
Why OSS Folks Think SE Folks Are Clue-Impaired

Bart Massey
Computer Science Department

Portland State University
P.O. Box 751 M.S. CMPS

Portland, Oregon USA 97207–0751
bart@cs.pdx.edu

Abstract

The open source software development community has
long been critical of mainstream software engineering
thinking: mainstream software engineering has largely ig-
nored or even scoffed at this critique. A summary of some
key elements of such a critique can be useful in at least two
ways: as part of an attempt to understand the existing rela-
tionship between SE and OSS, and as a tool for improving
practice in both areas.

1 OSS Development Is Just SE. . . Right?

It is the perception of many members of the Software En-
gineering (SE) community that academic SE practice is the
standard by which software development should be judged.
In this view, high-quality scientific research on SE pro-
cesses and tools drives high-quality software development
practices that produce high-quality, low-cost software in al-
most any domain.

It is interesting to note that many experienced and ca-
pable software developers in commercial enterprises scoff
at the notion of best SE practice as normative. This view
is even more emphatic in the free and open source soft-
ware (OSS) community. Reactions in response to the per-
ceived mismatch between “real world” commercial and
OSS development and SE “best practice” have run a gamut,
from the development of customized and lightweight soft-
ware development methodologies such as Extreme Pro-
gramming [1] to the simple business-as-usual plan of ignor-
ing the SE community altogether. Vixie [14] captures this
attitude well, noting that “It is clear from historical exam-
ples that software need not be engineered to be widely used
and enjoyed.”

In fact, the ignorance of SE prescribed practice in the
OSS community appears to be almost total and some-

what deliberate. This community has rejected the re-
ceived wisdom of its peers and forefathers: OSS soft-
ware is developed in a fashion that combines prac-
tices that would have been familiar 20 years ago (e.g.,
command-line debuggers, medium-level programming lan-
guages, implementation-centric construction) with idiosyn-
cratic practices that change rapidly to reflect the OSS per-
ception of best practice (e.g., distributed development and
revision control tools, special documentation formatters and
styles, use of novel communication channels such as IRC
and Slashdot).

The details of this perceived mismatch between the OSS
and SE communities is interesting on a couple of levels.
First, the best folks in these communities are extremely
smart, experienced people: their perceptions almost always
contain at least a grain of truth. Second, the practices that
each side conceives of as strengths are potential areas for
improvement on the other side.

Two disclaimers. First, the focus in this paper is on in-
forming the SE community of the perceptions and insights
of the OSS community. The obvious companion piece can
and should be written, entitled something like “Why the SE
Folks Think The OSS Folks Are Disfunctional.” In an SE
venue, that would be preaching to the choir—in an OSS
venue, it could be useful. Second, please note that this paper
is not entitled “Why The Author Thinks SE Folks Are Clue-
Impaired.” The author has nothing but the deepest respect
for both sides of this dialog: indeed, has as an important
goal the deepening of understanding and inevitably respect
between these communities. However, it is likely that this
goal can be achieved only when each side fairly and accu-
rately understands the other’s position. Larry McVoy (as
quoted in [6]) has observed that “it is far better to figure out
a way to allow the business world and the hacker world to
coexist and benefit one another.”

The remainder of this paper proceeds as follows: The re-
lationship between OSS and SE development processes and
practices is explored, concentrating on the areas where OSS

finds SE lacking. A review of outstanding issues suggests
shared engineering ground for the OSS and SE communi-
ties. Finally, after summarizing the situation, directions are
suggested for further progress.

2 The Cathedral

The very title of Eric Raymond’s essayThe Cathedral
And The Bazaar[8] contains an implicit critique of the
canonical practice of software engineering. The content
accurately reflects this title: Raymond suggests that the
commercial SE community suffers from the sort of insu-
larity, absolutism, and cloistered mentality often attributed
to the priesthood of the Middle Ages. This perception is
especially significant in that Raymond’s essay is widely
cited and admired within the OSS development community.
While the focus of the essay is on the Bazaar, the image
of the Cathedral is an iconic summary of the belief of even
some of the most sophisticated members of the OSS devel-
opment community.

The detailed criticisms of “academic” SE by the OSS
community fall into two general categories. First, the pre-
scriptive and descriptive process models of software de-
velopment apostolized by the SE community are widely
viewed by the OSS community as inappropriate for their
work. Second, many of the specific techniques and methods
of the lay software development practitioner, as endorsed by
the SE community, are seen as anathema in the OSS com-
munity.

2.1 Processes

There is a widespread belief among OSS developers that
the SE community is insufficiently driven by actual experi-
ence in software development. In this view, ritual replaces
sense, and the resulting ignorance and superstition damages
software development.

Some of the specific process models and prescriptions
detailed here are common in industry, some are less so. All
are blessed by at least a significant portion of the SE com-
munity. It is worth recalling the point made earlier: the cri-
tique detailed here is useful inasmuch as it helps to inform
the SE community of perceptions, and to illuminate areas
that need work.

The Waterfall Model The Waterfall Model [10] of the
software development process in its pure form is largely out
of favor even in the modern SE community. Nonetheless,
it is still often taught in introductory coursework, and it is
widely and perhaps correctly perceived as reflecting and un-
derlying most modern SE process models. As taught by the
author and his colleagues in the Oregon Master of Software

Engineering program, this model breaks the software de-
velopment process into six stages: User Requirements Elic-
itation; Requirements Specification; Architectural Design;
Detailed Design and Implementation; Validation and Veri-
fication; and Maintenance.

The OSS community that the Waterfall Model arose
from the need to monitor contract compliance in extremely
large U.S. Department of Defense software projects in the
1960s and 1970s. The question then arises naturally: how
can such a model be relevant to the development of small,
open volunteer projects in the21st century?

The author tends to explain the Waterfall Model in the
classroom and in discussions with OSS developers in terms
of a similar and more common-sense structure, consisting
of “what to build”, “how to build it”, “build it”, and “is it
built right?” stages. This doesn’t seem to help much. The
fundamental perceptual mismatch can be captured by such
OSS slogans as “code is cheap” and “the code is the docu-
mentation”. The belief of much of the OSS community is
that the “build it” phase can expand to encompass all of the
other phases. The SE community, of course, tends to con-
sider this experiment as tried and failed: it is precisely the
disasters of implementation as engineering in the commer-
cial world that led to the Waterfall Model in the first place.

The response of the OSS community to the past fail-
ures of implementation-centric engineering is to distinguish
themselves in several ways. First, they argue that techno-
logical improvements in tools in the past 20+ years, par-
ticularly in high-level programming languages and commu-
nications infrastructure (ala the Internet) have permitted a
qualitative change in the way programmers can collaborate
successfully. Brooks’ [2] chapter on documentation is the
prototypical argument here: while much of the rest of this
book is timeless, that chapter contains much advice that is
simply archaic in present-day programming reality.

Second, they argue that the Waterfall Model and its many
descendants are an inevitable result of the contract model
of software procurement. In this view, OSS requirements
can be “Make the users and the programmers happy,” de-
sign can be “Do something cool,” and V&V can be “Does
the software do something cool and make the users and the
programmers happy?” Vixie notes that “Open Source folks
tend to build the tools they need or wish they had. . . . [Later]
other users will start to either ask for features or just sit
down and implement them and send them in.” Given this
premise, much of the need for formalized process of any
kind goes away.

Requirements Engineering The author has written pre-
viously about the sources of OSS requirements [4]: in the
interests of brevity, that discussion will not be repeated here.
The critique of the SE requirements process, on the other
hand, is worth making explicit. The process of system-

atically gathering and correctly formalizing requirements
requires tremendous effort. To be worthwhile, this effort
must pay for itself. Commercial product requirements ef-
forts tend to pay for themselves in one of several ways, none
of which seem to apply in great detail in OSS projects.

For example, in OSS there is little money to be made
by correctly gauging the market. While OSS developers do
actively seek a large user base, there appears to be little con-
cern in most OSS projects about squeezing the last few per-
cent of the market out. In addition, competition is viewed
almost entirely differently in this altruistic marketplace: it is
quite common for projects competing for “customers” to be
nonetheless cooperating to improve the quality of each oth-
ers’ projects. In this environment, market requirements can
be determined by watching the users of competing projects
to see what features and –ilities they are actively seeking,
and then getting the assistance of the competition in provid-
ing them.

As another example, the need to correctly determine re-
quirements for safety-critical and mission-critical systems
appears to be less of a concern in the OSS community.
Highly critical systems are not a domain in which much
OSS software is fielded. Systems that are fielded in, for ex-
ample, security-critical situations tend to have requirements
that are of one of two kinds: either extremely simple, or
mandated by some (usually well-crafted) existing standard.
Neither case demands much in the way of systematicity or
even care in requirements elicitation or specification.

As a result of these kinds of factors, it is difficult to tell
an open source developer that it is a good idea to spend 30%
or more of the product development cycle on requirements.
First of all, as discussed below, the whole notion of a prod-
uct development cycle is really rather foreign to OSS. Sec-
ond of all, the OSS developer will almost always perceive
this advice as totally out of tune with the realities of their
project.

Design Engineering The traditional SE view of design
involves a great deal of design effort, usually in some
combination of top-down (preferred) and bottom-up ap-
proaches, and culminating in a meet-in-the-middle step.
The OSS view is the exact opposite: a small amount of
middle-out design concentrated on a layer somewhere just
below the top, followed by extensive design-by-coding.

Is it possible to get a quality product out of this design
process? The OSS folks think so. Linus Torvalds [12]
writes that “Linux has succeeded not because the original
goal was to make it widely portable and widely available,
but because it was based on good design principles and
a good development model.” The keys, in this view: ex-
traordinarily sharp modularity, with the narrowest possible
couplings and broadest possible coherencies; the “code is
cheap” philosophy of treating the entire implementation as

a partially-reusable design prototype; and the use of high-
level scripting languages and sophisticated environments to
produce usable implementations via rapid development.

It must be noted that successful medium-sized and large
OSS projects tend to be architected by developers of ex-
traordinary skill and experience. This tendency is balanced,
however, by the express desire and demonstrated ability to
substitute clusters of small, largely decoupled projects for
the medium-sized and large ones. In the case of success-
ful but necessarily large OSS applications, the underlying
architecture and implementation often begins as an inheri-
tance from a traditional SE project, as in the case of the X
Window System, Mozilla, and OpenOffice.org.

Structured Testing The principal problem with struc-
tured testing from an OSS point of view is similar to that of
sophisticated requirements or design engineering: it is quite
demanding of resources. Worse yet, as in the commercial
world, traditional structured testing activities are viewed in
the OSS world as repetitive and unrewarding for the prac-
titioner. While professional testers receive compensation in
the form of salary, the reward system for systematic testing
among OSS developers is practically nonexistent.

Further, even traditional software development models
have taken the view that “user testing” on real workloads is
a powerful testing tool for reducing the expected pain from
software failures. A comparison with Mills’ Cleanroom [5]
approach is appropriate: in OSS, the formal development
portion of Cleanroom is replaced with the “many eyes make
shallow bugs” approach to generating low-defect software
for the user testing phase.

In OSS, as with much COTS software development, user
testing takes the form of fielding new software as early
as possible, and waiting for the users to report failures.
In OSS, this process is supported by the continuous co-
existence of deployed experimental and stable versions, and
by the fact that much of the user base itself consists of
professional-quality developers that can understand the ap-
plication source and provide accurate failure reports, do
their own defect analysis, and suggest solutions. DiBona
et. al. [3] write that “By sharing source code, Open Source
developers make software more robust. Programs get used
and tested in a wider variety of cntexts than one program-
mer could generate, and bugs get uncovered that otherwise
would not be found. Because source code is provided, bugs
can often be removed, not just discovered, by someone who
otherwise would be outside the development process.”

Software Maintenance The maintenance phase of tradi-
tional SE is often acknowledged as a primary part of the
programming effort, and yet little has been prescribed or
even described about software maintenance. The defined
process maintenance acknowledged by the SE community

in the past largely centered around defect removal; while
this is changing over time, the central topics in maintenance
still tend to be subjects such as CASE tools and Change
Control Boards that are of limited direct relevance to the
OSS community.

Indeed, most of the maintenance process commonly em-
ployed in the OSS community is integrated at a fine grain
into the development process. The use of software version
control tools and defect tracking and reporting tools is ubiq-
uitous, and typically begins early in the (already foreshort-
ened) OSS development cycle.

A final important factor in OSS maintenance, as with
testing, is the amount of activity that is user-centered. OSS
projects rarely suffer from lack of maintenance: the users
are empowered and encouraged to undertake maintenance
activities on their own behalf. The overall effect of this
OSS maintenance process is to integrate maintenance into
the system life cycle in a way that systems developed using
traditional SE maintenance models have difficulty approxi-
mating.

2.2 Practices

The processes and process models espoused by SE are
one thing. The practices of commercial software develop-
ment are quite another. It is worth considering several of the
practices on which the SE community looks most askance.

Episodicity The software development cycle is often de-
scribed as a “life cycle”. This metaphor is odd in a cou-
ple of ways. First, it is not clear what the “rebirth” part
of the software life cycle is: while there are some obvi-
ous candidates, none is a perfect fit. More importantly, the
metaphor describes a development cycle that is episodic,
moving through a series of distinct phases on its way to
completion.

The OSS development process is conceptualized as
much more of a steady-state affair. From quite early on
in an OSS project, developers integrate design of new fea-
tures, release of new code, and defect removal and mainte-
nance activities in a highly integrated fashion. While the
larger projects might have, for example, feature freezes,
these are viewed as necessary but anomalous interruptions
in this process of continuous development and dissemina-
tion. “Release early and often” is the adage that goes with
this practice in the OSS community: there is a widespread
belief among OSS developers that continuous improvement,
not of processes but of codebases, is a more productive
approach than the episodic approaches of the commercial
world.

Obscurantism The nature of OSS projects is to be trans-
parent. Not only is the code freely available for study, but

any available documentation and insight about the system is
freely shared, and the developers themselves often commit
significant amounts of time to assisting with and explain-
ing the software. One of the principal frustrations with the
commercial software development world is the opposing at-
titude that users1 should expect to understand the absolute
minimum needed to operate an opaque system.

The SE insistence on detailed user requirements plays
into this attitude of secrecy in a subtle way. The attitude
taken by commercial developers seems to be that any pro-
gram that conforms to the specification should be sufficient
for the user’s needs. Further, the user specification often
becomes embodied as a user manual: these often opaque or
defective manuals are considered to meet the requirement
of software description.

The logical conclusion of this sort of philosophy is in
the area of cryptography and security. OSS developers gen-
erally insist on open implementations following Kirchoff’s
Principle [9]: the only secret is the key itself. Commer-
cial vendors tend to build software systems where the key,
the algorithm, the implementation, and the protocols are ob-
scured, and the user interface itself is somewhat so.

Finally, the law is used to obscure the understanding of
software. Michael Tiemann [11] writes “Outside [the walls
of proprietary software companies], the use and distribu-
tion of that software is heavily controlled by license agree-
ments, patents, and trade secrets. One can only wonder
what power, what efficiency is lost by practicing freedom
at the micro level and not at the macro level.”

Complexification Larger OSS systems are quite com-
plex. Nonetheless, there is a serious drive in the OSS com-
munity to keep systems small, simple, and separate. This
is perhaps partly a reaction to the problems the Waterfall
Model was trying to tackle. The alternative to simplicity is
careful management of complexity. In the opinion of most
in the OSS community, complexity should be tolerated only
when it cannot be avoided. Einstein’s “as simple as possi-
ble but not simpler” is the watchword here. Torvalds [13]
writes that “You should absolutely not dismiss simplicity
for something easy. It takesdesignand good taste to be
simple.”

It is interesting to note that some of the largest and most
complex OSS systems in widespread deployment have at
least some roots in traditional SE development. As noted
previously, Mozilla and OpenOffice.org both qualify in this
regard. Other large and complex open source systems,
such as the KDE and Gnome desktop environments, are
structured in similar ways to the older systems whose style
they generally imitate. More OSS-style projects, such as
Apache, tend to be more modular, with simpler pieces and
less glue. Even the Linux kernel, while of necessity highly

1In this context, OSS folks spell this word with a leading ‘l’ [7]

complex, is understood by most kernel developers as a set
of highly isolated and reasonably simple components con-
nected by narrow interfaces. This philosophy is often re-
ferred to as the “UNIX way”, after the system that inspired
it: indeed, the Multics system that was an inspiration to the
developers of the original UNIX was an extremely complex,
monolithic system built using traditional SE practices.

3 A Clue Stick For Everyone

This paper started out with a question: “OSS develop-
ment is just SE. . . right?” Apparently, the OSS community
would beg to differ. The issues discussed above are just
some of those that OSS developers and users discuss every
day in fora such as Slashdot.org.

The question that remains is simple to state, but dif-
ficult to answer: is the OSS critique accurate? Is aca-
demic/industrial SE a glass cathedral, whose fragility is ex-
ceeded only by the danger to those who work within it? Is it
necessary to move to new models of SE to make progress in
software development? Or are the OSS critics self-deluded
advocates of a methodology that will eventually fall prey
to the same problems that have befallen other attempts to
do distributed, informal development of weakly specified,
designed, and tested software?

The author must answer with a predictable and resound-
ing “maybe.” Certain SE practices have long been regarded
by the SE community itself as questionable. The pure Wa-
terfall Model is largely dead, although its descendants in the
community of episodic models live on. The disconnect be-
tween commercial software development and theoretically
good SE practice has long been noted, although it is not
clear whether to close this gap via “improved” practices,
“improved” theory, or some combination of the two. The
maintenance phase of software development needs to be
better understood, and more strongly and flexibly supported
by SE methodologies. The emphasis on large, tightly-
coupled systems in SE needs to be decreased.

At the same time, the OSS community needs to under-
stand that they are only now beginning to encounter many
of the problems that led to the serious study of SE. As soft-
ware systems grow, they become more unreliable and more
difficult to manage at an alarming rate. In domains such
as safety-critical and mission-critical systems, informal ap-
proaches are not enough. Finally, as the userbase for OSS
becomes larger and the concentration of sophisticated users
and developers is diluted, it is important that the OSS com-
munity evolve software methodologies that are compatible
both with the tenets of the open source revolution and the
needs of the user community.

Acknowledgments

In a paper of this sort, it is not clear that the author is
doing anyone a favor by acknowledging their contribution
by name. Nonetheless, it is worth acknowledging a few
of the folks that arguably can take it. In addition to be-
ing close personal friends, Keith Packard and Mike Haertel
are two top OSS figures with whom the author has had fre-
quent conversations on the role of SE in OSS development:
Keith also provided much useful commentary and advice
on this paper. On the SE side, Warren Harrison has been
a terrific sounding board for ideas and a fruitful source of
suggestions. Finally, the author would like to thank the par-
ticipants in the Second ICSE Workshop on Open Source
Software Engineering for providing the inspiration for this
essay.

References

[1] K. Beck. Extreme Programming Explained. Addison-
Wesley, 2000.

[2] F. Brooks.The Mythical Man-Month: 20th Anniversary Edi-
tion. Addison-Wesley, 1995.

[3] C. DiBona, S. Ockman, and M. Stone, editors.Open
Sources: Voices of the Open Source Revolution. O’Reilly,
1999.

[4] B. Massey. Where do open source requirements come from
(and what should we do about it)? InProc. 2nd Workshop
On Open-Source Software Engineering, Orlando, FL, May
2002.

[5] H. D. Mills, M. Dyer, and R. Linger. Cleanroom software
engineering.IEEE Software, 4(5):19–25, Sept. 1987.

[6] G. Moody. Rebel Code: Inside Linux and the Open Source
Revolution. Perseus Publishing, 2001.

[7] E. Raymond and G. L. Steele, editors.The New Hacker’s
Dictionary. MIT Press, 1991.

[8] E. S. Raymond. The Cathedral & the Bazaar. O’Reilly,
2001.

[9] B. Schneier.Applied Cryptography: Protocols, Algorithms,
and Source Code in C. Wiley, 1994.

[10] I. Sommerville. Software Engineering. Addison-Wesley,
sixth edition, 2000.

[11] M. Tiemann. Future of Cygnus Solutions: A entrepreneur’s
account. In DiBona et al. [3], pages 71–89.

[12] L. Torvalds. The linux edge. In DiBona et al. [3], pages
101–111.

[13] L. Torvalds and D. Diamond.Just For Fun: The Story of an
Accidental Revolutionary. HarperBusiness, 2001.

[14] P. Vixie. Software engineering. In DiBona et al. [3], pages
91–100.

