
A Constraint Language for Static
Semantic Analysis Based on Scope Graphs

Hendrik van Antwerpen
TU Delft, The Netherlands
h.vanantwerpen@tudelft.nl

Pierre Néron
TU Delft, The Netherlands
p.j.m.neron@tudelft.nl

Andrew Tolmach
Portland State University, USA

tolmach@pdx.edu

Eelco Visser
TU Delft, The Netherlands

visser@acm.org

Guido Wachsmuth
TU Delft, The Netherlands

guwac@acm.org

Abstract
In previous work, we introduced scope graphs as a formalism for
describing program binding structure and performing name resolu-
tion in an AST-independent way. In this paper, we show how to use
scope graphs to build static semantic analyzers. We use constraints
extracted from the AST to specify facts about binding, typing, and
initialization. We treat name and type resolution as separate build-
ing blocks, but our approach can handle language constructs—such
as record field access—for which binding and typing are mutually
dependent. We also refine and extend our previous scope graph the-
ory to address practical concerns including ambiguity checking and
support for a wider range of scope relationships. We describe the
details of constraint generation for a model language that illustrates
many of the interesting static analysis issues associated with mod-
ules and records.

Categories and Subject Descriptors D.3.1 [Programming Lan-
guages]: Formal Definitions and Theory; D.3.2 [Programming
Languages]: Language classifications; F.3.1 [Logics and Mean-
ings of Programs]: Specifying and Verifying and Reasoning about
Programs; D.3.4 [Programming Languages]: Processors; F.3.2
[Logics and Meanings of Programs]: Semantics of Programming
Languages; D.2.6 [Software Engineering]: Programming Envi-
ronments

Keywords Language Specification; Name Binding; Types; Do-
main Specific Languages; Meta-Theory

1. Introduction
Language workbenches [6] are tools that support the implemen-
tation of full-fledged programming environments for (domain-
specific) programming languages. Ongoing research investigates
how to reduce implementation effort by factoring out language-
independent implementation concerns and providing high-level

meta-languages for the specification of syntactic and semantic as-
pects of a language [18]. Such meta-languages should (i) have a
clear and clean underlying theory; (ii) handle a broad range of
common language features; (iii) be declarative, but be realizable
by practical algorithms and tools; (iv) be factored into language-
specific and language-independent parts, to maximize re-use; and
(v) apply to erroneous programs as well as to correct ones.

In recent work we showed how name resolution for lexically-
scoped languages can be formalized in a way that meets these cri-
teria [14]. The name binding structure of a program is captured in
a scope graph which records identifier declarations and references
and their scoping relationships, while abstracting away program de-
tails. Its basic building blocks are scopes, which correspond to sets
of program points that behave uniformly with respect to resolution.
A scope contains identifier declarations and references, each tagged
with its position in the original AST. Scopes can be connected
by edges representing lexical nesting or import of named collec-
tions of declarations such as modules or records. A scope graph
is constructed from the program AST using a language-dependent
traversal, but thereafter, it can be processed in a largely language-
independent way. A resolution calculus gives a formal definition
of what it means for a reference to resolve to a declaration. Res-
olutions are described as paths in the scope graph obeying certain
(language-specific) criteria; a given reference may resolve to one
or many declarations (or to none). A derived resolution algorithm
computes the set of declarations to which each reference resolves,
and is sound and complete with respect to the calculus.

In this paper, we refine and extend the scope graph framework
of [14] to a full framework for static semantic analysis. In essence,
this involves uniting a type checker with our existing name reso-
lution machinery. Ideally, we would like to keep these two aspects
separated as much as possible for maximum modularity. And in-
deed, for many language constructs, a simple two-stage approach—
name resolution using the scope graph followed by a separate type
checking step—would work. But the full story is more complicated,
because sometimes name resolution also depends on type resolu-
tion. For example, in a language that uses dot notation for object
field projection, determining the resolution of x in the expression
r.x requires first determining the object type of r, which in turn
requires name resolution again. Thus, we require a unified mecha-
nism for expressing and solving arbitrarily interdependent naming
and typing resolution problems.

To address this challenge, we base our framework on a language
of constraints. Term equality constraints are a standard choice for

this paper

Constraints
AST

Name & Type
Assignment

extract solve

Figure 1. Architecture of our constraint-based approach to static
semantic analysis. A language-specific extraction function trans-
lates an abstract syntax tree to a set of constraints. The generic
constraint solver (independent of the source language), solves the
constraints and produces a name and type assignment.

describing type inference problems while abstracting away from
the details of an AST in a particular language. Adopting constraints
to describe both typing and scoping requirements has the advantage
of uniform notation, and, more importantly, provides a clean way
to combine naming and typing problems. In particular, we extend
our previous work to support incomplete scope graphs, which cor-
respond to constraint sets with (as yet) unresolved variables.

Our new framework continues to satisfy the criteria outlined
above. (i) The resolution calculus and standard term equality con-
straint theory provide a solid language-independent theory for
name and type resolution. (ii) Our framework supports type check-
ing and inference for statically typed, monomorphic languages with
user-defined types, and can also express uniqueness and complete-
ness requirements on declarations and initializers. The framework
inherits from scope graphs the ability to model a broad range
of binding patterns, including many variants of lexical scoping,
records, and modules. (iii) The constraint language has a declar-
ative semantics given by a constraint satisfaction relation, which
employs the resolution calculus to define name resolution relative
to a scope graph. We define a constraint resolution algorithm based
on our previous name resolution algorithm, extended to support
parameterization by a language-specific policy controlling scope
reachability and visibility, combined with a standard unification
algorithm. (iv) The constraint language is intended as an inter-
nal language for static semantic analysis tools (Fig. 1). Given the
abstract syntax tree of a program, a language-specific extractor pro-
duces a set of constraints that express the name binding and types
of the program. A language-independent solver attempts to find a
solution for the set of extracted constraints, and produces a (par-
tial) name and type assignment. Note that the constraint language
is not intended as a domain-specific meta-language (such as NaBL
[12]) to be used by language designers using a language work-
bench. Rather, it is intended to be used as an internal language for
the implementation of such meta-languages. (v) The application to
erroneous programs is work in progress.

Contributions The specific technical contributions of this paper
are the following:

• We introduce a constraint notation for the specification of scope
graphs and name resolution that is complementary to the de-
scription of traditional typing constraints.
• We extend the scope graph framework of [14] with unique-

ness and completeness constraints to express properties such
as “there are no duplicate declarations in this scope” or “every
declared field in this record is initialized.”
• We introduce generalized scope graph edge labels to model a

wide range of scope combination policies including transitive
and non-transitive imports, and non-overriding includes.
• We give a specification for satisfiability of combined sets of

name and type resolution constraints.

• We extend the name resolution algorithm of [14] to be paramet-
ric over scope reachability and visibility policies defined over
(generalized) scope graph edge labels.
• We give an algorithm for solving combined name and type

resolution problems and prove that it is sound with respect to
the satisfiability specification.

Outline In Section 2, we introduce the constraint language using
example programs in a small model language. In Section 3, we
formally define the syntax and semantics of the constraint language
by defining a satisfaction relation on constraints and an extended
resolution calculus. In Section 4 we develop a constraint solver and
prove that it is sound with respect to the semantics. In Section 5
we relate this work to previous work by ourselves and others, and
discuss limitations and ideas for future work.

2. Constraints for Static Semantics
In this section we introduce our approach to constraint-based name
and type resolution. We show how scope graph constraints are used
to model name binding and combine them with typing constraints
to model type consistency. We illustrate the ideas using LMR (Lan-
guage with Modules and Records), a small model language that is
a variant of the LM (Language with Modules) of [14]. LMR does
not aspire to be a real programming language, but is designed to
represent typical and challenging name and type resolution idioms.

In the rest of this section we study name and type resolution for
a selection of LMR constructs using a series of examples. The full
grammar of LMR is defined in Fig. 5 and a constraint extraction
algorithm for the entire language is given in Fig. 6. Along the way
we gradually introduce the concepts of the constraint language. The
full syntax of the constraint language is defined in Fig. 7. Subse-
quent sections formalize the constraint language and its semantics.

2.1 Declarations and References
We first recall the concepts of the scope graph approach [14], and
adapt them to a constraint-based framework. Consider the example
in Fig. 2, which shows a simple LMR program with two global dec-
larations (top), and, in the boxes below it, the constraints extracted
from it and their solution. Subscripts on expressions and identifiers
represent AST positions. Thus, x1, x4, and x8 are different occur-
rences of the same name x. We represent scope graph constraints
diagrammatically by the scope graph they specify.

The nodes of a scope graph G represent the three basic notions
derived from the program abstract syntax tree (AST): scopes, dec-
larations, and references:

• A scope is an abstraction of a set of nodes in the AST that
behave uniformly with respect to name binding. Scopes are
denoted by identifiers drawn from an abstract enumerable set.
In a scope graph diagram, scopes are represented by circles with
numbers representing their identity, e.g. 1 . S(G) denotes the
set of scopes of G.
• A declaration is an occurrence of an identifier that introduces a

name. We write xD
i for the declaration of name x at position i

in the program. We omit the position iwhen it is unimportant in
the context. In diagrams, a declaration is represented by a box
with an incoming arrow, e.g. x1 . D(G) denotes the set of
declarations of G.
• A reference is an occurrence of an identifier referring to a

declaration. We write xR
i for a reference with name x at position

i. Again, we sometimes omit the position i. In diagrams, a
reference is represented by a box with an outgoing arrow, e.g.

x4 .R(G) denotes the set of references of G.

Scope Graph Constraints The edges of a scope graph deter-
mine the connections between scopes, declarations, and references.
Edges are specified directly by means of scope graph constraints
(CG in the grammar of Fig. 7), where the ground terms D, R, and
S represent declarations, references, and scopes, respectively. For
now, we only consider the two basic edges that connect declarations
and references to scopes:

• A declaration constraint s xD specifies that declaration xD

belongs to scope s. Graphically: s x .

• A reference constraint xR s specifies that reference xR

belongs to scope s. Graphically: x s .

The “solution” to a set of scope graph constraints is a well-formed
scope graph, i.e. one in which each declaration and reference be-
longs to (is connected by an edge with) exactly one scope. Note that
the existence of nodes (declarations, references, and scopes) of the
scope graph is specified implicitly by their appearance in an edge
constraint. For convenience, we sometimes write Sc(xD) = s for
s xD and Sc(xR) = s for xR s. We define by comprehen-
sion the sets of declarations and references belonging to a scope s,
as D(s) = {xD | Sc(xD) = s} and R(s) = {xR | Sc(xR) = s}.
In most contexts, constraints and derived notations are implicitly
parameterized by the scope graph under consideration; when they
need to be explicitly parameterized by a scope graph G, we use a
subscript notation (e.g. DG(s)).

Resolution Constraints The basic semantic intuition behind
scope graphs is that a reference resolves to a declaration iff there is
a path from the reference node to the declaration node. In this case
we say that the declaration is visible from the reference. Resolu-
tion constraints (CRes in the grammar) represent requirements on
successful name resolution:

• A resolution constraint R 7→ D specifies that a given reference
must resolve to a given declaration. Typically, the declaration
is specified as a declaration variable δ. For example, in Fig. 2
the constraints xR

4 7→ δ4 and xR
8 7→ δ8 require that references

xR
4 and xR

8 resolve to (as yet unknown) declarations δ4 and δ8,
respectively.

A solution to a set of resolution constraints is a substitution map-
ping each declaration variable to a declaration, such that applying
this substitution to the constraints generates valid resolutions ac-
cording to the scope graph resolution calculus (which we formalize
in Section 3). In Fig. 2, since the only paths starting at xR

4 and xR
8

both end at declaration xD
1 , the (sole) solution to these constraints

is a substitution mapping both δ4 and δ8 to xD
1 . Applying this sub-

stitution yields the valid resolutions xR
4 7−→ xD

1 and xR
8 7−→ xD

1 .
In addition to constraints about the resolution of references,

CRes also includes constraints on properties of name collections
N, which are multisets of identifiers. For now we only consider the
uniqueness constraint:

• A uniqueness constraint !N specifies that a given name collec-
tion N contains no duplicates.

• A declaration name collection D(s) is obtained by projecting
the identifiers from the set of declarations in scope s.

Thus, for example, in Fig. 2 the constraint !D(1) requires that
scope 1 should have no duplicate declarations. These types of
constraints are satisfied when the property they specify holds.

Typing Constraints Typing constraints (CTy) represent require-
ments for type consistency of the program:

def x1 = 12

def y3 = (if (x4 == 05)6 then 37 else x8)9

Scope graph constraints

x1x4

y3

1
x8

Resolution constraints

xR
4 7→ δ4

xR
8 7→ δ8

!D(1)

Typing constraints

xD
1 : τ2 τ2 ≡ Int

yD
3 : τ9 τ9 ≡ τ7
τ9 ≡ τ8 δ4 : τ4
δ8 : τ8 τ6 ≡ Bool

τ4 ≡ Int τ5 ≡ Int

τ7 ≡ Int

Solution
δ4 = δ8 = xD

1
τ2 = τ4 = τ5 = Int
τ7 = τ8 = τ9 = Int

τ6 = Bool

Figure 2. Declarations and references in global scope

• A type declaration constraint D : T associates a type with a
declaration. This constraint is used in two flavors: associating
a type variable (τ) with a concrete declaration, or associat-
ing a type variable with a declaration variable. In Fig. 2, the
constraints xD

1 : τ2 and yD
3 : τ9 associate distinct type variables

with declarations xD
1 and yD

3 . (For ease of reading, we choose
type variable names corresponding to subexpression label num-
bers.) The constraint δ4 : τ4 requires the type of the declaration
to which xR

4 resolves to be the same as the type τ4 of the refer-
ence considered as an expression.
• A type equality constraint T ≡ T specifies that two types

should be equal. In Fig. 2, the constraint τ2 ≡ Int arises from
the constant expression 12, and the constraint τ4 ≡ Int arises
from the fact that the == operator takes integer operands. The
constraint τ6 ≡ Bool arises in two ways, from the fact that
== returns a Boolean and the fact that if requires one; since
constraints should be thought of as a set, we list each distinct
constraint only once.

A solution to a set of typing constraints is a substitution on dec-
laration and type variables that satisfies all the constraints. For
example, the substitution for τ9 can be deduced either from the
constraints τ9 ≡ τ7 and τ7 ≡ Int , or from the constraints τ9 ≡ τ8,
τ2 ≡ Int and the unification of τ8 and τ2 (via δ8 = xD

1).
Note that for a program to be both well-bound and well-typed,

we need to find a single substitution on declaration and type vari-
ables that allows both resolution and typing constraints to be sat-
isfied simultaneously. In this simple example, it is clear that the
declaration variables are determined solely by the resolution con-
straints, but this will not always be the case in general.

2.2 Lexical Scope
Only very trivial programs have just a single scope. The left part of
Fig. 3 shows an LMR example that illustrates nested lexical scopes.
Scope graphs use edges between scopes to model inclusion of the
(visible) declarations in one scope in another. They can be used to
model lexical nesting or direct import of all the names from one
scope into another, according to the label on the edge.

• A direct edge constraint s1
l s2 specifies a direct l-labeled

edge from scope s1 to s2. (Graphically: s1 s2
l

.) The
general meaning of such an edge is that the declarations visible
in s2 are also visible in s1. Or, following the direction of the
arrow, that a reference in s1 can be resolved by searching for a
declaration in s2.

def n1 = true2

def f3 = (
fun (n4:Int5){

f6(n7)
}8

)9

module A1 {
def a2 = 43

}
module B4 {
import A5

def b6 = a7

}

Scope graph constraints

12

n4 n1

f6

n7

f3
P

Resolution Constraints

fR
6 7→ δ6 nR

7 7→ δ7
!D(1) !D(2)

Typing constraints

nD
1 : τ2 τ2 ≡ Bool

fD
3 : τ9 τ9 ≡ Fun[τ5,τ8]

nD
4 : τ5 τ5 ≡ Int

δ6 : τ6 τ6 ≡ Fun[τ7,τ8]

δ7 : τ7

Solution

δ6 = fD
3 δ7 = nD

4

τ2 = Bool τ8 = t0
τ5 = τ7 = Int

τ6 = τ9 = Fun[Int ,t0]

where t0 is any fixed arbitrary type

Scope graph constraints

1

23

a2

A1

b6 A5

B4

a7

P P

I

Resolution constraints

aR
7 7→ δ7 !D(1)

!D(2) !D(3)

Typing constraints

aD
2 : τ3 τ3 ≡ Int

bD
6 : τ7 δ7 : τ7

Solution

δ7 = aD
2

τ3 = Int τ7 = Int

Figure 3. Lexical scope and module imports.

In the left part of Fig. 3, scope 2 — corresponding to the body of
the fun — is nested within the program global scope 1 , which
is expressed by the scope edge constraint 2 1

P
. This edge

is labeled P for “parent;” we will see other possible labels shortly.
A resolution path starting from a reference may traverse a P edge
to find a matching declaration, e.g. reference fR

6 resolves to fD
3 .

However, in order to model shadowing of outer declarations by
inner ones, paths that traverse fewer (or no) P edges are preferred,
so reference nR

7 resolves to declaration nD
4 rather than to nD

1 .
The kinds of typing constraints generated by this example are

the same as those from the previous example. Note that the solution
to the typing constraints leaves f’s result type unspecified (since it
is never used).

2.3 Imports
In addition to lexical scope, many programming languages provide
features for making declarations in scopes selectively available ‘at
a distance’. Examples of such constructs are modules with imports
in ML and classes with inheritance in Java. To model such features,
scope graphs provide associated scopes and imports.

Associated Scope The essence of module-like constructs is that
they encapsulate a collection of declarations and make these avail-
able through import of the module. That requires an association
between the encapsulated declarations and the declaration of the
module, which is modeled by associated scopes:

• An association constraint xD s specifies s as the associated
scope of declaration xD. Associated scopes can be used to
connect the declaration (e.g. a module) of a collection of names

to the scope declaring those names (e.g. the body of a module).
Graphically: x s .

The LMR program in the right part of Fig. 3 consists of two
modules A1 and B4 and an import of the former into the latter. The
declarations in these modules are contained in 2 and 3 . Each
of these scopes is associated with the corresponding declaration
of the name of the module, which is represented in a scope graph
diagram with an open arrow, e.g. A1 2 . These scopes are also
child scopes of the program global scope 1 .

Imports A nominal import makes the declarations in an associ-
ated scope visible in another, not necessarily lexically related, tar-
get scope. A nominal import is represented by (1) a regular refer-
ence to the name of the scope being imported, and (2) an import
edge of that name into the target scope:

• A nominal edge constraint s l xR specifies a nominal l-
labeled edge from scope s to reference xR. (Graphically:
s x

l
) Such an edge makes visible in s all declarations

that are visible in the associated scope of the declaration to
which xR resolves, according to the label on the edge.

For example, import A5 is represented by the reference AR
5 in

scope 3 and an import arrow 3 A5
I

. It is also possible to
import the declarations of another scope directly, using an (ordi-
nary) nameless edge; this feature is used in the next sub-section.

Resolving through Imports Name resolution in the presence of
associated scopes and imports proceeds as follows. If a scope S1

contains an import xR
i , which resolves to a declaration xD

j with
associated scope S2, then all declarations in S2 are reachable in S1.
Thus, in the example, reference aR

7 resolves to declaration aD
2 since

the import AR
5 resolves to declaration AD

1 , and the associated scope
2 of AD

1 contains declaration aD
2 . Note that the resolution calculus

is parameterized by the policy used to disambiguate conflicting
resolutions. Here we use a default policy that prefers imported
declarations over declarations in parents; alternatives are discussed
in Section 3.4.

2.4 Type-Dependent Name Resolution
So far, we have seen how to use resolution constraints to express
the dependence of type resolution on name resolution. However, for
some language constructs the resolution of a name to its declaration
depends on the type of another expression. For example, in a
field access expression e.f, in order to resolve the field f, one
first needs to find the type of the expression e and then to look
for f in the scope associated with the type. This scheme induces
dependencies on type resolution, not only from name resolution but
also from scope graph construction (one does not know in which
scope the reference f lies). We model such type-dependent name
resolution by using scope graph constraints with scope variables.
The examples in Fig. 4 illustrate the approach.

Field Declaration and Initialization Before we can study field
access proper, we need to consider modeling of record types, field
declarations, and record initialization. We identify each record type
by the declaration of the record name in its type definition, e.g.
Rec(AD

1). We model the fields of a record type definition as declara-
tions (here just xD

2) in a scope (here, scope 2) associated with the
record type name declaration AD

1 . The resolution constraint !D(2)
forbids duplicate field names.

To construct a new record of a declared record type (e.g. AD
1),

we create a new parentless scope (here, scope 3) which imports
the field names of the record by importing (the associated scope of)
the record declaration (via a reference to the name of the type, here

record A1 { x2 : Int3 }
def a4 = (new A5{x6=17})8

def y9 = (a10.x11)12

Scope graph constraints

1

23 x2

A1A5

a4

x6

y9

4

x11

ς12 a10

P

I

I

Resolution constraints

AR
5 7→ δ8 xR

6 7→ δ6
aR

10 7→ δ10 xR
11 7→ δ11

!D(1) !D(2)

V(3) ≈ R(3) δ12 ς12

Typing constraints

xD
2 : τ3 τ3 ≡ Int

aD
4 : τ8 τ8 ≡ Rec(δ8)

yD
9 : τ12 δ6 : τ6

δ10 : τ10 δ11 : τ12

τ7 ≡ τ6 τ7 ≡ Int

τ10 ≡ Rec(δ12)

Solution

δ6 = δ11 = xD
2

δ8 = δ12 = AD
1

δ10 = aD
4 ς12 = 2

τ3 = τ6 = τ7 = τ12 = Int

τ8 = τ10 = Rec(AD
1)

Figure 4. Field access.

AD
5). We then process field initializers by putting references to the

field names (here just xR
6) into this new scope; these references can

only resolve to the field declarations.
In order to check that each field of a record type is initialized,

we use the following additional kinds of name collections and
constraints:

• A reference name collection R(s) denotes the multiset of ref-
erence identifiers of scope s.

• A visible name collection V(s) denotes the multiset of decla-
ration identifiers that are visible from scope s (i.e., would be
visible from a reference to the declared identifier in s).
• A subset constraint N ⊂∼ N specifies that one name collection

is included in another.
• An iso constraint N1 ≈ N2 is syntactic sugar for N1

⊂∼ N2 ∧
N2
⊂∼ N1 and specifies that two name collections are isomor-

phic.

Thus, the constraint V(3) ≈ R(3) requires that the set of visible
field declarations V(3) (the declarations visible in scope 3) is
isomorphic to the set of initializersR(3) (the references in 3).

Field Access Now we consider the field access aR
10.x

R
11 at subex-

pression 12 in Fig. 4. The reference xR
11 is a field access in the

record value of aR
10. Thus, xR

11 should be resolved in a scope con-
taining (just) the declarations for the field names, i.e. the associated
scope of the type of the aR

10, namely 2 . Once again, we create a
parentless scope 4 and add the field being accessed (here xR

8) as
a reference in that scope. However, in this case we do not know at
constraint extraction time that 2 is the correct scope to import, be-
cause we do not know the type of aR

10. That is, the name resolution
of xR

11 depends on the type resolution of aR
10.

To model this we proceed as follows. We create a new scope
variable ς12 that acts as a placeholder for the scope that we want to
import into scope 4 . We add a direct edge constraint 4 ς12

I
,

this time labeled with I rather than P, which makes the reso-
lution process more eager to follow the edge (see Section 3.4
for details). We also have the usual constraints aR

10 7→ δ10 and
δ10 : τ10 corresponding to reference aR

10. And we have the con-
straint τ10 ≡ Rec(δ12) for some unknown record type declaration
δ12 because of the use of aR

10 in the field position of a field access.
To make the connection between the declaration of the record type
and the placeholder scope, we use an association constraint:

• An association constraint D S specifies that a given decla-
ration has a given associated scope.

Specifically, we use δ12 ς12 to say that ς12 must be the associ-
ated scope of δ12.

Solving these constraints will lead to a solution for ς12 — in
this case the associated scope of AD

1 , scope 2 — such that the
appropriate scope can be imported into scope 4 . After that, xR

11

can be resolved as usual to the corresponding field declaration xD
2 ,

yielding its type τ3 ≡ Int .

With As a further variant, we discuss an expression form inspired
by the with statement in the Pascal language. In the expression
with e do e’, e should be a record-valued expression; the
field names of the record are added to the lexical environment of
e’. That is, a variable reference x in e’ will be interpreted as a
field of the record value when the record has indeed a field with
name x; otherwise the variable is considered as a regular reference
in the enclosing lexical context. Static resolution again requires
resolving variables in e’ in the associated scope of the record
type of e, but this time also allowing resolution to the enclosing
lexical scope. Replacing (a.x) by (with a do x) in the code
of Fig. 4 produces identical constraints, with the addition of a scope
graph edge 4 1

P
.

This concludes the informal explanation-by-example of the con-
straint language and its application to LMR. A constraint extraction
algorithm for the full LMR language is given in Fig. 6, but we do
not discuss this in detail. Instead, in the next sections we formalize
the syntax and semantics of the constraint language and discuss the
definition of a resolution algorithm based on the semantics.

3. Syntax and Semantics of Constraints
In this section we formally define the syntax of the constraint
language and its declarative semantics.

3.1 Syntax
Fig. 7 defines the full syntax of the constraint language. Constraints
are divided into three categories: Scope graph constraints CG spec-
ify a scope graph which defines the binding structures of the pro-
gram. Resolution constraints CRes describe requirements for all
program names to be properly resolved and, where appropriate, to
be unique or complete. Typing constraints CTy describe require-
ments for the program to be well-typed. The informal meaning of
each constraint form was described by a bulleted definition in Sec-
tion 2. Constraints can be combined using conjunction (C∧C) and
True represents the trivially satisfiable constraint.

A ground constraint is one having no variables. A scope graph is
ground if it is specified by a set of ground scope graph constraints;
otherwise it is incomplete.

The constraint language is parameterized by a family of type
constructors c ∈ CT and a set of labels l ∈ L. We describe the
former here and the latter in Section 3.4.

Type Constructors Types in T are either type variables τ or
type constructor applications c(T, ..., T) with c ∈ CT , a set of
language-specific type constructors. Each constructor c has an asso-
ciated arity c :: n. For example, Int and Bool are type constructors
with arity 0 and Fun is a type constructor with arity 2. Well-formed
constraints respect the arity of the type constructors.

To represent user-defined types, such as classes in object-
oriented languages or algebraic data types in functional languages,
a type constructor can also include the scope graph declaration
corresponding to the type definition. For example, record types in
LMR are represented by Rec(d) with d a type name declaration in

prog = decl∗

decl = module id {decl∗}
| import id
| def bind
| record id {fdecl∗}

fdecl = id : ty
ty = Int

| Bool
| id
| ty→ ty

exp = int
| true
| false
| id
| exp ⊕ exp
| if exp then exp else exp
| fun (id : ty) {exp}
| exp exp
| letrec tbind in exp
| new id {fbind∗}
| with exp do exp
| exp . id

bind = id = exp
| tbind

tbind = id : ty = exp
fbind = id = exp

Figure 5. Syntax of LMR.

For simplicity, we describe the algo-
rithm as operating over LMR’s concrete
syntax. The algorithm is defined by a
family of functions indexed by syntactic
category (decl, exp, etc.). Each function
takes a syntactic component and possi-
bly one or more auxiliary parameters,
and returns a constraint, possibly involv-
ing one or more fresh variables or new
scope identifiers. Functions are defined
by a set of rules, one for each possible
syntactic form in the category. For ex-
ample, [[−]]exps,t has twelve rules, and is
parameterized by the scope s in which
identifier references within the expres-
sion are to go and the expected type t
of the expression. We use the notation
[[−]]c

∗
on sequences of items of syntac-

tic category c to mean the result of ap-
plying [[−]]c to each item and return-
ing the conjunction of the resulting con-
straints, or True for the empty sequence.

[[ds]]prog := !D(s) ∧ [[ds]]decl
∗

s

[[module xi {ds}]]decls := s xD
i ∧ xD

i s′ ∧ s′ P s ∧ !D(s′) ∧ [[ds]]decl
∗

s′

[[import xi]]decls := xR
i s ∧ s I xR

i

[[def b]]decls := [[b]]binds

[[record xi {fs}]]decls := s xD
i ∧ xD

i s′ ∧ s′ P s ∧ !D(s′) ∧ [[fs]]fdecl
∗

s,s′

[[xi = e]]binds := s xD
i ∧ xD

i : τ ∧ [[e]]exps,τ

[[xi : t = e]]binds := s xD
i ∧ xD

i : τ ∧ [[t]]tys,τ ∧ [[e]]exps,τ

[[xi:t]]
fdecl
sr,sd := sd xD

i ∧ xD
i : τ ∧ [[t]]tysr,τ

[[Int]]tys,t := t ≡ Int

[[Bool]]tys,t := t ≡ Bool

[[t1→ t2]]tys,t := t ≡ Fun[τ1,τ2] ∧ [[t1]]tys,τ1 ∧ [[t2]]tys,τ2

[[xi]]
ty
s,t := t ≡ Rec(δ) ∧ xR

i s ∧ xR
i 7→ δ

[[fun (xi:t1){e}]]exps,t := t ≡ Fun[τ1,τ2] ∧ s′ P s ∧ !D(s′) ∧ s′ xD
i

∧ xD
i : τ1 ∧ [[t1]]tys,τ1 ∧ [[e]]exp

s′,τ2

[[letrec bs in e]]exps,t := s′ P s ∧ !D(s′) ∧ [[bs]]bind
s′ ∧ [[e]]exp

s′,t

[[n]]exps,t := t ≡ Int

[[true]]exps,t := t ≡ Bool

[[false]]exps,t := t ≡ Bool

[[e1 ⊕ e2]]exps,t := t ≡ t3 ∧ τ1 ≡ t1 ∧ τ2 ≡ t2 ∧ [[e1]]exps,τ1 ∧ [[e2]]exps,τ2

(where ⊕ has type t1 × t2 → t3)

[[if e1 then e2 else e3]]exps,t := τ1 ≡ Bool ∧ [[e1]]exps,τ1 ∧ [[e2]]exps,t ∧ [[e3]]exps,t

[[xi]]
exp
s,t := xR

i s ∧ xR
i 7→ δ ∧ δ : t

[[e1 e2]]exps,t := τ ≡ Fun[τ1,t] ∧ [[e1]]exps,τ ∧ [[e2]]exps,τ1

[[e.xi]]
exp
s,t := [[e]]exps,τ ∧ τ ≡ Rec(δ) ∧ δ ς ∧ s′ I ς ∧ [[xi]]

exp
s′,t

[[with e1 do e2]]exps,t := [[e1]]exps,τ ∧ τ ≡ Rec(δ) ∧ δ ς

∧ s′ P s ∧ s′ I ς ∧ [[e2]]exp
s′,t

[[new xi {bs}]]exps,t := xR
i s ∧ xR

i 7→ δ ∧ s′ I xR
i

∧ [[bs]]fbind
∗

s,s′ ∧ V(s′) ≈ R(s′) ∧ t ≡ Rec(δ)

[[xi = e]]
fbind
s,s′ := xR

i s′ ∧ xR
i 7→ δ ∧ δ : τ ∧ [[e]]exps,τ

Figure 6. Constraint extraction for LMR. Scope names (s) occurring free in rhs of rules are new ground scopes. Type variables (τ), scope
variables (ς), and declaration variables (δ) occurring free are fresh variables.

the program; thus, in Fig. 4, the record definition A defines the type
Rec(AD

1).

3.2 Constraint Satisfaction
In our approach, the abstract syntax tree of a program p is re-
duced by the language-specific extraction function to a constraint
[[p]] = CGp ∧ CRes

p ∧ CTy
p where commutativity and associativity of

conjunction let us group the subconstraints into categories.

Our basic approach to defining satisfaction is as follows. First
assume that we have only ground constraints. Then we can interpret
scope graph constraints CG directly as a ground scope graph. We
next define a satisfiability relation |= by cases on ground resolution
constraints CRes and typing constraints CTy relative to a context
(G, ψ), where G is a ground scope graph and ψ is a typing environ-
ment mapping declarations in D(G) to unique ground types in T.
In particular, resolution constraints are checked against G using the

C := CG | CTy | CRes | C ∧ C | True

CG := R S | S D | S l S | D S | S l R

CRes := R 7→ D | D S | !N | N ⊂∼ N

CTy := T ≡ T | D : T
D := δ | xD

i

R := xR
i

S := ς | n
T := τ | c(T, ..., T) with c ∈ CT
N := D(S) | R(S) | V(S)

Figure 7. Syntax of constraints

scope graph resolution calculus (described in Section 3.3). Finally,
we apply |= with G set to CG.

To lift this approach to constraints with variables, we simply
apply a multi-sorted substitution φ, mapping type variables τ to
ground types, declaration variables δ to ground declarations and
scope variables ς to ground scopes. Thus, our overall definition of
satisfaction for a program p is:

φ(CGp), ψ |= φ(CRes
p) ∧ φ(CTy

p) (�)
where φ(E) denotes the application of the substitution φ to all the
variables appearing in E that are in the domain of φ. When the
proposition � holds we say that ψ and φ resolve p.

Resolution and Typing Constraints The |= relation is given by
the inductive rules in Fig. 8, where = is the syntactic equality on
terms and `G xR

i 7−→ xD
j is the resolution relation for graph G.

The interpretation of a name collection JNKG is the multiset defined
as follows: JD(S)KG = π(DG(S)), JR(S)KG = π(RG(S)), and
JV(S)KG = π({xD

i | ∃p, `G p : S 7−→ xD
i }) where π(A) is

the multiset produced by projecting the identifiers from a set A of
references or declarations. Given a multisetM , 1M (x) denotes the
multiplicity of x in M .

3.3 Resolution Calculus
The resolution calculus defines the resolution of a reference to a
declaration in a scope graph as a most specific, well-formed path
from reference to declaration through a sequence of edges. A path
p is a list of steps representing the atomic scope transitions in the
graph. There are three kinds of steps:

• A (direct) edge step E(l, S2) is a direct transition from the
current scope to the scope S2. This step records the label of
the scope transition that is used.
• A nominal edge step N(l, yR, S) requires the resolution of ref-

erence yR to a declaration with associated scope S to allow a
transition between the current scope and scope S.
• A complete path always ends with a declaration step D(xD) that

stores the declaration the path is leading to.

A path p is a valid resolution in the graph from reference xR
i

to declaration xD
i such that `G p : xR

i 7−→ xD
i according to

the calculus rules in Fig. 9. These rules all implicitly apply to
a fixed graph G, which we omit to avoid clutter. The calculus
defines the resolution relation in terms of edges in the scope graph,
reachable declarations, and visible declarations. Here I is the set of
seen imports, a technical device needed to avoid “out of thin air”
anomalies in resolution of nominal imports. We often drop I from
a resolution when it is empty. The S component that appears in
the transitive closure rules is the set of seen scopes that is used to
prevent cycles in the resolution path of a given reference.

G, ψ |= True
(C-TRUE)

G, ψ |= C1 G, ψ |= C2

G, ψ |= C1 ∧ C2
(C-AND)

ψ(d) = T

G, ψ |= d : T
(C-TYPEOF)

`G p : xR
i 7→ xD

j

G, ψ |= xR
i 7→ xD

j

(C-RESOLVE)

d GS

G, ψ |= d S
(C-SCOPEOF)

∀x,1JNKG (x) ≤ 1

G, ψ |= !N
(C-UNIQUE)

JN1KG ⊆ JN2KG
G, ψ |= N1

⊂∼ N2
(C-SUBNAME)

t1 = t2
G, ψ |= t1 ≡ t2

(C-EQ)

Figure 8. Interpretation of resolution and typing constraints

Resolution paths
s := D(xD

i) | E(l, S) | N(l, xR
i , S)

p := [] | s | p · p (inductively generated)
[] · p = p · [] = p

(p1 · p2) · p3 = p1 · (p2 · p3)

Well-formed paths

WF(p)⇔ labels(p) ∈ E
Visibility ordering on paths

label(s1) < label(s2)

s1 · p1 < s2 · p2

p1 < p2

s · p1 < s · p2

Edges in scope graph
S1

l S2

I ` E(l, S2) : S1 −→ S2
(E)

S1
l yR

i yR
i /∈ I I ` p : yR

i 7−→ yD
j yD

j S2

I ` N(l, yR
i , S2) : S1 −→ S2

(N)

Transitive closure

I, S ` [] : A� A
(I)

B /∈ S I ` s : A −→ B I, {B} ∪ S ` p : B� C

I, S ` s · p : A� C
(T)

Reachable declarations

I, {S} ` p : S� S′ WF(p) S′ xD
i

I ` p · D(xD
i) : S� xD

i

(R)

Visible declarations
I ` p : S� xD

i

∀j, p′(I ` p′ : S� xD
j ⇒ ¬(p′ < p))

I ` p : S 7−→ xD
i

(V)

Reference resolution

xR
i S {xR

i } ∪ I ` p : S 7−→ xD
j

I ` p : xR
i 7−→ xD

j

(X)

Figure 9. Resolution calculus from [14] extended for arbitrary
edge labels and parameterized with well-formedness predicate WF
and visibility ordering <. Here label projects the label from a step
and labels projects the sequence of labels from a path.

Lexical scope
L := {P} E := P∗ D < P

Non-transitive imports

L := {P, I} E := P∗ · I? D < P, D < I, I < P

Transitive imports

L := {P,TI} E := P∗ · TI∗ D < P, D < TI, TI < P

Transitive Includes
L := {P, Inc} E := P∗ · Inc∗ D < P, Inc < P

Transitive includes and imports, and non-transitive imports
L := {P, Inc,TI, I} E := P∗ · (Inc | TI)∗ · I?

D < P, D < TI, TI < P, Inc < P, D < I, I < P,

Figure 10. Example reachability and visibility policies by instan-
tiation of path well-formedness and visibility.

3.4 Parameterization
In order to model the name binding features and resolution poli-
cies from different programming languages, the scope graph and
resolution calculus are parameterized with a set of labels L, a reg-
ular expression E that defines the scope reachability policy, and an
order < on the L (extended with the built-in D label) that defines
the scope visibility policy. Fig. 9 defines generic predicates derived
from these parameters and used in the calculus. The regular expres-
sion E entails a well-formedness predicate WF on paths obtained
by projecting the sequence of labels from the path and testing it for
membership in the language of E . The ordering relation on labels
entails an ordering relation on paths using the lexicographic order
on the projected label sequences.

Fig. 10 presents several example instantiations for these param-
eters, encoding different policies. The first policy defines lexical
scope in which scopes are transitively linked through parent edges
(P) and local declarations shadow declarations in parents. The next
policy extends lexical scope with non-transitive imports (I). The
well-formedness predicate allows an optional import at the end of
a lexical scope chain, ruling out access to the parents of an im-
ported scope. Further, the policy states that imported declarations
shadow declarations in the lexical context. The transitive imports
policy extends this by allowing paths with a chain of imports (TI).
The transitive includes policy is a variation in which local decla-
rations do not shadow included (Inc) declarations. The final policy
combines three import policies, not providing rules to disambiguate
between paths through different kinds of import edges. Thus, a ref-
erence that can be resolved through an import and an include edge
is ambiguous and can be flagged as an error.

4. Resolution Algorithm
In this section, we describe an algorithm for solving constraints in
the sense of Section 3.2, i.e. finding φ and ψ that satisfy (�). Our
algorithm works only for a restricted class of generated constraints:
all constraints in CGp must be ground, except that scope variables ς
can appear as targets in direct edge constraints (e.g. S l ς). This
restriction is met by the constraints generated by the LMR collec-
tion algorithm in Section 2. Broader classes of constraints might be
useful for other languages; we defer exploration of algorithms that
could handle these to future work.

4.1 Variables in Scope Graph Constraints
The basic approach of the algorithm is to interpret the scope graph
constraints as a scope graph G and then use it to resolve resolu-
tion and typing constraints using a conventional unification-based

R[I](xR) := let (r, s) = EnvE [{xR} ∪ I, ∅](Sc(xR))} in{
U if r = P and {xD|xD ∈ s} = ∅
{xD|xD ∈ s}

Envre [I, S](S) :=

{
(T, ∅) if S ∈ S or re = ∅
EnvL∪{D}

re [I, S](S)

EnvLre [I, S](S) :=
⋃

l∈Max(L)

(
Env{l

′∈L|l′<l}
re [I, S](S) � Envlre [I, S](S)

)

EnvD
re [I, S](S) :=

{
(T, ∅) if [] /∈ re

(T, D(S))

Envlre [I, S](S) :=


(P, ∅) if S

I

l contains a variable or ISl[I](S) = U⋃
S′∈

(
ISl[I](S)∪SI

l

)Env(l−1re)[I, {S} ∪ S](S′)

ISl[I](S) :=

{
U if ∃yR ∈ (S

B

l \I) s.t. R[I](yR) = U

{S′ | yR∈ (S
B

l \I) ∧ y
D∈ R[I](yR) ∧ yD S′}

Figure 11. Name Resolution Algorithm

algorithm. However, since scope graph constraints can contain vari-
ables, we cannot fully define the scope graph before starting con-
straint resolution, because we do not fully know φ. Thus, our algo-
rithm builds φ (and Ψ) incrementally. The key idea is that we can
solve some resolution and typing constraints even when φ is not
yet fully defined, in such a way that the solution remains valid as it
becomes more defined.

4.2 Name Resolution Algorithm
In order to solve resolution constraints (e.g. xR 7→ δ) or to com-
pute the set of visible elements from a scope (V(S)) we need an
algorithm that computes the name resolution relation (xR

i 7−→ xD
j)

specified by the calculus presented in Section 3.3. We introduced
such an algorithm in our prior work [14], but it was specific to a
particular set of labels, visibility order, and well-formedness predi-
cate. In this section, we present a generic version of the algorithm
that is parameterized by L, E and < as described in Section 3.4.

Incomplete Scope Graphs A further new requirement on the
algorithm is that it can operate on an incomplete scope graph,
specified by a set of constraints that may still contains variables
as the targets of direct edges. The non-strictly positive premise
of the (V) rule of the resolution calculus makes the derivation of
a resolution relation from a graph non-monotonic with respect to
additions to the graph. For example, suppose that in some graph
G a reference xR in a scope S resolves to declaration xD

i in the
parent scope S′. In a bigger graph G′ that also has a declaration
xD
i′ in S itself, xR will resolve to xD

i′ , and the old resolution to xD
i

will be shadowed. Thus we cannot simply restrict resolution to the
complete part of the graph, and expect the results to remain valid
as the graph becomes more completely known. Instead, we modify
the original algorithm to signal when a result is preliminary.

The Algorithm Fig. 11 defines a resolution algorithm that works
on such incomplete scope graphs.The function for resolving a sin-
gle reference, R[I](xR), returns either a set of declarations or U
(unknown) if the reference cannot be resolved in the current graph.
Similarly, the environment functions Env _

re [I, S](S) return a pair
consisting of:

• a result flag, T (total) if all declarations visible from S can
be computed or P (partial) if there are still possible additional
resolutions (some scope variables are accessible)

• a set of declarations corresponding to resolutions from scope S
that are already certain in this incomplete graph.

When a scope graph contains no variables (i.e. when no partial or
unknown flags are raised) the intended behavior of the different
functions is the following:

• R[I](xR) returns the set of declarations to which the reference
resolves.
• Envre [I, S](S) returns the set of declarations that are reachable

from scope S with a minimal path satisfying the regular expres-
sion re .
• EnvLre [I, S](S) returns the set of declarations visible from S

through labels in set L after application of the shadowing pol-
icy. Using the label order, the declarations accessible through
smaller labels shadow the declarations accessible through larger
ones.
• EnvD

re [I, S](S) returns the set of declarations accessible from S
with a D step, i.e. the set of declarations in S.
• Envlre [I, S](S) returns the set of declarations accessible from S

with an l-labeled step.
• ISl[I](S) returns the set of scopes that are accessible through

a nominal edge by resolving the reference and returning its
associated scope.

The algorithm uses the following auxiliary notation and definitions:
∅ denotes the empty regular expression and given a path p and
a regular expression re , p ∈ re denotes that labels(p) is in the
language of re . The shadowing operator � on sets of declarations
is defined by:

D1 �D2
∆
=
{
xD
i | xD

i ∈ D1 ∨ (xD
i ∈ D2 ∧ @j, xD

j ∈ D1

}
.

The shadowing operators on pairs with result flag are defined by:

(f1, D1) � (f2, D2)
∆
=

{
(f2, D1 �D2) if f1 = T
(P, D1) otherwise

The union ∪ operator over pairs with result flag is defined as:⋃
i∈I

(fi, Di)
∆
=

{
(T, D) if ∀i ∈ I, (fi = T)
(P, D) otherwise

where D =
{
xD ∈ ∪i∈IDi | (∀j ∈ I, fj = T ∨ ∃xD

k ∈ Dj)
}

.
Given a regular expression over labels re and a label l, l−1re
denotes the Brzozowski derivative[2] of re by l. Given a partially
ordered set L, Max(L) denotes the set of maximal elements of L,
i.e. {l ∈ L | @l′ ∈ L, l < l′}. Given a scope S and a label l, we
define:

S
B

l , {xR | S l xR} S
I

l , {S′ | S l S′}
4.3 Correctness
We want to prove the correctness of this algorithm with respect to
the calculus introduced in Section 3.3. Details of the proofs can be
found in the appendix of the extended version [17].

Termination First notice that the algorithm terminates using
the lexicographic ordering (#(R(G)\I),#(S(G)\S),O), where
#(A) denotes the cardinality of set A and O is the following well
founded order among the different functions:

Envre > EnvLre > Envlre > EnvDre > IS > R

This termination order is used as the induction principle in most of
the proofs.

Correctness on ground scope graphs We want to prove that
when this algorithm operates on a ground scope graph, it is sound
and complete with respect to the calculus presented in Fig. 9. First,

it is trivial to prove that on a ground scope graph, the return flag
can never be P or U, therefore in this section we forget about the
flag and assume that the Env functions return a set of declarations.

To prove the correctness of the algorithm, we consider the set
of paths that corresponds to the sets of declarations returned by the
different functions. Given two sets of scopes I and S and a scope S,
we define P[I, S](S) as:
{p · D(d) | ∃S′, I, S ∪ {S} ` p : S� S′ ∧ Sc(d) = S′}

and given a path p such that p = p′ · D(d), ∆(p) denotes the
declaration d. For a set of paths S, ∆(S) denotes its corresponding
set of declarations {∆(p) | p ∈ S} and

�S , { p · D(xD
i) ∈ S | ∀ (p′ · D(xD

j)) ∈ S, ¬ p′ < p}
Given these definitions, we can state the correctness of the algo-
rithm:

Lemma 1 (Resolution algorithm correctness). On a ground scope
graph, we have the following equivalences

R[I](xR) =∆({p | ∃d, I ` p : xR 7−→ d})

Envre [I, S](S) =

{
∅ if S ∈ S
∆(�{p · D(d) ∈ P[I, S](S) | p ∈ re}) otherwise

EnvLre [I, S](S) =∆(�{p | ∃l ∈ L, p ∈ Plre [I, S](S)})

EnvD
re [I, S](S) =∆({D(d) | [] ∈ re ∧ Sc(d) = S})

Envlre [I, S](S) =∆

s · p
∣∣∣∣∣∣

label(s) = l∧
I ` s : S −→ S′ ∧
p ∈ P

l−1re
[I, S ∪ {S}](S′)




ISl[I](S) ={S′ | ∃yR, I ` N(l, yR, S′) : S −→ S′}

Proof. The proof is by induction on the termination order of the
algorithm. Key observations are that all the considered sets of paths
are finite since all the paths are acyclic and if there is a minimal
path s · p from scope S with I ` s : S −→ S′ then its tail p is also
minimal from S′, due to the lexicographic ordering.

Correctness on incomplete scope graphs We now want to state
the general correctness of the algorithm that can operate on incom-
plete scope graphs. We first extend this definition of resolution as
follows. Given an incomplete scope graph G, a reference xR is said
to resolve to a declaration xD

i if and only if this resolution is valid
in all ground instances of G:

`G xR 7−→ xD
i

∆
= ∀ φ, `φ(G) x

R 7−→ xD
i (�)

where we write `G for the resolution relation for graph G and
φ(G) is the ground scope graph corresponding to the application
of substitution φ to variables in G. Similarly a declaration xD is
visible from scope S in an incomplete scope graph G if and only if
it is visible in all the ground instances.

In order to be able to resolve uniqueness constraints for a pro-
gram we also want to ensure that an incomplete graph provides all
the possible resolutions of a given reference. In particular, if a res-
olution is unique in an incomplete graph, we want to be sure it is
unique in all its ground instances. An incomplete graph G is stable
for a reference or a scope o, denoted G ↓ o, if all the resolutions in
all its ground instances are the same:

G ↓ o ∆
= ∀φ, φ′ `φ(G) o 7−→ xD

i ⇒`φ′(G) o 7−→ xD
i

Soundness Given this definition, we can prove that the algorithm
on incomplete graphs is correct with respect with the calculus:

Lemma 2. For any incomplete graph G:

xD
i ∈ RG(xR) =⇒ `G xR 7−→ xD

i ∧ G ↓ xR

where RG(xR) denotes the top-level resolution function R[∅](xR)
for the graph G.

Lemma 1 states that this property holds when the graph G is
ground. We next prove that if the resolution on an incomplete graph
G terminates with a total flag T then for any graph G′ that is an
instance of G, the result is the same.

Envre [I, S](xR)G = (T, D) =⇒
Envre [I, S](xR)G′ = (T, D) (i)

Proof. We prove this result along with similar result for all the other
functions by induction on the termination order of the algorithm.
The fact that the result is total implies that the results of all the
recursive calls are also total and this allows us to apply the desired
induction hypothesis (when a P or U flag is raised it is always
propagated).

Now we show that the resolution is also correct in the partial case.
Let G be an incomplete scope graph and G′ one of its instances. If a
resolution on G contains a set of declarations for a given name then
the resolution on G′ contains the same declarations for this name:

Envre [I, S](S)G = (_, D) =⇒ Envre [I, S](S)G′ =
(
_, D′

)
=⇒

∀x, {xD ∈ D} 6= ∅ ⇒ {xD ∈ D} = {xD ∈ D′} (ii)

Proof. We prove this result along with similar result for all the other
functions by induction on the termination order of the algorithm,
using (i).

Finally, we can prove Lemma 2:

Proof. Let Sx = RG(xR) and pick xD
i ∈ Sx. To prove that xR

resolves to xD
i in G, let G′ be an arbitrary ground instance of G.

Using (ii) we have xD
i ∈ RG′(xR) and by Lemma 1 we have

`G′ xR 7−→ xD
i . By �, we get that `G xR 7−→ xD

i .
To prove stability, let G1 and G2 be ground instances of G. Then

using (ii), we have RG1(xR) = RG2(xR) = Sx, so by definition we
have G ↓ xR.

4.4 Name Collection Computation
This resolution algorithm on partial graphs is used to compute not
only resolution of references but also the set of names visible from
a given scope. Given an incomplete graph G and a scope S, we
compute name collections as:
NG(D(S)) = π(DG(S)) NG(R(S)) = π(RG(S))

NG(V(S)) = π({xD
i | ∃E, EnvE [∅, ∅](S)G = (T, E) ∧ xD

i ∈ E})

Lemma 3 (Name computation soundness). If the computation of a
name collection E terminates on an incomplete graph G, its results
is the semantics of the name collection for any graph G′ that is an
instance of G:

NG(E) = M =⇒ JEKG′ = M .

4.5 Constraint Solving Algorithm
With this name resolution algorithm in hand, Fig. 12 gives an algo-
rithm to solve the constraint system from Section 3. The algorithm
is a non-deterministic rewrite system working over tuples (C,G, ψ)
of a constraint, a scope graph, and a typing environment. It is non-
deterministic in the sense that rules may be applied to any atomic
constraint in any order considering that ∧ is associative and com-
mutative.

Name resolution introduces ambiguity, since a reference xR

may resolve to multiple definitions. If this happens the solver
branches, picking a different resolution for xR in every branch.
The returned solution is a set of all the (C,G, ψ) tuples the solver
was able to construct. The initial state of the solver is the col-
lected constraint, the (incomplete) scope graph built from the scope
graph constraints and an empty typing environment. The algorithm

will eliminate clauses from C while instantiating G and filling ψ.
The algorithm terminates when the constraint is empty or no more
clauses can be solved. Each rule solves one constraint, possibly
updating components of the tuple or applying a substitution to it.

• Rule S-RESOLVE solves resolution constraints xR 7→ δ using
the resolution algorithm from Fig. 11. If a resolution is found, it
is substituted for the variable δ. If the scope graph is incomplete,
the algorithm might return U, in which case the constraint is left
to be solved later.
• Rule S-ASSOC solves scope association constraints xD ς by

looking up the scope S associated with ground declaration xD

in the scope graph. By substituting S for ς , the scope graph
becomes more complete, possibly allowing more references to
be resolved.
• Rule S-EQUAL solves equality constraints T1 ≡ T2. It uses first

order unification U(T1, T2), as described in [1]. The resulting
substitution is applied to the tuple.
• Rule S-UNIQUE solves !N constraints by checking that the

identifier collection N can be computed and all identifiers in
it are distinct. (1A(x) is the multiplicity of x in A).
• Rule S-SUBNAME solves N1

⊂∼ N2 constraints by checking
that the identifier collections N1 and N2 can be computed and
that every identifier in N1 is also in N2.
• Rule S-TYPEOF solves type assignment constraints xD : T .

The rule considers two cases. When no type assignment is
declared for xD in ψ (i.e. the first time that it is encountered)
the assignment is added to the typing environment ψ. When a
type assignment is declared (i.e. for subsequent encounters), the
type T from the constraint is unified with the type ψ(xD) from
the typing environment.

The constraint resolution algorithm is sound with respect to the
constraints semantics.

Lemma 4 (Constraint Solver correctness). If the algorithm pro-
duces a solution to a resolution problem then the solution is valid:
for all C,G,G′, ψ′:

(C,G, ∅) −→∗ (True,G′, ψ′) =⇒
∃φ, φ(G) = G′ ∧ ∀σ, σG′, σψ′ |= σ(φ(C))

Proof. To prove this result we first state some results on the auxil-
iary unification.

Unification: If U(t1, t2) = σ then σt1 = σt2 ∧ σσ = σ. See [1]
for a survey on unification problem and unification algorithms for
first order terms.

Resolution Soundness: Now we can prove the Lemma 4 of the
constraint resolution algorithm. We first prove that for each reduc-
tion step, if the output is satisfiable, the input is also satisfiable in
the same definition-to-type environment:

∀(C1,G1, ψ1), (C2,G2, ψ2), (C1,G1, ψ1) −→ (C2,G2, ψ2)⇒
∃σ′, σ′(G1) = G2 ∧(
∀σ, (σ(G2), σψ2) |= σ(C2)⇒

(σG2, σψ2) |= σσ′(C1)

)
(1)

The proof of this property is by case analysis on the reduction
step. From it, we can prove Lemma 4 by a simple induction on
the number of reduction steps.

(xR 7→ δ ∧ C,G, ψ) −→ [δ 7→ xD](C,G, ψ) where xD ∈ RG(xR) (S-RESOLVE)
(xD ς ∧ C,G, ψ) −→ [ς 7→ S](C,G, ψ) where xD S (S-ASSOC)

(T1 ≡ T2 ∧ C,G, ψ) −→ σ(C,G, ψ) where U(T1, T2) = σ (S-EQUAL)
(!N ∧ C,G, ψ) −→ (C,G, ψ) where ∀x ∈ NG(N),1NG(N)(x) = 1 (S-UNIQUE)

(N1
⊂∼ N2 ∧ C,G, ψ) −→ (C,G, ψ) where NG(N1) ⊆ NG(N2) (S-SUBNAME)

(xD : T ∧ C,G, ψ) −→
{

(C,G, {xD 7→ T} ∪ ψ)
(ψ(xD) ≡ T ∧ C,G, ψ)

if xD 6∈ dom(ψ)
otherwise (S-TYPEOF)

(True ∧ C,G, ψ) −→ (C,G, ψ) (S-TRUE)

Figure 12. Constraint solving algorithm

5. Related Work and Discussion
In this section, we discuss the relation of this paper with previous
and other related work, and discuss limitations and ideas for future
work.

Previous Work The work in this paper is based closely on our pre-
vious theory of name resolution [14], which we extend and general-
ize here as follows: (i) a scope graph is now defined directly by a set
of constraints; (ii) we generalize the parent relation to an arbitrary
labeled direct edge between pairs of scopes, and the named import
relation to an arbitrary labeled nominal edge between scopes and
references; (iii) we extend the resolution algorithm to handle arbi-
trary well-formedness conditions expressed as regular expressions
over arbitrary sets of path labels and arbitrary visibility orderings
on labels; (iv) we support partial resolution over incomplete scope
graphs; (v) we add the seen-scopes component, previously an arti-
fact of the resolution algorithm, to the resolution calculus to prevent
cyclic resolution paths.

The development of the scope graph framework fits in an ongo-
ing line of research to provide high-level domain-specific support
for name binding and type analysis in the Spoofax Language Work-
bench [10] using the NaBL and TS meta-DSLs [12, 19, 18]. NaBL
is a DSL for defining the name binding rules of programming lan-
guages by identifying the references, definitions, scopes, and im-
ports in an abstract syntax tree without recourse to environments or
symbol tables [12]. TS is a complementary DSL for defining type
analysis rules. (The design of TS is not formally published, but it is
sketched in [18].) Rules in TS are similar to traditional typing judg-
ments, relating an expression to a type. However, type rules do not
have to propagate context information, since that is taken care of
by the separate binding rules. TS rules refer to the results of name
analysis produced by NaBL (e.g. definition of x has type
t), and NaBL rules refer to the results of type analysis to achieve
type-dependent name resolution. NaBL and TS are implemented by
generation of (1) a language-specific AST traversal that generates
‘tasks’, and (2) a language-independent task engine that evaluates
tasks in order to (incrementally) compute a name and type assign-
ment [19]. The resulting name and type analysis engines produce
Eclipse IDE support for editor services such as name and type error
checking, reference resolution, and code completion.

While NaBL and TS are used in practice to build language defi-
nitions with Spoofax, the lack of a solid theoretical foundation was
a problem for further development. The aim to verify properties of
language definitions [18] requires a semantics that can be explained
to a proof assistant such as Coq. In particular, the semantics of no-
tions such as imports and ‘subsequent scope’ were hard to capture.
NaBL has some limitations in its coverage of name binding pat-
terns. For example, it cannot express variations on let bindings such
as sequential and parallel let. While the task engine is constraint-
like, its type resolution is not based on unification, which entails
that TS cannot be used to express languages requiring type infer-

ence. The constraint language developed in this paper provides a
solid formal basis for developing a new generation of name bind-
ing and type specification languages.

Prototype Implementation We have developed a prototype im-
plementation of the constraint solver and applied it in the IDE gen-
erated with the Spoofax Language Workbench [10] for the LMR
model language used in this paper. However, the prototype does
not yet implement the parameterized name resolution algorithm de-
veloped in this paper, but uses the fixed policy from [14]. In the
prototype implementation, sets of constraints for erroneous pro-
grams lead to partial solutions with unsolvable residual constraints
that can be translated into error messages in an IDE. However, we
have not formalized this; we have only proven the soundness of
the solver for successful reductions. Furthermore, the implementa-
tion is not optimized, nor does it support incremental evaluation of
constraints in the sense of the NaBL/TS task engine [19].

Constraints The use of constraints to abstract out type inference
problems from the abstract syntax tree is a common approach in
implementations and extensions of the Hindley/Milner type sys-
tem [13] and has been applied to a huge variety of typing features.
However, these approaches do not address name resolution using
constraints, but rather perform name resolution during constraint
collection. For example, in the work of Palsberg et al. [15, 16] on
object-oriented type systems, constraints are associated with iden-
tifiers, which requires these to be resolved before constraint collec-
tion. We believe that our use of constraints to define static name
resolution is novel. Instead of performing name resolution during
constraint collection, we provide a reusable set of constraints to
express name resolution problems, including name resolution for
‘remote’ names through imports and the interaction between name
and type resolution in type-dependent name resolution.

A variation on traditional type system definitions using infer-
ence rules is the co-contextual approach of Erdweg et al. [5]. In-
stead of propagating an environment to the sub-terms, environ-
ments are ‘synthesized’ along with type constraints, and the con-
straints and environments for sub-terms are merged. This allows for
compositional and incremental processing of name and type con-
straints. Name resolution is expressed using operations on environ-
ments. It would be interesting to consider a bottom-up collection of
constraints in our approach. The extraction algorithm of Fig. 6 can
be reformulated as a bottom-up collector, using scope variables as
placeholders for as yet unknown scopes. However, a key difference
with our approach is the support for imports (and nominal instead
of structural record types, which requires inspecting the AST asso-
ciated with a type declaration), which precludes a representation of
context information using a flat environment. A general challenge
lies in the convergence of these approaches: how to realize incre-
mental name and type analysis in the face of imports?

Attribute Grammars Another common approach to the imple-
mentation of static semantic analysis is by means of attribute gram-

mars [11]. In traditional attribute grammars all ‘semantic’ oper-
ations are carried out in the value domain. Thus, name resolu-
tion is expressed by propagating a type environment or symbol
table through attribute values. Kastens and Waite [9] provide a
reusable ADT for the definition of name analysis that bears some
resemblance to our scope graph framework, although the treat-
ment of modules and imports is only discussed at the implemen-
tation level. Such attribute grammars would be a suitable mecha-
nism for the definition of constraint collection. The extraction al-
gorithm in Fig. 6 could easily be rephrased as an attribute gram-
mar with scopes and type variables as inherited attributes and
constraints as synthesized attribute. In reference attribute gram-
mars [7], attributes can get references to tree nodes as values. Thus,
attributes can be used to link references (in the scope graph sense)
to their declarations. For example, Ekman and Hedin [3] provide a
generic framework for name resolution based on generic reference
attributes. Though this framework is part of the JastAdd Java com-
piler, it can be reused for other languages as well. The framework
needs to be instantiated with language-specific lookup functions to
resolve names. These can be specified modularly per language con-
struct, making it possible to echo the structure of the Java language
specification of name binding closely. However, these lookup func-
tions programatically encode name binding idioms such as lexical
scoping, shadowing, and hiding. Reference attributes can also be
used in the specification of type analysis. Similar to our approach,
name binding and typing rules can be specified mostly separately.
In a generic framework, Ekman and Hedin [4] use reference at-
tributes to link language constructs to their types and to represent
type relations such as subtyping. Similar to name resolution, in-
stantiations of the framework need to be encoded programatically.
Modularity and extensibility require particular encoding patterns
such as double dispatch.

The distinctive feature of our approach is that we treat name res-
olution using a largely separate mechanism, the scope graph, rather
than integrating it into type resolution. Since some language con-
structs require type-dependent name resolution, there is inevitably
some interaction between naming and typing, but we are still able
to reuse most of our existing name resolution theory, which gives us
the ability to handle a very rich variety of name binding schemes.

Future Work There are many directions for future work. One
important goal is to extend our theory to handle languages with
more sophisticated typing features, including subtyping, type-
parameterized classes and functions, and modules with type signa-
tures. To support popular OO language idioms, we also need to add
support for multiple independent name spaces (and disambiguation
across them) and type-based overloading resolution. As we make
such extensions, we would also like to address the completeness
of the constraint resolution algorithm (on suitably restricted sets
of constraints). In particular, it would be interesting to integrate
approaches to type error recovery [8, 20, 21] in order to generate
good quality type error messages automatically.

On a pragmatic front, more analysis and implementation ex-
periments are needed to determine if our approach will scale to
real-world tools. In particular, we need to assess the theoretical and
actual efficiency of our constraint solving algorithm. In addition,
many applications for semantic analysis (e.g. in IDEs) require effi-
cient incremental computation of name and type resolution.

On the usability front, we are interested in evaluating the ex-
pressivity and understandability of our constraint language and of
higher-level name and type specification languages that we express
in terms of it. Is there a payoff to the use of high-level, but perhaps
more abstract concepts, in contrast to a direct implementation?

Finally, we are interested in extending the application of our
building block approach to other tasks where constraint-based
methods have proved useful, such as pointer analysis.

Acknowledgments
We thank the anonymous reviewers for their feedback on previous
versions of this paper. This research was partially funded by the
NWO VICI Language Designer’s Workbench project (639.023.206).
Andrew Tolmach was partly supported by a Digiteo Chair at Labo-
ratoire de Recherche en Informatique, Université Paris-Sud.

References
[1] F. Baader and T. Nipkow. Term rewriting and all that. Cambridge

University Press, 1998.

[2] J. A. Brzozowski. Derivatives of regular expressions. JACM,
11(4):481–494, 1964.

[3] T. Ekman and G. Hedin. Modular name analysis for Java using
JastAdd. In GTTSE, pages 422–436, 2006.

[4] T. Ekman and G. Hedin. The JastAdd extensible Java compiler. In
OOPSLA, pages 1–18, 2007.

[5] S. Erdweg, O. Bracevac, E. Kuci, M. Krebs, and M. Mezini. A co-
contextual formulation of type rules and its application to incremental
type checking. In OOPSLA, pages 880–897, 2015.

[6] S. Erdweg, T. van der Storm, M. Völter, L. Tratt, et al. Evaluating and
comparing language workbenches: Existing results and benchmarks
for the future. Computer Languages, Systems & Structures, 44:24–
47, 2015.

[7] G. Hedin. Reference attributed grammars. informaticaSI, 24(3), 2000.

[8] B. Heeren, J. Hage, and S. D. Swierstra. Scripting the type inference
process. In ICFP, pages 3–13, 2003.

[9] U. Kastens and W. M. Waite. An abstract data type for name analysis.
ACTA, 28(6):539–558, 1991.

[10] L. C. L. Kats and E. Visser. The Spoofax language workbench: rules
for declarative specification of languages and IDEs. In OOPSLA,
pages 444–463, 2010.

[11] D. E. Knuth. Semantics of context-free languages. mst, 2(2):127–145,
1968.

[12] G. D. P. Konat, L. C. L. Kats, G. Wachsmuth, and E. Visser. Declara-
tive name binding and scope rules. In SLE, pages 311–331, 2012.

[13] R. Milner. A theory of type polymorphism in programming. jcss,
17(3):348–375, 1978.

[14] P. Neron, A. P. Tolmach, E. Visser, and G. Wachsmuth. A theory of
name resolution. In ESOP, pages 205–231, 2015.

[15] J. Palsberg and M. I. Schwartzbach. Object-oriented type inference.
In OOPSLA, pages 146–161, 1991.

[16] J. Palsberg and M. I. Schwartzbach. Object-oriented type systems.
Wiley professional computing. Wiley, 1994.

[17] H. van Antwerpen, P. Neron, A. P. Tolmach, E. Visser, and G. Wachsmuth.
A constraint language for static semantic analysis based on scope
graphs with proofs. Technical Report TUD-SERG-2015-012, Soft-
ware Engineering Research Group, Delft University of Technol-
ogy, 2015. Available at http://swerl.tudelft.nl/twiki/pub/
Main/TechnicalReports/TUD-SERG-2015-012.pdf.

[18] E. Visser, G. Wachsmuth, A. P. Tolmach, P. Neron, V. A. Vergu,
A. Passalaqua, and G. D. P. Konat. A language designer’s workbench:
A one-stop-shop for implementation and verification of language de-
signs. In OOPSLA, pages 95–111, 2014.

[19] G. Wachsmuth, G. D. P. Konat, V. A. Vergu, D. M. Groenewegen, and
E. Visser. A language independent task engine for incremental name
and type analysis. In SLE, pages 260–280, 2013.

[20] D. Zhang and A. C. Myers. Toward general diagnosis of static errors.
In POPL, pages 569–582, 2014.

[21] D. Zhang, A. C. Myers, D. Vytiniotis, and S. L. P. Jones. Diagnosing
type errors with class. In PLDI, pages 12–21, 2015.

http://swerl.tudelft.nl/twiki/pub/Main/TechnicalReports/TUD-SERG-2015-012.pdf
http://swerl.tudelft.nl/twiki/pub/Main/TechnicalReports/TUD-SERG-2015-012.pdf

	Introduction
	Constraints for Static Semantics
	Declarations and References
	Lexical Scope
	Imports
	Type-Dependent Name Resolution

	Syntax and Semantics of Constraints
	Syntax
	Constraint Satisfaction
	Resolution Calculus
	Parameterization

	Resolution Algorithm
	Variables in Scope Graph Constraints
	Name Resolution Algorithm
	Correctness
	Name Collection Computation
	Constraint Solving Algorithm

	Related Work and Discussion
	Proofs
	Proof of Lemma 1
	Proof of Lemma 2
	Proof of Lemma 4

