A Virtual Machine
for Functional L ogic Computations*

Sergio Antoy, Michael Hanu$, Jimeng Lid, and Andrew Tolmach

! Portland State University, Computer Science Dept.
P.O. Box 751, Portland, OR 97207, U.S.A.
{antoy, jimeng,apt}@cs.pdx.edu
2 Christian-Albrechts-Universitat Kiel, Institut fir formatik
Olshausenstr. 40, D-24098 Kiel, Germany.
mh@informatik.uni-kiel.de

Abstract. We describe the architecture of a virtual machine for exegutunc-
tional logic programming languages. A distinguishing eatof our machine is
that it preserves the operational completeness of nonrditistic programs by
concurrently executing a pool of independent computati&@ash computation
executes only root-needed sequential narrowing steps eétite the machine’s
architecture and instruction set, and show how to compiéglapping inductively
sequential programs to sequences of machine instrucfitvesmachine has been
implemented in Java and in Standard ML.

1 Introduction

Functional logic programming aims at integrating the chemastic features of func-
tional and logic programming into a single paradigm. In st decade, the theory of
functional logic computations has made substantial pssgi®ignificant milestones in-
clude a model that integrates narrowing and residuatioh fEBrowing strategies for
several classes of programs suitable for functional lagiguages [5], a functional-like
model for non-deterministic computations [3], and welfided semantics for program-
ming languages of this kind [1, 11].

These results have been influential in the design and impitatiens of functional
logic programming languages, e.g., Curry [18] @hd@) [19]. Most existing imple-
mentations of these languages are based on a translationr@escode to Prolog code
(e.g., [7]), which can be executed by existing standarddgrehgines. This approach
simplifies the task of implementing functional logic langedeatures: e.g., source lan-
guage variables can be implemented by Prolog variables amdwing can be simu-
lated by resolution. But some problems arise; most notalydepth-first evaluation
strategy of the Prolog system causes the loss of the opeahttompleteness of func-
tional logic computations and inhibits the implementatitbadvanced search strategies
[17].

* This work was supported in part by the National Science Fatiod under grants CCR-
0110496 and CCR-0218224 and by the German Research CoDfdd)(under grants Ha
2457/1-2 and Ha 2457/5-1.

This paper describes a fundamentally different approa¢chgéomplementation of
a functional logic language, namely a virtual machine farctional logic computa-
tions. Section 2 sketches the key features of functionatI@mguages. Section 3 de-
scribes the architecture of the virtual machine. In paltiGuve describe how functional
logic features influence several key decisions, e.g., regarthinism and the desire for
operational completeness suggest an architecture thatitmeea pool of independent
computations concurrently. We describe the kind of steps@ed by each computa-
tion in the pool. By choosing a specific class of source pnograve can arrange that
the machine only needs to execute root-needed steps sedlyeatcharacteristic that
promotes both simplicity and efficiency. We describe théstegs of the machine, the
information they contain, and how the machine instructiomstrol the flow of infor-
mation between these registers. Finally, we sketch howgrano can be compiled into
machine instructions. Examples are provided throughauttscussion. Section 4 de-
scribes on-going efforts at implementing the virtual maehn both Java and Standard
ML. The Java implementation, which is the more highly depelw, is mainly intended
as a compiler/interpreter for Curry, but it could be usedteripret compiled functional
logic programs coded in other languages. Section 5 contiaénsonclusion and a brief
discussion of related work.

2 Functional Logic Computations

Functional logic computations generalize functional catagions by adding three spe-
cific features: non-determinism, narrowing and residuatsee [12] for a survey). Our
machine is not designed for a specific programming languelgeexamples in this pa-
per are in Curry, but the details of the source language ageliairrelevant. Our only
assumption is that source programs can be converted toieupariariety of first-order
term rewriting systems. The requirements on these regrgirstems are described in
more detail below.

2.1 Functional Logic Features

Non-determinisnis the feature that allows an expression to have multipléndisval-
ues. Non-determinism broadens the class of programs thabe&aoded using func-
tional composition [3]. For example, a program that solvesyptarithmmust assign
digits to each letters. This can be expressedlas “s=digit in...” wheredigit
is defined by the rules

digit = 0
digit = 1

1)
digit = 9

The rules ofdigit arenot mutually exclusive, i.e., the expressiangit has 10 dis-
tinct values. The value eventually chosen for a given lataronstrained, according
to a cryptarithm, by some other part of the program. All therie rules of function
digit have the same left-hand side. (In Sections 3.6 and 3.7, Wweamsider these 10

rules as a single rule where the right-hand side is hon-ahétéstically chosen among
10 possibilities. A justification of this viewpoint and thpportunity to exploit it for an
efficient evaluation strategy are in [3].)

Narrowing is the glue between functional and logic computations. Tteretion of
a functional logic program may lead to the evaluation of apregsion containing an
uninstantiated variable. Narrowing “guesses” a valuetientariable when this is nec-
essary to keep the computation going. For example, theibmthat returns the last
element of a list can be coded as follows<" is the list concatenation function):

last 1 | 1 =:=x++[e] = e where x,e free (2

The evaluation oflast [1,2,3] prompts the evaluation dft,2,3] =:=x++[e], the
rule’s condition ¢; =:= e, denotes the equality constraint that is satisfied, ibndes
are evaluable to unifiable data terms). The variaklesnde are uninstantiated. Nar-
rowing finds values for these variables that satisfy the ttmmd this is all it takes to
compute the last element of the input list.

Residuatioris an alternative mechanism for handling evaluation of garession con-
taining an uninstantiated variable. In this case, the atmo suspends, and control is
transferred to the evaluation of another expression in fitips the latter will instantiate
the variable so that the former can resume execution. (Btlidthis only makes sense
when more than one subexpression is available to be evdluatg, the conjuncts of
a “parallel and” operation.) The decision of whether to aarpr residuate is specified
by the programmer on a per-function basis. Generally, pxinarithmetic operations
and /O functions residuate, since it seems impracticalesg values in these cases,
whereas most other functions narrow.

2.2 Overlapping Inductively Sequential Rewrite Systems

Our abstract machine is intended to evaluate programsdhdieexpressed aserlap-
ping inductively sequential term rewriting systef8s Roughly speaking, this means
that pattern matching can be represented by (nested) casessions with multiple
right-hand sides for a single pattern. More precisely, g¥enction of an overlapping
inductively sequential system can be represented by acphativariety ofdefinitional
tree[2, 3], which we specify in Section 3.7.

It is shown in [4] that every functional logic program defirtlgdconstructor-based
rewrite rules, including programs in the functional logam$uages Curry an@@ O,
can be transformed into an overlapping inductively seqaksystem. This class prop-
erly includes the first-order programs of the functionalglaages ML and Haskell.
Higher-order features, i.e., applications of a functiomglression to an argument, can
be represented as an application of a specific first-ordatiumapply (where partial
applications are considered as data terms)—a standandigeiehto extend first-order
languages with higher-order features [23]. (Additionalpninary compiler transfor-
mations, e.g., name resolution, lambda lifting, etc., gpécally needed to turn source
programs into rewrite system form; we do not discuss theskduhere.)

3 Virtual Machine

In this section we describe how the features of functiongid@omputations, in par-
ticular non-determinism and narrowing, shape the architef our virtual machine.
We only sketch the machine’s support for residuation; fatads of this are beyond the
scope of this paper.

3.1 Pool of Computations

A fundamental aspect of functional logic computations is-determinism—both in
its ordinary form, as in example (1), and through narrowigjn example (2). The
execution of a non-deterministic step involves one of seEv@roices in the replacement
of a redex—or, to use a more appropriate term in our enviranpaenarrex (In the
remainder of the paper, we use “narrowing” to refer to eithamrowing or rewriting,
which is a special case of narrowing.) For example, in thptenythm solver mentioned
earlier, the evaluation afigit leads to 10 possible replacements.

One of our main goals is to ensure the operational complstesfecomputations.
For instance, consider the following function to reversedlements in a list:

rev (x:xs) = rev xs ++ [x] 3)

rev [] = [

A complete computation mechanism will be able to computdatisn to the equation
revl=:=[1,2], namely{1=[2,1]1}. A conventional backtracking policy that tries
each clause afev in order will loop forever on the first clause, and hence isaorh-
plete. The simplest policy to ensure completeness is touteemy non-deterministic
choice fairly, independently of the other choices. In outudl machine, this is achieved
by concurrently computing the outcome of each replacen@ntir machine, @ompu-
tationis explicitly represented by a data structure, which hdiésérm being evaluated,
a substitution, and a state indicator with values sudictise completeor residuating

The machine maintains @ool of computations. Initially, there is only one active
computation in the pool, containing the initlahse term Computations change state
depending on events or conditions resulting from the exeswf machine instructions.
For example, when a computation makes a non-determints{ic the computation is
abandonednew computations, one for each possible step, are creadieigd to the
pool, and becomactive When a computation obtains a hormal form or a head normal
form (we have a different kind of computation for each ta#® computation state is
set tocomplete

The core of the machine is an engine to perform head normial émmputations,
by executing sequences of machine instructions. Theresisoch sequence associated
with each function of the source program, which we call¢bdeof the function. The
purpose of a function’s code is to perform a narrowing steprofipplication of the
function to a set of arguments, or to create the conditioas l#ad to a narrowing
step (details are given in Section 3.3). The instructioresrai@ on an internadontext
consisting of several registers and stacks (described étid®e3.5). The instruction
sequence is always statically bounded in length, and awtei loops. For the simplest
functions, it is just a few instructions long. For more coiogled functions, the number

of instructions goes up to a few dozen, but seldom more than Yhen the virtual
machine completes the execution of a function’s code, midisocontext information
become irrelevant.

To manage the pool of computations fairly, the machine mhatesthe proces-
sor among active computations so that they make some “msgteward a result
over time. We considered several strategies to ensureaiing. For example, a fixed
amount of time could be allocated to each computation. IframatationC' ends be-
fore the expiration of its time, a different computation jseeeuted. Otherwise(' is
interrupted. When all the other computations existing mplool at the time of the in-
terruption of C' have received their fair share of time, the executiol®afesumes. A
similar strategy would be to allocate a fixed number of virtaachine instructions.

A drawback of the above strategies is that when a computaionerrupted, the
instruction execution context must be saved, and subséguestored when the com-
putation resumes. In order to minimize the overhead of &witg contexts, we have
adopted a simpler strategy that never interrupts inswocéquences. This remains fair
because the length of each instruction sequence is boudezh the machine selects
a computation from the pool, it executes the entire code wfestunction for that com-
putation, and then returns the computation to the pooleh tiepeats this process fairly
for every other computation of the pool.

3.2 Termsand Computations

In the model for functional logic programming described ¥8], a computation is
the process of evaluating an expression by narrowing. Theeszion is a term of the
rewrite system modeling the program.térm¢ is avariable v or asymbols of fixed
arity n > 0 applied tom termsty, . .., t,,, m < n, written ass(¢4, . . ., t,,). Symbols
are partitioned into dateonstructorsc andfunctionsor operationsf. A data termis

a term without defined functions,atternis a function applied to data terms, and a
head normal formis a term without a defined function at the root, i.e., a vdealy

a constructor-rooted term. In examples, we often write $eusing infix notation for
symbols. A positiorposin a term is represented by a sequence of positive integers
representing subterm choices, beginning at the root. Fameie, the position of in
f(y,b(x,2)) is the sequence 1. We writet|posfor the subterm at positioposin .

Evaluating a term results in bothcamputed valueas in functional programming,
and acomputed answeans in logic programming. The computed value is a data term,
and the computed answer is a substitution, possibly theitgefitom some free vari-
ables of the term being evaluated to data terms. In Exampleti{& evaluation of
[1,2,3] =:=x++[e] returns the computed val@access, a predefined constant for
constraints, and the computed ansWer— [1,2], e+— 3}.

Thus, the state of a computation includes both a term and stiutlon. Initially,
the computation data structure for a tetrholdst itself and the identity substitution.
As narrowing steps are executed, both the term and the sulstifields of the com-
putation structure are updated. A computatioasnpletewhen the machine cannot
perform a step in the term being evaluated.

The machine supports three kinds of computatidite.mal form computations
attempt to narrow terms all the way to data terms. The vinathine is intended to

be used within a host program that provides the read-ewal4oop typical of many
functional and logic interpreters. The host program presithe initial base term for
the machine to evaluate to normal form, and waits for the agetpvalues and answers
to be returned (if the program narrows variables or execubesdeterministic steps,
multiple value/answer results are possible).

Head nor mal form computationstry to evaluate terms to constructor-rooted terms
or variables. Executing these computations is the corgigctf the machine, during
which the definitions of functions are applied. Since norfoah computations can be
modeled by head normal form computations using auxiliagrapons (see, e.g., [15]),
we concentrate on head normal form computations in thispé#pey are described in
more detail in Section 3.3.

Parallel-and computations handle the evaluation of a conjunction of two terms.
Residuation is only meaningful in the presence of these coatipns. Each conjunctis
evaluated by a different computation. For each conjunctlecomputation of one and
only one of the two conjuncts is active at any one time (im@ating an interleaving
semantics for concurrency [13]). If the computation of thhst ftonjunct residuates, the
computation of the second one becomes active. The secomltation may “unblock”
the first one, thus becomingpitingitself, or may residuate as well. In this case, the en-
tire computation blocks. If all the parallel-and compuias derived from a given base
term are blocked, the base term computafionnders Since we are omitting details
of residuation support in this paper, we ignore parallel-eemputations in subsequent
sections.

The computations in the machine’s pool are conceptuallgpeddent of each other.
In our implementation, the evaluation of some subterms comto two independent
computations may be shared, but this is only for the sakefimiezicy. Thus, we de-
scribe the execution of a computation disregarding the tfaat other computations
may be present in the pool.

3.3 Head Normal Form Computations

The execution of a head normal form computation attempteuwsite anoperation
rooted term into @onstructorrooted term or variable. The evaluation strategy executed
by our machine isoot-needededuction [21] with the addition of narrowing and non-
deterministic steps. Simply put, the strategy repeatettiéyrapts to apply rewrite rules
at the top of an operation-rooted term until a construcbated term or variable is
obtained.

The implementation of this strategy for a given functioneiegs only on the forms
of the left-hand sides of that function’s defining rules.dntf the definitional trees that
our system uses to represent programs already implicitp@athe strategy. The next
needed step in the evaluation of a tefitt;,...,¢,) can be obtained by comparing
the symbols at certain positions in the argumentg @fith corresponding symbols in
f’s definitional tree. A sequence of comparisons determin@stwrule to apply, or
which subterm to evaluate. To implement these tree-basehtipns, we compile the
definitional tree for each functiofito a code sequence of virtual machine instructions,
as described in Section 3.7. The instructions themseleedescribed in Section 3.6.

The code for a function effectively chooses which rule tolapp a term. But it is
also possible thatorule can be applied at the top of an operation-rooted terrs. ddn
occur for one of only two reasons: (1) an operation-rootgdiaent of a function appli-
cation must be evaluated to a head normal form before anganlée applied, or (2) the
function is incompletely defined. An example of each condifiollows. Consider the
definitions of the usual functions that compute the head @ftahd the concatenation
of lists, denoted by the infix operatos+".

head (x:_) = x
(] *y=y (4)

(x:x8) ++ y =x : X8 ++ y

The term¢ = head (u++wv), for anyu andw, is an example of the first condition.
To evaluate, it is necessary to evaluate: ++v) which is a recursive instance of the
original problem, i.e., to evaluate an operation-rooteohtt a head normal form.

The termt = head [] is an example of the second condition. In a deterministie lan
guage, where the execution of a program consists of a singigutation, this condition
is usually treated as an error. In a non-deterministic laggywhere the execution of
a program may consist of several independent computatitiss;ondition is often be-
nign. The machine uses a distinguished symbol, which wetddmnofail, to replace
terms that have no value. Since for every computation of tiot fhe machine executes
exclusively needed steps, the reduction of any subterfiata implies that the entire
computation should fail.

3.4 DataRepresentation

We now describe the virtual machine more formally. The temamnipulated by the
machine are represented by acyclic directed graphs storedaps. This graph-based
representation of terms is necessary to capture the inflesttgring semantics of the
language, and also allows us to express important optimimivhen manipulating
and replacing subterms. Formallyhaapis a finite mapl” : H — P + V, where
H is an abstract set dfandles(e.g., heap addressed),is a set of pairs of the form
(s, (h1,...,hy)), wheres is a program symbol of aritys > 0, n < m, andhy, ..., h,
are handles, and is a set of program variables (We distinguish elements @f from
those ofV by always writing the former using pair notation.) The teepresentedby
handleh in heapI” is given by

trmp(h) = {i(trmp(hl), ..oy trmp(hy)) :: ?Ei}g z 1(}5, (h1,...,hpn))

We make extensive use of finite maps in what follows, so we firesgeneral notation
for these here. I} is a finite map, thed/[u := v] is the result of extending or updating
M with a mapping fromu to v. We write() for an empty map, and: := v] as shorthand
for the singleton maf|u := v]. We write Dom(M) for the domain of\/.

The storage areas of the machine (described in Section @dhhandles for terms;
more loosely, we sometimes just say they hold terms and vemddome standard term

rewriting notations to handles. For examplehifs handle angg = p; - p2---p, IS @
position, then we define

h|p1---pn = h;m |p2>~anhereF(h) = <—7 (hlv R hn)>

It follows immediately thatrmp(h|,) = trmp(h)|,. We also define the set efibhan-
dlesof a handle in the obvious way:

AR} Ushsp(h)U...Ushsp(hy,) if I'(h) = (s, (h1,...,hpn))
shsy (h) = {{h} it [(h) = v
For any handlé, the terms represented by the handleshg-(h) are just the subterms
of trmp(h).

Substitutionsr are finite maps from handles to handles, where the handldgof t
domain typically (but not necessarily) represent varigb&ubstitutions are never ap-
plied destructively to change a term in-place, since difféicomputations might need
to apply different substitutions to a same term. Insteagl; Hre applied to handles rep-
resenting terms by making a clone (deep copy) of the termeMoecisely, we define a
“clone with substitution” operator as follows:

(I'v,o(h)) if h € Dom(o)
(I'n,h) ifshse(h) N Dom(c) =0
(I'",h') otherwise, where
Io(h) = (s, (h1,...,hpn))
(Fl h/) = Clone,(Fi,l, hz) (1 << n)

» 7

I'" =T, = (s,(hY,....n))] (W & Dom(I))

clone, (Iy, h) =

This cloneoperator is quite efficient since it copies (only) the spiokthe term above
any substituted variables; any parts of the source terminéngaunaffected by the sub-
stitution are shared by the result term. For cloning to hheesixpected substitution se-
mantics on the represented terms, itis important that namarappears more than once
inthe heap;i.e., ifrmp(h1) = vandtrmp(hy) = v, thenh; = ho. We call heaps hav-
ing this propertywell-formed and we take care to start the machine with a well-formed
heap and maintain the well-formedness invariant duringeten. Supposé’ is well-
formed,trmp(h) = t andtrmp(j) = u for some terms andw, andtrmp(k) = v

for some variable. If (I, h) = cloney,.—; (I, k), thentrmp (h') = t[u/v], i.e., the
usual term substitution af for v in ¢.

3.5 StorageAreas

As discussed in the previous sections, our machine faicates a pool of indepen-
dent computations. The context of each computation ingadeeap and four separate
storage areasa generic name for stacks and registers.

Suppose thatis the term to evaluate in a head normal form computation.atell
that initially ¢ is operation-rooted; the computation completes succigsfhen ¢ is
evaluated to a constructor-rooted term or variable. Thepedation begins by execut-
ing the code associated with the function at the root.dh the course of executing

this code, it may become necessary to recursively evalysetion-rooted subterms
of t. Thepre-narrex stack keeps track of these recursive computations. It is a stack
containing handles,,, .. ., ho, hy of a heapl”, with h,, the top, having the following
properties.

1. At the beginning of the computation,= 1 andtrmp(hy) = t.

2. Every term represented by a handle in the stack, with tesible exception of,,,
the top of the stack, is operation-rooted and it is not a marre

3. Foralli > 1, h; is a subhandle of,_; with the property thatrm(h;) must be
evaluated to a head normal form befaren-(h;,—1) can be evaluated to a head
normal form.

The top of the pre-narrex stack contains the term handleentlyr being evaluated.
Referring to example (4), iiead (u ++v) is on the pre-narrex stack, ther-+v will
be pushed on the stack, too, because the former cannot hetadto a head normal
form unless the latter is evaluated to a head normal form. Mhehine allocates a
separate pre-narrex stack to each head normal form corgutat

The other three storage areas are local to the executioniofjke $unction code
sequence.

Current register. This is a simple register containing a term handle. Many ef th
machine’s instructions implicitly reference this registéor example, to apply a
rewrite rule of the function++" defined in (4) to the termu ++ v, one must check
whether the ternu is rooted by[] or “:” or some function symbol. The BANCH
instruction that performs the test expects to find the terbettested in the current
register.

Pre-term stack. Thisis a stack for constructing narrex replacements. Taasalways
term handles instantiating a right-hand side of a rule. Tigeraents of a symbol
application are first pushed on the stack in reverse orderMAKE TERM instruc-
tion, which is parameterized by the symbol being applieplages these arguments
with the application term. For example, the tefm, 2] ++[3,4], which is a nar-
rex, is replaced by : ([2]++[3,4]) which is constructed as follows. First, the
handles for the term§3,4] and [2] are pushed on the pre-term stack. Executing
“M AKETERM ++" replaces them with a handle to the new tefgi ++[3,4]. Then,
the handle for the termis pushed on the stack as well and executing\®d TERM
:" replaces the two topmost elements with a handletfof[2] ++[3,4]).

Freevariableregisters. The rewrite rules that define the functions of the program can
contain free (extra) variables. Several occurrences ofreedeee variable may be
needed to construct the narrex replacement. Thereforen eifiree variable is cre-
ated, its handle is stored in a register (using instructivoREVAR) to be retrieved
later (using instruction MKEVAR) if it occurs again. For example, consider the
following rule that tells whether a string of odd length isalipdrome:

palind s = s =:= x ++ (y:reverse x) where x,y free (5)

The construction of an instance of the right-side of thi toégins with pushing
x, for the right-most occurrence of the right-hand side, engte-term stack. Later

on, another occurrence &fis to be pushed on the stack. Thus, a handle taust
be kept around so that it can be retrieved later and pushed.a@e machine
maintains the set of free variables as a finite map from vhgiaiwlex numbers
(which are parameters to the SREVAR and MAKE VAR instructions) to variable
handles.

The content of these local storage areas can be discardeel etd of the execution of
the function code. Since computations are never interdiptthe middle of an instruc-
tion sequence, there need only be one instance of these atdak can be shared by
all computations.

3.6 Machine Instructions

The virtual machine evaluates terms by executing sequesfdastructions. Each in-
struction acts on the heap and the current computation @uges a (possibly) altered
heap and zero or more new or changed computations. Thussliaior of a computa-
tion C in the current heap’ will be specified as a transitioh C = I, {C1,...,C,}

(n > 0) wherel"” is a modified heap and, ..., C,, are the new or changed compu-
tations. Some instructions move information between thi®ua storage areas. Others
build or take apart terms. Building a term extends the heapesother operations up-
date it. Figure 1 gives transition rules for the instruction

The machine begins a head normal form evaluation with a siaglive computa-
tion, containing a single term handle on the pre-narrexsiaed a well-formed heap.
(The information in all the other storage areas is irreléyarhe machine then repeats
the following cycle. A computation is chosen (fairly) foremution from the active com-
putation pool. If the top of the pre-narrex stack represantsperation-rooted term, the
machine retrieves the code for the operation and beginsgous it. If the top of the
pre-narrex stack represents a constructor-rooted ternvariable, the stack is simply
popped; in this case an appropriate handle in the heap walhdy have been updated
with that term. If the pre-narrex stack is empty, the compaiteis completed and is
removed from the pool of active computations; the computddescan be read from
the heap by the host program.

The code for a function is a sequence of instructibn@n fact, because BANCH
instructions may contain multiple sub-sequences of igtitsas, the code really forms
a tree.) The DAD and BRANCH instructions deal with fetching and testing (handles
of) existing terms. IDAD p extracts the subhandle at positiofrom the handle on top
of the pre-narrex stack and puts it in the current registerdcH Iy, .. ., I,, tests and
dispatches on the form of the term represented by the handteeicurrent register.
If the head of this term is a function symbol, the term is puksba the pre-narrex
stack to be eventually narrowed to a head normal form. If this special constant
fail, the current computation is abandoned (see below). If itagie variable, control
is dispatched to the instruction sub-sequehgevhich ordinarily arranges to narrow
or residuate. Otherwise, the term must be rooted by sometrcotd ¢ from some
datatype; control is dispatched to instruction sequetigewherej is the index ofc in
the canonical ordering of constructors foiNote that BRANCH can only occur at the
end of an instruction sequence.

I ([, :N,_,_,-) = I, {(code(f), :N,_,[],0)}
(I'(h) = (f,-))
([N, oo,) = L[, N, -, . D}
(F(h) = {e,) or (1) = v)

L0, -0-0-) = 1,0
F7(LOADp1"'p7L :I7 [t77l7“'7t1]7—7T7F) :>F7{(I> [t’"H‘"7t1]7tm|P1"'Pn7T7F)}

I',(BRANCH ... :[|,N,h,_,_) = T, {([], »N,_,[],0)} (rh) ={f,-)

I'y(BRANCH ... :[],-,h,_,.) = T,0 (I'(h) = (fail, ()))

I, (BRANCH Iy, ... : [, N,h,T,F) = I,{(lo, N, h, T, F)} L(h) =v)
I',(BRANCH Iy, ..., I, : [, N,h,T,F) = I,{(I;, N,h, T, F)}

(I’'(h) = {c,-), c j-th constructor)
I,(PusH: I,N,R,T,F) = I,{(I,N,R,R:T, F)}
I,(PoP:I,N,_, tits, F) = I,{(I,N,t,ts, F)}

I, (MAKEANON : I, N, R, T, F') = I'[h := v}, {(I, N, R, h:T}, F')}
(h & Dom(I"), v fresh)

I',(STOREVARn : I, N,R, T, F) = I'[h :=v],{(I, N, R, T, F[n := h])}
(h & Dom(I"), v fresh)

I (MAKEVARn : I,N,R,T,F) = I,{(I, N,R,F(n):T, F)}

I',(MAKETERM s : I, N, R, [tm, ..., t1], F) =
F[h = S(tmv' o 7tm*n+1)]7{(I7N7 R, [h7tm7n7 e 7t1]7F)}
(h & Dom(I'), arity(s) =n < m)

I, (REPLACE: [, h:N,R,[],-) = I'[h:= R],{([], »N,_,[],0)}

Io, (NARROW: []7 [tm7 . .,t1]7h7 [Cl7 . .,Ck]7_) == I}, {([]7 [hi]7— s [L@) | 1< < k}
whereo; = [h:= ¢;] and (I, ki) = clone,, (Ii—1,t1) (1 <i<k)

FOv(CHOICE: []7 [tmv---vtl]v—v[Clv---vck]v—) = Fk7{([]7 [hi]7—7[]7®) | 1<i< k}
whereo; = [tm := ¢;] and(I, h;) = clone,, (Ii—1,t1) (1 <i<k)

Fig. 1. Machine instruction set. Instructions map a heap and amveacthmputation to a re-
vised heap and a set of result computations. Computatiendescribed by tuples of the form
(I,N,R, T, F), wherel is an instruction sequencé is the pre-narrex staclf is the current
register,T" is the pre-term stack, anfl is the free variable magode(f) denotes the sequence
of virtual machine instructions associated to functjpras described in Section 3.7. Standard
Haskell-style list notation is used for stacks and sequenga underscore_{ denotes a field
whose contents don’t matter.

A number of instructions manipulate the pre-term stacksiand Fop move han-
dles between the current register and the stackk ANON creates a fresh, indepen-
dent free variable in the heap and pushes its handk®WAR pushes the handle of
a (potentially) shared free variable (previously creatgboREVAR) from the shared
free-variable map. MKE TERM s constructs a new term representation in the heap with
root symbols and the topurity(s) elements of the stack as arguments, and pushes its
handle in place of the arguments. FinallygR ACE updates the handle on the top of
pre-narrexstack to have the same contents as the handle in the curgistere

The remaining instructions, which only appear at the enshafistruction sequence,
place multiple, non-deterministic alternative computasi into the active pool. Ar-
ROW executes a narrowing step. When this instruction is exegthe current register
holds the handle for a variableand and the pre-term stack holds handles for the in-
stantiations:q, ..., cx, k > 0, of this variable. For each instantiatien the root term
of the computationt; is cloned under the substitutidh := ¢;]. The computation ex-
ecuting the non-deterministic step is abandoned and a neywtion corresponding
to each clone is added to the pool. Note that each new conmutaarts from the root
term and an empty pre-narrex stack; this stack gets rebditgendently in each com-
putation. G1OICE is similar, except that it executes a non-deterministiciofidn step.
When this instruction is executed, the top of the pre-nastagk holds a narre,, and
the pre-term stack holds the replacements. ., c;, & > 1, of this narrex. For each
replacement;, the root term of the computatian is cloned under the substitution
[t = ci)-

There is one further instruction R IDUATE, which moves a computation from the
active pool to a waiting pool pending the instantiation obgit variable. A precise
description of this instruction and of the remainder of thsiduation mechanism are
beyond the scope of this paper.

In addition to these instructions, some activities of thechiae are performed by
built-in functions. Generally, these are library functotmat could not be defined by
ordinary rewrite rules. An example of a built-in functioraigply, which takes two terms
as arguments and applies the first to the second. For cortgpid programs, the first
argument ofapply evaluates to a term of the forif{z1, . .., z,) where the arity off
is greater tham, i.e., f is a partial application. The functicapply performs a simple
manipulation of the representation of terms. It would beydasreplace the built-in
functionapplywith a machine instruction. However, built-in functiong @referable to
machine instructions because they keep the machine simpiethey are loaded only
when needed.

Figure 2 shows the code for the list concatenation functieri tlefined in (4). This
code is executed when the top of the pre-narrex stack caragierm of the formu++uv.

3.7 Compilation

Every function of an overlapping inductively sequentiabgmam has alefinitional

tree[2, 3], which is a hierarchical representation of the resvritles of a function that
has become the standard device for the implementation ofwerg computations. We
compile each definitional tree into a sequence of virtuallmreeinstructions. Because

1 LOAD 1 loadw in the current register

2 BRANCH
[u IS an uninstantiated variable
3 MAKETERM [] pre-term stack contair{s]
4 MAKEANON push_
5 MAKEANON push_
6 MAKETERM : pre-term stack contairfs] and_: _
7 NARROW
]
[wis[]
8 LoAD 2 loadv
9 REPLACE
]
[wiSug: Us
10 LoAD 2 loadv
11 PusH
12 LoAD 1-2 loadus
13 PusH
14 MAKETERM ++ pre-term stack contains,++v
15 LoAD 11 loadug
16 PusH
17 MAKETERM : pre-term stack containg,: us++v
18 Pop
19 REPLACE

]

Fig. 2. Compilation of the definition of the functiomn++”. This code is executed to evaluate a
term of the formu++v. The instruction numbers at the left and the comments atighé¢ are not
part of the code itself.

a definitional tree is a high-level abstraction for the défini of a sound, complete and
theoretically efficient narrowing strategy [6], mappingstbtrategy into virtual machine
instructions increases our confidence in both the correstard the efficiency of the
execution. The notation for the variant of definitional eee use is summarized in
Figure 3.

A trees consist of intern@ranchnodes, which encode choices between left-hand-
side patterns of rewrite rules, and Id&dilenodes, which correspond to the right-hand
sides of rewrite ruleBranchnodes contain a pattegnto match, a positioposwithin
the term to be matched, a fldigx?indicating whether or not the branchflexibleor
rigid, i.e., whether to narrow or residuate if the correspondigijtpn of a term being

(definitional tree)7” = Branch(p, pos flex? [T1, ..., 7,])
‘ RUlqp: [T17 DR} 'I"n])

(right-hand side) = ([v1,...,vx],t)

Fig. 3. Notation for definitional trees.

processed is a variable. In the ndtlele(p,rs)rsis a list of non-deterministic alternative
right-hand sides for the rule. Each right-hand sjdg ¢) consists of a termh and a list
of free variablewysthat appear it but not inp.

As examples, the definitional tree for the functier-) defined in (4) is:

Branch(x++y, 1, True,[Rulg [1++y, [([, ¥)]),
Rulg (x:xs)++y, [([], x: (xs++y))])],

the tree forpalind (5) is:
Rulgpalind s,[([x,y],s =:= x++(y:reverse x))|),

and the tree fodigit (1) is:

Rulgdigit, [([],0), ([l,1),..-, ([, 9)]),

where, for readability, we write terms and patterns usitfig imotation.

Figure 4 gives an algorithm for compiling definitional treesequences of abstract
machine instructions. For simplicity, we assume all dafinil trees are canonical, in
the sense that eveBranchnode corresponding to a position of typdias a child for
each data constructor of and the children are in the canonical order for data coostru
tors. (In reality, the compiler would use auxiliary typeaniation to determine the full
set of possible children, and generate code to prodade for the missing ones.) We
assume the existence of a functiposOfv p that returns the position (if any) of vari-
ablev in patternp (assuming appears at most onceji. Various optimizations on the
resulting code are possible; for example, the sequencestfiztions [RIsH,PoP] can
be omitted, as illustrated by the code in Figure 2, or theuresions SOREVAR n and
MAKEVAR n can be replaced by a singleAME ANON instruction for free variables
that occur only once in the right-hand side.

Some practical adjustments to the pseudo-code of Figure decessary to ac-
commodate built-in types, such as integers and charadikese are a few additional
machine instructions, e.g., AKEINT and MAKE CHAR, for this purpose.

4 Implementation

We have two prototype implementations of the virtual maetdescribed in this paper.
One implementation, in Java, is currently our main develepiavenue. A second im-
plementation, in Standard ML, is being used mostly as a pobabncept. Since the
code is not optimized because it is still evolving, we do naspnt a detailed bench-
mark suite here. Nevertheless, the initial performancelteappear to be promising.
A computationally intensive test computes Fibonacci numlyath an intentionally
inefficient program. This test shows that the machine exascapproximately 0.5 mil-
lion reductions (i.e., function calls) per second on a 2.& Gimux-PC (with AMD
Athlon XP 2600). On the same benchmark, the PAKCS [14] imgletation of Curry,
which compiles Curry programs into Prolog using the schemjig]j runs about twice as
fast. PAKCS is one of the most efficient Curry implementagicapart from MCC [20],
which produces native code. However, neither of these imeigations is operationally
complete. For example, neither produces a solution to elea(8jp

compileTree(Branch(p, pos flex?, [T, ..., 74])) =
[LOAD pos,
BRANCH [handleVariable
compileTree7;,

compileTree7,,]1]
where handleVariable=
if flex? then
buildChoice ++ --- ++ buildChoice, ++ [NARROW]
where buildChoice = [MAKEANON;,...,MAKEANON,, ,
MAKETERM c¢;]
where c;(di,...,dn;) = (patternOf 7;) |pos

else [RESIDUATE]

compileTree(Rulgp, [rhsi,...,rhsy]) =
ifn=1then
(compileRhsrhs;) ++ [PoP,REPLACE]
else (compileRhsrhs1) ++ ... ++ (compileRhsrhs,) ++ [CHOICE]
where compileRhg[v1,...,v,],t) =
[STOREVAR 1,...,STOREVAR n] ++ (compileTermt)
where compileTerm(v) = if 35 with v = wv; then
[MAKEVAR j]
else [LoAD (posOfwv p),PUSH]
compileTerm(s(t1,...,tn)) =
(compileTermt,,) ++ --- ++ (compileTermt¢;) ++
[MAKETERM s]

Fig. 4. Pseudo-code for compilation of definitional trees to segasmof virtual machine instruc-
tions. Standard Haskell-style notation is used for lists.

We have used Java and ML due to their built-in support formatic memory man-
agement and appropriate programming abstractions whicpliied the development
of our prototypes. The same approach has been taken in [b&hwlescribes an ab-
stract machine for Curry and its implementation in Java. l@nrntegative side, the use
of Java limits the speed of the execution—the Java impleatientin [16] is more than
an order of magnitude slower than PAKCS [7]. On the positide,sour machine can
be also implemented in C/Crom which we can expect a considerable efficiency im-
provement A possible strategy is to integrate a C-based executiomerigio the Java
support framework.

Non-deterministic computations are executed indepehdétawever, because of
the use of term handles, a common deterministic term of tdependent computations
is evaluated only once. For example, consider the tetgit + ¢, wheredigit is
defined in (1). A distinct computation is executed for eaghlaeement ofiigit, but¢

3 [16] compares the speed of the same virtual machine for Guated in Java vs. in C/€ The
latter is more than one order of magnitude faster comparedJava implementation with a
Just-In-Time compiler.

is evaluated only once for all these computations. In ditaatof this kind, our machine
is faster than PAKCS.

In our implementations, a narrex is replaced in place (wittestructive update)
whenever possible. Non-deterministic steps prevent cepient in place, since several
replacements should update a single term. Currently, ttehima constructs not only
the replacement of a narrex, but also the spine of the emtire in which the narrex
occurs. This is unnecessarily inefficient and we plan to ouprthe situation in the
future together with other optimizations of the machiné@ecture and code.

Our virtual machine is intended for the execution of funeéiblogic programs in
a variety of source languages. Our immediate choice of sdarguage is Curry [18].
For this application, we have a complete compiler (writterCurry) into our virtual
machine but several other non-trivial software componenish as a command line
parser, a loader, a debugger and a run-time library, areseageas well. The virtual
machine has good built-in capabilities for tracing and dgling. A specific problem
of an operationally complete implementation of non-detaistic computations is that
steps of different computations are interleaved. Presgstieps in the order in which
they are executed produces traces which are hard to readxtdmal debugger with
a suitable interface for non-deterministic computatiandescribed in [9]. Finally, we
have implemented a handful of modules for built-in typeghsas the integers, that
cannot be compiled from source programs.

To conclude, we have a solid, though preliminary, impleragoh of the virtual
machine. Several key software components of an interagévelopment environment
need further work. The Java implementation of the machiravaslable for download
from http://redstar.cs.pdx.edu/ antoy/f1p/vm. The distribution also links a
tutorial description of the machine including an animatajrthe behavior of the in-
structions.

5 Conclusion and Related Work

We have described the architecture of a virtual machinen®ekecution of functional

logic computations. The machine’s design is based on seéidretical results. In par-

ticular, the machine is intended for overlapping indudtiveequential programs and
computes only root-needed steps (modulo non-deterndrgbivices). Larger classes
of programs, up to those modeled by the whole class of caststrbased conditional

rewrite systems, can be executed after initial transfoionat

A small set of machine instructions performs pattern maiglaind narrex replace-
ment, two key activities of the machine. Both narrowing and-deterministic steps are
executed by a single instruction since the machine is spalttifidesigned for functional
logic computations. The machine is also designed to exeeweral computations con-
currently to ensure the operational completeness. Impigatiens of the machine in
Java and ML are complete and fairly efficient, through notopimized.

The implementation of functional logic languages is anvacéirea of research. A
common approach is the translation of functional logic seysrograms into Prolog
programs, where Prolog has the role of a portable, speethiizachine language, e.g.,
[7]. Another approach relies on an abstract machine. Thehinagresented here is

only one of several alternatives the authors have considémg8], Antoy, Hanus, et
al. describe a virtual machine with many similarities totttd@scribed in this paper, but
a major difference. Functions are compiled into Java objeather than sequences of
virtual machine instruction as in the example of Figure €, ithe target language is
Java rather than an instruction set of a virtual machinel@& Hanus and Sadre pre-
sented also a virtual machine for compiling Curry prograhat exploits Java threads
to implement the concurrent features of Curry and ensuresplerational complete-
ness of non-deterministic computations. To manage theirmsdf logical variables
caused by different non-deterministic computations, tegd bindings tables that are
partially shared between computations. The resultingitrcture is more complex than
the machine presented in this paper and has fewer possibftir optimization, e.g., the
sharing of deterministic evaluations between non-detgistic computations discussed
in Section 4. Thus, this implementation is no longer supgzbrt

In [22], Tolmach, Antoy, and Nita describe a definitionakirgreter for Curry-like
languages based on the semantics of Alketrl. [1]. The primary contrast with the
present work is in the treatment of the heap. Rather thanedging of the system as a
graph rewriting engine that generates modified copies cfdliece term as it runs, [22]
treats the program as fixed, read-only code that operatestiipla variantversionsof
the heap. A direct performance comparison between thesagywmaches remains to
be made.

Among related work by others, Chakravarty and Lock [10] jpsgd a virtual ma-
chine for functional logic languages that combines impletaton techniques from
functional and logic programming in an orthogonal way. T@iement logic language
features, they used traditional logic programming impletagon techniques based on
backtracking so that the operational completeness is ratred. The same is true for
the virtual machine used in the Curry implementation MCC][Zue to the native
code compilation used in MCC, the implementation is quifecieht but not opera-
tional complete due to the use of a backtracking strategy.

A minimal comparison of efficiency was addressed earliervéler, our effort is
mainly characterized by the simplicity of both the instiantset and the storage areas
and by the rigorous theoretical results on which the macisifeunded.

Acknowledgments

Pravin Damle made extensive contributions to the impleatent. Marius Nita and the
anonymous reviewers gave helpful suggestions on the pegsmmof the paper.

References

1. E. Albert, M. Hanus, F. Huch, J. Oliver, and G. Vidal. Opienaal semantics for declarative
multi-paradigm languagedournal of Symbolic Computation (to appea2p05.

2. S. Antoy. Definitional trees. IRroc. 3rd International Conference on Algebraic and Logic
Programming (ALP’92)pages 143-157. Springer LNCS 632, 1992.

3. S. Antoy. Optimal non-deterministic functional logicnaputations. InProc. Int. Conf. on
Algebraic and Logic Programming (ALP'9ages 16—-30. Springer LNCS 1298, 1997.

N

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

. S. Antoy. Constructor-based conditional narrowing?tac. of the 3rd International Confer-
ence on Principles and Practice of Declarative Programm{R§DP’01), pages 199-206,
Florence, Italy, Sept. 2001. ACM.

. S. Antoy. Evaluation strategies for functional logic gr@amming. Journal of Symbolic
Computation2005. To appear.

. S. Antoy, R. Echahed, and M. Hanus. A needed narrowingegtyaJournal of the ACM
47(4):776-822, 2000.

. S. Antoy and M. Hanus. Compiling multi-paradigm declsaprograms into Prolog. In
Proc. of the 3rd International Workshop on Frontiers of Canig Systems (FroCoS 2000)
pages 171-185, Nancy, France, March 2000. Springer LNC&.179

. S. Antoy, M. Hanus, B. Massey, and F. Steiner. An impleigon of narrowing strategies.
In Proc. of the 3rd International ACM SIGPLAN Conference omEiples and Practice of
Declarative Programming (PPDP 2001pages 207-217. ACM Press, 2001.

. S. Antoy and S. Johnson. TeaBag: A functional logic laggudebugger. IiProc. 13th

International Workshop on Functional and (Constraint) imBrogramming (WFLP 2004)

pages 4-18, Aachen (Germany), 2004. Technical Report AiB+D5, RWTH Aachen.

M.M.T. Chakravarty and H.C.R. Lock. Towards the unifamplementation of declarative

languagesComputer Language23(2-4):121-160, 1997.

J. C. Gonzalez Moreno, F. J. Lopez Fraguas, M. T. Hoi@bnzalez, and M. Rodriguez

Artalejo. An approach to declarative programming based mwaiting logic. The Journal

of Logic Programming40:47-87, 1999.

M. Hanus. The integration of functions into logic pragraing: From theory to practice.

Journal of Logic Programmingl9&20:583-628, 1994.

M. Hanus. A unified computation model for functional andit programming. IrProc.

24st ACM Symposium on Principles of Programming LanguaB&P('97), pages 8093,

1997.

M. Hanus, S. Antoy, M. Engelke, K. Hoppner, J. Koj, P.ddegu, R. Sadre, and F. Steiner.

PAKCS: The Portland Aachen Kiel Curry System. Availablattp: //www.informatik.

uni-kiel.de/ pakcs/, 2004.

M. Hanus and C. Prehofer. Higher-order narrowing witlinit@nal trees.Journal of Func-

tional Programming9(1):33-75, 1999.

M. Hanus and R. Sadre. An abstract machine for Curry antbitcurrent implementation

in Java.Journal of Functional and Logic Programmin$999(6), 1999.

M. Hanus and F. Steiner. Controlling search in dechkegtiograms. IiPrinciples of Declar-

ative Programming (Proc. Joint International SymposiumFR/ALP’98), pages 374—390.

Springer LNCS 1490, 1998.

M. Hanus (ed.). Curry: An integrated functional logiadaage (vers. 0.8). Available at

http://www.informatik.uni-kiel.de/"curry, 2003.

F. Lopez-Fraguas and J. Sanchez-Hernandez. TOY: Kipdtadigm Declarative System.

In Proc. of RTA'99 pages 244—-247. Springer LNCS 1631, 1999.

W. Lux and H. Kuchen. An efficient abstract machine forr@uin K. Beiersdorfer, G. En-

gels, and W. Schafer, editorfmformatik '99 — Annual meeting of the German Computer

Science Society (Glpages 390-399. Springer Verlag, 1999.

A. Middeldorp. Call by need computations to root-stdblen. In Proc. 24th ACM Sympo-

sium on Principles of Programming Languagpages 94-105, Paris, 1997.

A. Tolmach, S. Antoy, and M. Nita. Implementing funciiogic languages using multiple

threads and stores. Proc. of the Ninth International Conference on Functionabdgtam-

ming (ICFP 2004)pages 90-102, Snowbird, Utah, USA, Sept. 2004. ACM Press.

D.H.D. Warren. Higher-order extensions to PROLOG: hey heeded? IMachine Intelli-

gence 10pages 441-454, 1982.

