclination
to discard and rebuild large chunks of code without careful consid-
eration.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICSE’05, May 15–21, 2005, St. Louis, Missouri, USA.
Copyright 2005 ACM 1-58113-963-2/05/0005 ...$5.00.

This (more) gradual process is coincident with the widespread
use of well-understood repository software, collaborative develop-
ment models, and of course the openness of both code changes
and development process. As a result, the longitudinal study of
long-standing open source codebases by automated repository data
extraction promises to give insights into code evolution and main-
tenance that would be more difficult to achieve using commercial
data, even if it were available.

The datasets that are being developed in this project, when com-
plete, will be made available as part of the PROMISE Repository
of Software Engineering Databases [5]. The datasets consist of fea-
tures extracted using a modified version of the open source CVS-
analY [4] tool from the various CVS/RCS repositories of two open
source projects with 20-year histories. The X Window System and
ancillary software comprises one of the largest open source soft-
ware projects in history, with hundreds of contributors. At the other
extreme, the Nickle Programming Language [3] is a long-running
but small project with only a few developers.

The long history of use of RCS [6] and later the RCS-based
CVS [1] by open source developers suggests that extraction of soft-
ware engineering features from open source repositories should
be relatively easy. Unfortunately, experience gained in producing
these datasets contradicts that notion. A few open source tools for
analyzing CVS repository data are currently available and/or un-
der development. Unfortunately, these analysis tools tend to be
purpose-built for particular kinds of analysis, and to be problem-
atic in other ways.

CVS makes the job of analysis more difficult by failing to pre-
serve important kinds of transactions in the revision history. In
particular, it is notorious for its inability to properly reflect file re-
names and directory deletions.

In addition, the important notion of atomic commits is not cap-
tured well by CVS. An atomic commit captures changes to a num-
ber of files of a project that comprise a single logical operation as
an atomic unit. Because of its file granularity, RCS has no notion
of atomic commits. While CVS is layered atop RCS, it does per-
mit the developer to commit multiple changes in a single operation.
However, the information that is needed to reconstruct that trans-
action is not, in general, preserved. CVS does support a commit
log that is supposed to capture the information. Unfortunately, this
facility is not commonly turned on: when it is, it is common for
file permission problems and/or race conditions to result in either a
corrupted commit log or one that is silently not updated. As a re-
sult of these problems, the derivation of transaction data in a form
suitable for analysis is greatly complicated.

Finally, because CVS has historically been difficult to work with
and repositories prone to corruption, projects commonly “restart”

their repository from time to time, losing revision history. In addi-
tion, the CVS “import” command, commonly used to start a CVS
archive, does not preserve revision history from old CVS or RCS
files by default: unless special care is taken, prior revision history
will be lost. This means that work is required to track down old
repositories—when it is possible at all.

Nonetheless, with persistence useful data can be abstracted from
long-running open source repositories and useful analysis can be
performed. The rest of this paper proceeds as follows: Section 2
describes the structure of RCS and CVS repositories (Section 2.1),
the history of the specific repositories being analyzed (Section 2.2),
and the tools that can be and are being used to analyze them (Sec-
tion 2.3). Section 3 describes some preliminary acquisition (Sec-
tion 3.1) and extraction (Section 3.2) of data from the repositories,
to illustrate both the process and the possible results. Finally, Sec-
tion 5 suggests some further work and draws some brief conclu-
sions.

2. REPOSITORIES AND TOOLS
Many readers may be quite familiar with the care and feeding

of open source repositories. For those who are not, a brief intro-
duction is in order. It should be commented that a wide number of
repository tools and formats are currently in use or under develop-
ment: from the popular Subversion and Arch to the more esoteric
such as DARCS and Monotone. Nonetheless, open source repos-
itories with long histories tend to still be in the native format that
they used at their inception: this is almost invariably CVS, usually
imported from RCS.

The particular repositories used, X11 and Nickle, have their own
unique characteristics that bear discussion. Further, a discussion
of repository analysis tools naturally leads to a discussion of the
specific tools used in this analysis.

2.1 RCS and CVS Repositories
The RCS Revision Control System is one of the earliest success-

ful open source tools. RCS and its contemporary SCCS brought
software engineering tools and practices to an open source world
dominated by small, ad hoc projects. For better or worse, it can be
argued that scaling open source project sizes and developer partic-
ipation would have been impossible without the support of RCS.

The RCS repository structure is simple and functional. Reposi-
tories are manipulated by a set of small UNIX tools. Each source
file in a project is treated separately by the RCS toolset: there is no
relation maintained between files in the repository. The RCS tools
enforce a strict locking model with file granularity. To edit a par-
ticular source file, it is checked out of the repository, locking it in
the process. A locked file can be checked out only for reading by
other developers. Changes to the file can be committed by check-
ing in the file: this act causes the file to be unlocked and its revision
history to be updated.

RCS repository files consist of the entire text of the current re-
vision of the corresponding source file, together with a chain of
reverse deltas documenting all previous revisions. Each revision
is automatically numbered. Branching, experimental revision in-
tended to explore specific alternatives, is supported by RCS. How-
ever, because the support for merging branch changes back into the
main line is weak, developers use RCS branches infrequently in
practice.

The CVS Concurrent Versions System is a tool originally writ-
ten as a script invoking RCS for its fundamental operations. CVS
provides two important enhancements to RCS. First, the non-strict
revision model of CVS, while still operating at file granularity, al-
lows multiple developers to simultaneously edit a given file in the

repository. These revisions are automatically merged as needed,
with support for manual resolution of conflicts. Second, and per-
haps more importantly, CVS features a commit operation that auto-
matically (for the most part) makes multiple changes to the repos-
itory simultaneously to make it correspond to the current source
tree. Because CVS coordinates simultaneous changes to different
files of the project, developers can concentrate on developing rather
than repository operation.

Because it has historically been RCS-based, the CVS repository
structure is essentially that of a collection of RCS repositories with
extra metadata. The metadata mostly is stored in a special CVS-
ROOT directory, in text files that are mostly under RCS control.
Most metadata is not essential for normal operation of CVS: one
can essentially drop an RCS tree into the CVS repository and start
using it. By design, this property makes importing of RCS repos-
itories trivial. It also has the important advantage that one can use
RCS tools to access the CVS repository when necessary.

Unfortunately, while CVS has the ability to log atomic commit
operations, it has not historically been turned on by default. In
addition, the capability is not particularly robust. Since the com-
mit log is not required by CVS for normal operation, corruption
or failure of the log file may not be noticed for some time. Since
RCS features no atomic commit operations and CVS fails to retain
them, reconstructing them via a set of heuristics is the normal, if
error-prone, approach to analysis.

Another unfortunate attribute of CVS is that it is difficult to iso-
late the contributions of “less-trusted” developers. While CVS sup-
ports fine-grained access control, this feature is not well known and
is difficult to properly maintain: it is thus little-used. As a result,
commit access permission to a CVS repository is often quite tightly
controlled. The committer of a code revision is thus quite often not
the person who actually authored that revision. This makes some
kinds of repository analysis more difficult—the commit statistics of
an apparently frequently-committing developer may actually repre-
sent a conglomeration of statistics from the various outside authors
contributing patches to the project. These contributions are nor-
mally noted in the commit log messages, but in a way that varies
from project to project and is prone to error.

2.2 X and Nickle
The X Window System and the Nickle Programming Language

have obvious superficial differences. Nonetheless, these projects
have some important underlying similarities. These projects were
chosen for analysis for several reasons. The author has devel-
oped extensively in and for both projects. Further, the development
has occurred in close cooperation with another developer, Keith
Packard, who has been instrumental in both projects. As a result
of this involvement, the author feels especially qualified to validate
data and analysis resulting from this work.

In addition, both projects were started around the same year:
1988. They have been primarily developed in the same source lan-
guage (C) and for the same platform (UNIX) using the same tools
(open source compilers and development tools). As a result, they
provide interesting comparisons as well as contrasts in their long-
term development.

2.2.1 The X Window System
The X Window System is a premiere example of the open source

development process in action. Around 1988, the MIT X Consor-
tium released X11R1, a system comprising a display management
program, a number of graphical applications to exploit the display
system, and a library infrastructure supporting these applications
and suitable for building further tools. The participation of work-

station vendors in the Consortium guaranteed commercial adop-
tion, while the open source model helped to ensure interoperabil-
ity and co-development among this competitive vendor community.
The Consortium development team used RCS as its repository tool.

By 1994 or so, the X Consortium had become moribund, and
the focus of attention for X developers had shifted to the PC-class
machines that were beginning to achieve the level of computational
and graphical performance to be useful as UNIX workstations. At
this point, the XFree86 project effectively took over de facto man-
agement of the X Window System codebase.

A RCS/CVS problem noted in Section 2.1 is that it encourages
a style of repository management that makes author attribution of
changes difficult. This was certainly the case for the X Window
System project under the X Consortium, although there were fewer
outside contributors to this project in any case. Under the XFree86
project the issue of indirect contribution became more pronounced.
By the time XFree86 wound down, the majority of the commits
were being performed by XFree86 project leader David Dawes.
The stereotypical structure of log file authorship attribution in these
commits made it possible to reconstruct the authorship of individ-
ual post facto. However this required extra effort. More impor-
tantly, the ability to infer the actual atomic commits from the indi-
vidual file changes was severely compromised by this.

In the 2001–2004 time frame, de facto control of X Window Sys-
tem migrated again, to a group led by X.org and freedesktop.org.
The relevant consequence of this migration is that commit access
to the X CVS repository became much more available to new de-
velopers. The result was a system that should make it much eas-
ier, going forward, to understand the development process. The X
repository is also likely to migrate to tools that alleviate some of
the CVS problems, perhaps Arch.

Thus, there are really three phases of X Window System devel-
opment that need to be analyzed: the X Consortium phase, the
XFree86 phase, and the freedesktop.org phase. Each of these anal-
yses appears to have its own peculiar problems.

2.2.2 The Nickle Programming Language
The Nickle Programming Language started its development as

a language called ic in the mid-1980’s. The name evolved along
with the system, becoming nick in the mid-1990’s and nickle
sometime thereafter. A full discussion of Nickle functionality is
outside the scope of this paper: in brief, it is a largely conventional
implementation of a vaguely C-like programming language with
various fancy features.

As with X, the three phases of Nickle naming corresponded also
to three different development efforts. The ic effort was an at-
tempt to build a usable language for basic calculations, and for its
authors to educate themselves about programming language design
and development. The nick effort was an attempt to add more
general-purpose functionality and more portability for scripting and
prototyping purposes. Finally, the Nickle effort is an ongoing at-
tempt to refine all of this into a polished system, and add some
desirable-looking advanced programming language features.

The Nickle committer base has always been small, extending
outside the core developers really only in the last few years. In ad-
dition, the Nickle project is quite small (currently some 50KLOC)
and monolithic. As a result, Nickle reflects a different style of de-
velopment than the X Window System.

2.3 Repository Analysis Tools
A recent interesting development has been that the open source

community and the “traditional” software engineering community
have become more aware of each other. As a result, academics and

open source developers have started to build tools for performing
the kind of analysis traditionally done on privately-held commer-
cial data on open source repositories. This cooperation has been
fostered by the fact that many developers, like the author, wear
both academic and open source hats concurrently.

The move to open data about open projects is an important devel-
opment. The inability to replicate the results of software engineer-
ing analyses on the source data has always been worrisome. Indeed,
a prominent computer scientist in another field recently complained
to the author at length about this problem, noting that such analy-
ses could not be taken seriously as science. The 2004 Workshop
on Mining Software Repositories [2] contains an interesting mix of
reports, but perhaps the majority of them involve tools and analy-
ses based on CVS data from open source projects. The paper by
Zimmerman and Weißgerber [8] contains a nice review of work re-
lated not just to their project but to this one: it seems unnecessary
to repeat that review here.

The work reported here utilizes the open source CVSAnalY tool
authored by Gregorio Robles and others. CVSAnalY is a Python-
based tool intended to collect and visualize development statistics
about large software projects. There were several properties that
recommended it for the current analysis. First, it is currently pub-
licly freely available in source form—a surprising number of the
open source tools reported on in the literature seem to be not yet
released to the general public. Second, because it is written in
Python, it is relatively easy to work with its source code. Third, the
source has a relatively modular structure, making it easier to archi-
tect modifications. Fourth, CVSAnalY contains some nice heuris-
tics for categorizing the “type” of files: these appear to work well
and are informative. Finally, it is quite efficient: this is a critical
property for analyzing the long-term high-volume X repositories.
The XFree86 dataset of roughly 200K transactions takes less than
an hour to generate on a standard PC workstation.

However, CVSAnalY also has some drawbacks in the current ap-
plication. Most notably, the current version does not support CVS
commit analysis: it does not heuristically group changes as part
of a single atomic commit. This analysis should be relatively easy
to add either by retrofit or as a post-pass, and may in any case be
available in the next release of the tool. However, its lack currently
inhibits constructive analysis of the resulting data. CVSAnalY also
makes some use of the CVS metadata, inhibiting its use with the
pure RCS repositories of yore. Fixing this is probably trivial, but
again needs to be done to permit analysis of older data.

By default, CVSAnalY outputs its analysis to an SQL database
for further processing. The author modified the tool to instead out-
put the Attribute-Relation File Format (ARFF) files used in the
PROMISE repository directly. This modification was relatively
easy. The author also fixed a few buglets in CVSAnalY to prepare
it for use.

3. DATA CAPTURE AND ANALYSIS
With all of the above in mind, the capture and analysis of the

repository data appears straightforward. There are really only three
basic steps: acquire copies of the needed repositories, run the mod-
ified CVSAnalY tool on the repositories to extract the relevant data,
and then run analysis tools such as Weka [7] on the data to under-
stand what it is saying. The devil, as usual, is in the details, and
sometimes even in the broader picture.

3.1 Data Acquisition
For open source projects that the author has been intimately in-

volved in since their inception, one would expect that acquiring
copies of the repositories would be a snap. Unfortunately 20 years

Table 1: Repository summaries
Codebase Changes Authors Lines+ Lines-

XFree86 141K 21 5.85M 2.4M
X.org 133K 42 5.1M 1.9M

Nickle 2972 6 71.7K 34.6K

is a long time, and a lot of bad things can happen to data. The real
heart of the data acquisition problem lies in the earlier observation
(Section 2.1) that CVS encourages a style in which repositories are
periodically re-created.

For X, this happened with each organizational change: the new
organization imported the repository in such a way that the old re-
vision history was essentially lost. Thus, ultimate copies of the
X Consortium and XFree86 repositories had to be located. This
proved easy for XFree86. The old repository is still nominally ac-
tive, and can be easily downloaded.

For the Consortium code, the situation is more problematic. Un-
fortunately, because of legal issues with the X Consortium, the
XFree86 developers were unable to acquire the Consortium RCS
repository. Thus, they started afresh with a new repository. At-
tempts to locate archives of the original Consortium RCS reposi-
tory have so far been unsuccessful. A current focus of effort is to
restore old ClearCase VOB archives that may contain RCS trans-
action information from that period. Failing this, the early revision
history of X may be permanently lost.

For Nickle, the repository re-creation happened for each new de-
velopment phase. The original ic RCS repository is available.
While versions of the nick source code have been located, the
underlying CVS repository appears to be permanently lost. This
repository resided on a machine that author Keith Packard had ac-
cess to when he worked at NCD, a now-defunct manufacturer of X
Window System based hardware. Apparently, no archive was made
upon Packard’s departure from the organization, and the repository
was inadvertently not incorporated into the Nickle repository due to
the problems with CVS discussed in Section 1. The Nickle reposi-
tory, however, is in good shape.

3.2 Data Extraction
Of course, having a repository is useless unless the analysis tools

can be made to operate on it. As mentioned above (Section 2.3),
CVSAnalY does not currently quite support RCS-only repositories.
Add this to the data acquisition problem, and only three reposito-
ries remain to be analyzed: the current Nickle repository stretching
back about 6 years, the X.org repository stretching back just a few
years, and the XFree86 repository.

These three repositories were analyzed using CVSAnalY: the
preliminary results are available online as .arff files. Table 1
summarizes these datasets. The Lines+ and Lines- columns indi-
cate the total number of lines added to and deleted from the repos-
itory over the analysis period. These totals exclude data for which
CVSAnalY infers type “image” or “multimedia”: this data appears
to be seriously over-counted by CVSAnalY. The X data also ex-
cludes a very few adds that appear to be corrupted by a CVSAnalY
bug. The XFree86 summary data excludes commits from 2003
or later, since these are assumed to be largely incorporations of
changes from the X.org codebase.

One interesting fact that emerges immediately is that the X.org
repository has already managed to accumulate almost as many file
deltas as XFree86 did over its entire useful life. This suggests that
the desire to achieve more rapid development is in fact being met.
Note that it is harder to draw conclusions about greater authorship,

since CVSAnalY is currently unable to acquire the actual author of
commits, as discussed previously (Section 2.2.1).

Another interesting observation is that, over the long haul, addi-
tions appear to outnumber deletions at the rate of about 2::1 for all
three repositories. It would be interesting to compare this with the
rate from other long-term open source projects.

For each repository, CVSAnalY extracts 7 salient attributes and
heuristically synthesizes two more. These 9 attributes are

1. Inferred file type. A heuristic is used that attempts to guess
the general classification of the file being altered from its file-
name. There are 9 possible classification categories: docu-
mentation, images, i18n, ui, multimedia, code, build, devel-
doc, and unknown. For the datasets reported here, only a
small fraction (10–20%) of the files are classified unknown
by the heuristic. Informal random sampling revealed fairly
high subjective accuracy for the positive classifications.

2. File pathname. The relative directory and name of the file
affected by the change.

3. Revision. The RCS revision number produced by the change.

4. Author ID. A numeric encoding of the author field of the
change. As discussed previously, this is actually the commit-
ter, and may commonly fail to reflect the true author.

5. Lines added. The number of lines added by the change.
An apparent bug in CVSAnalY caused a very few changes
in the X datasets to be flagged with a negative value in this
field. These anomalous change records were ignored in the
statistics reported here.

6. Lines removed. The number of lines deleted by the change.
Note that there is no real way to capture “lines changed” in
current revision control software. Thus, each line changed is
logged as a line added and a line deleted. This is arguably
wrong: a heuristic should be used to group adjacent inser-
tions and deletions of a single change into “changed lines” to
avoid over-counting and other confusion.

7. File “in Attic”. This boolean flag indicates that the file has
been explicitly deleted from the repository. An artifact of
the inability to rename a file in CVS and the concomitant
common work-around of notionally deleting the file and re-
creating it under a new name is that many files are mislead-
ingly marked as deleted.

8. Inferred non-author commit. CVSAnalY analyzes commit
log messages using a fairly weak heuristic to try to discover
whether an author other than the committer of a change is
mentioned in the change log entry. While the heuristic used
probably massively undercounts the frequency of non-author
changes, it does occasionally provide an indication that this
has happened.

9. Commit date. The date the file was committed. One must
assume, in the absence of evidence as to the workings of old
versions of CVS, that the date is GMT. This is good for com-
paring changes from geographically diverse committers, but
less good for inferring things like whether daytime or night-
time changes are more common.

For summary statistical information about each of these attributes
for each of the data sets reported here, please see the headers of the
relevant PROMISE Repository data files.

4. USING THE DATA
The datasets as currently collected are actually quite weak. In

particular, the lack of code quality and/or defect data correlated
with changes is problematic. The inability to determine the atomic
commit associated with a change is also a problem. However, there
are still interesting things to be discovered by analyzing this data.

A particular focus of software engineering metrics has been on
measuring productivity. This is a relatively easy thing to do in the
traditional software development cycle. Commercial projects tend
to be developed over months or at most a few years. During the de-
velopment phase, control and measurement of productivity in many
organizations is quite detailed. The maintenance phase, however,
is another matter. Studies of software maintenance productivity are
made more difficult in commercial settings by the relative lack of
attention payed to maintenance in many organizations.

When maintenance and development are integrated, as they tend
to be in long-timescale open source projects such as those reported
here, the productivity questions are at once more interesting and
more important. Can we find automatically measurable character-
istics distinguishing maintenance and development activities when
these activities are intermingled in an open-source project? Can we
use this sort of information to change software development prac-
tices and improve productivity? One might hypothesize a positive
answer to these questions without embarrassment.

For example, consider development around release dates for open
source projects that release well-labeled major versions from time
to time. Packard hypothesizes that these release dates become focal
points for development. Under this hypothesis, one would expect
to see an increasing frequency of large changes up to the release
date, as major features are incorporated. Once the release date has
passed, a decreasing frequency of smaller changes should occur,
as the user defect reports so important in open source development
trigger restorative maintenance activities.

This hypothesis suggests that machine learning on or statistical
analysis of the datasets reported here with change size and fre-
quency as dependent variables would be an interesting experiment.
This experiment suggests other such experiments. How does the
productivity of individual developers, again measured in terms of
change size and frequency, evolve over the course of their tenure
with an open source project? What directories in an open source
project are the focus of frequent intense change activity? The an-
swers to these kinds of questions would seem to have potentially
important implications in improving the software productivity, not
just of closed-source development, but of open-source development
also.

5. FUTURE WORK
In the near term, further attempts will be made to completely ac-

quire the X repository. In addition, the prospects of acquiring other
long-timescale open source repositories will be explored. GCC, for
example, seems a promising candidate. A particular focus should
be on finding such a repository that can be correlated reliably with
a source of defect data.

The authors are currently working on using the data already ac-
quired to develop the hypotheses and suggested experiments of
Section 4.

The longitudinal study of long-standing open source codebases
by automated repository data extraction promises to give insights
into code evolution and maintenance. Researchers are taking the
first steps toward achieving this promise.

Acknowledgments
Thanks to Tim Menzies for inspiration and for useful discussions
of the project. Special thanks to Gregorio Robles for making CVS-
AnalY available on an open source basis. Thanks to Keith Packard
and Jim Gettys for help in obtaining and understanding X reposi-
tory data. Thanks also to Packard for reviewing drafts of this paper
and suggesting some of the analysis proposed in Section 4. Finally,
thanks to the PROMISE Repository folks for providing a forum for
this sort of work.

Availability
The data described in this paper, as well as the modified version
of CVSAnalY used to produce it, is available via the PROMISE
Software Engineering Repository at http://promise.site.
uottawa.ca/SERepository/.

6. REFERENCES
[1] K. Fogel and M. Bar. Open Source Development with CVS.

Coriolis, 2001.
[2] A. E. Hassan, R. C. Holt, and A. Mockus, editors.

Proceedings of the 1st International Workshop on Mining
Software Repositories, Edinburgh, Scotland, May 2004.

[3] B. Massey and K. Packard. Nickle: Language principles and
pragmatics. In Proc. 2001 Usenix Annual Technical
Conference, Freenix Track, Boston, MA, June 2001.
URL http:
//www.nickle.org/usenix-nickle.pdf.

[4] G. Robles, S. Koch, and J. González-Barahona. Remote
analysis and measurement of Libre software systems by
means of the CVSanalY tool. In ICSE 2004—Proceedings of
the Second International Workshop on Remote Analysis and
Measurement of Software Systems (RAMSS ’04), pages 51–55,
Edinburgh, Scotland, 2004.

[5] J. Sayyad Shirabad and T. Menzies. The PROMISE repository
of software engineering databases. School of Information
Technology and Engineering, University of Ottawa, Canada,
2005.

[6] W. F. Tichy. RCS – A system for version control. Software –
Practice and Experience, 15(7):637–654, July 1985.

[7] I. H. Witten and E. Frank. Weka: Practical Machine Learning
Tools and Techniques with Java Implementations. Morgan
Kaufmann, 1999.

[8] T. Zimmermann and P. Weißgerber. Preprocessing cvs data for
fine-grained analysis. In Hassan et al. [2].

