
A Certified Framework for Compiling and
Executing Garbage-collected Languages

Andrew McCreight Tim Chevalier Andrew Tolmach
Portland State University

{mccreigh,tjc,apt}@cs.pdx.edu

Abstract
We describe the design, implementation, and use of a machine-
certified framework for correct compilation and execution of pro-
grams in garbage-collected languages. Our framework extends
Leroy’s Coq-certified Compcert compiler and Cminor intermediate
language. We add: (i) a new intermediate language, GCminor, that
includes primitives for allocating memory in a garbage-collected
heap and for specifying GC roots; (ii) a precise, low-level specifica-
tion for a Cminor library for garbage collection; and (iii) a proven
semantics-preserving translation from GCminor to Cminor plus
the GC library. GCminor neatly encapsulates the interface between
mutator and collector code, while remaining simple and flexible
enough to be used with a wide variety of source languages and
collector styles. Front ends targeting GCminor can be implemented
using any compiler technology and any desired degree of verifi-
cation, including full semantics preservation, type preservation, or
informal trust.

As an example application of our framework, we describe a
compiler for Haskell that translates the Glasgow Haskell Com-
piler’s Core intermediate language to GCminor. To support a simple
but useful memory safety argument for this compiler, the front end
uses a novel combination of type preservation and runtime checks,
which is of independent interest.

Categories and Subject Descriptors D.3.4 [Processors]: Com-
pilers, Memory management (garbage collection); D.2.4 [Soft-
ware/Program Verification]: Correctness proofs

General Terms Languages, Verification, Reliability, Security.

1. Introduction
Programming in high-level, type-safe languages such as Haskell,
ML, or Java eliminates large classes of potential bugs, thus in-
creasing reliability while reducing implementation time and cost in
many application domains. Safe languages should be particularly
attractive for implementing systems that demand the highest pos-
sible levels of assurance, such as safety-critical device control or
high-security data processing, which are currently very expensive
to produce. But the appeal of these languages for high-assurance
applications is undercut by their reliance on large, complex runtime
systems, usually written in C or assembler. For example, the run-
time system of the Glasgow Haskell Compiler (GHC) [31] consists
of roughly 75,000 lines of C code. Such systems are very difficult
to verify, even informally.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
ICFP’10, September 27–29, 2010, Baltimore, Maryland, USA.
Copyright c© 2010 ACM 978-1-60558-794-3/10/09. . . $10.00

Garbage collection (GC) is a key runtime service that is often a
source of bugs. GC bugs can result from erroneous algorithms or
incorrect collector implementations, or because the intended inter-
face between the collector and the mutator—the application code
that makes allocation requests and performs reads and writes on
the heap—has been violated. Moreover, GC bugs are often difficult
to reproduce and diagnose. Garbage collection is therefore a good
application area for formal methods, including machine-certified
correctness proofs, and several proofs of collector implementations
have been developed in recent years [14, 22, 24, 36].

Bugs often occur because the collector-mutator interface has not
been explicitly specified, making it easy for implementers on either
side to violate intended invariants. Precise garbage collectors must
be able to access all roots, i.e., pointers from mutator data structures
into the heap, and to ascertain the layout, i.e., size and embedded
pointer positions, for all heap records. The collector proofs cited
above formalize the interface as seen from the collector’s side. But
there has been much less work on ensuring that the mutator obeys
its side of the interface.

In this work, we show how to encapsulate the key aspects
of the collector-mutator interface into the semantics of a generic
intermediate language, called GCminor, that can serve as the target
for compiling a range of garbage-collected languages, and as the
source for a machine-certified semantics-preserving compiler back
end. GCminor makes the collector-mutator interface both explicit
and precise. A client, i.e., a compiler front end, can use the back
end simply by generating code in GCminor and record layout
descriptions in a format that GCminor can accept.

GCminor supports many styles of uniprocessor memory man-
agers, including mark-sweep, copying, and generational collectors.
Any real collector implementation will modify the heap and pos-
sibly the values of root variables. However, GCminor’s semantics
completely hide these effects: from the perspective of mutator code,
the heap and reachable pointers do not appear to change at all dur-
ing a collection. This property makes it much easier to verify that
the mutator code obeys the GC interface. We enforce correctness of
root declarations using a block-based memory model together with
a novel pointer-clearing technique at the semantic level.

Our work extends Leroy’s Compcert compiler and Cminor in-
termediate language [16, 18]. Compcert compiles (most of) C to
PowerPC or ARM assembly code, and is proven to preserve the ob-
servable behavior of the program: its sequence of system calls and
final return value. The proof is certified using the Coq Proof Assis-
tant [2]. Cminor is an untyped, low-level imperative intermediate
language with C-like control constructs, which sits between Comp-
cert’s C-specific front end and its processor-specific back end. It
supports global and local memory, but not a heap.

We define GCminor as a small extension to Cminor that adds
statements for allocating in a garbage-collected heap and decla-
rations for specifying heap roots. We implement new Compcert
pipeline stages to translate GCminor programs into ordinary Cmi-
nor code, intended to be linked against a memory management li-
brary also written in Cminor. The existing Compcert back end com-

Cminor

PPC ARM

LowGCminor

GCminor

Core

Haskell

Dminor

GHC

Our work

Compcert

GC library

Java ML …

\
\

\
\

Figure 1. Overall architecture. Boxes represent languages; double
lines are semantics-preserving translations and dotted lines are
type-preserving translations. The GC library, written in Cminor, is
linked into the program during translation. The dashed boxes and
lines show possible future extensions.

piles the resulting complete Cminor program to machine code, and
the existing back end semantics-preservation proofs guarantee the
executable’s runtime behavior. The translation from GCminor to
Cminor is proven in Coq to be semantics-preserving relative to a
low-level specification of the memory management library, which
can be implemented by a range of bump-pointer allocators and
record-moving collectors. In particular, several existing proofs of
Cheney-style copying collectors, developed both by ourselves [22]
and others [14, 24], obey similar specifications. (We do not yet have
a machine-checked proof that the specification assumed by GCmi-
nor and the specification obeyed by our collector match precisely.)

To illustrate the utility of our extended Compcert back end, we
exhibit a prototype Haskell compiler. We implement a front end
that translates GHC’s Core intermediate language to another new
intermediate language, dubbed Dminor, and from there to GCmi-
nor. Dminor is a purely functional, typed language that guarantees
memory safety through a novel combination of runtime checks
and a rudimentary type system to distinguish pointers from non-
pointers. We have proven semantics preservation in Coq for most
of the Dminor-to-GCminor translation (including all the language
features that involve allocation). This result can be combined with
a type checker for Dminor and soundness proof for the checker to
show that any program that compiles without complaint is memory-
safe. To obtain a stronger guarantee, we could prove that the Core-
to-Dminor translation preserves well-typedness, thereby showing
that any well-typed Core program is memory-safe. (We do not have
machine-checked versions of these typing proofs.)

2. Compcert and Cminor
Our work forms a backwards-compatible extension to Version 1.4
of the Compcert system [16–18], which we review in this section.
Figure 1 shows the overall architecture of our framework.

Compcert and its correctness proof are structured as a pipeline
of small translation steps between intermediate languages, each
with its own operational semantics. The compiler itself is a purely

e ::= id local variable
| l integer or float literal
| addrsymbol(id) address of global symbol
| stackaddri address of stack frame entry
| op(~e) arithmetic operations
| load(ch,eaddr) memory load
| e1 ? e2 : e3 conditional expression

s ::= id = e; local variable assignment
| store(ch,eaddr,eval); store to global or stack frame
| [id =] call(e,~e); function call
| tailcall(e,~e); function tail call
| if e {~s1} else {~s2} conditional
| block {~s} delimited block
| loop {~s} infinite loop
| exit n; block exit
| switch e {−−→i : n} n; switched exit
| return [e]; return
| skip; no-op

f ::= fun(
−→
id) { stack n; vars

−→
id; ~s }

p ::= functions
−−−−→
id = f;

vars
−−−−−−−−−−→
id = initializers;

main id

Figure 2. Syntax of Cminor expressions (e), statements (s), func-
tions (f) and programs (p). A chunk (ch) specifies type, size, and
signedness of a datum.

functional Coq program that is automatically extracted to exe-
cutable OCaml code [34].

Cminor. Cminor (Figure 2) is the C-like intermediate language at
the heart of the Compcert compiler. A program consists of function
definitions and global data definitions. Functions have the usual
parameters and local variables. In addition, a function can place
data in an explicit stack frame, which is disjoint from storage for
the named variables. The size of a function’s frame is specified
in the function header; the expression stackaddri refers to the
ith byte of the current function’s frame. Other expressions are
standard. Statements are also largely standard, but include support
for structured control flow using nested blocks; an exit statement,
where exit n branches to the end of the (n+1)st enclosing block;
and a switch statement, which matches an integer discriminant
against a list of values and exits to the corresponding specified
enclosing block.

Cminor semantics. Cminor has a small-step operational seman-
tics in the style originally suggested by Appel and Blazy [3]. A
characteristic transition rule for Cminor statements has the form

G `CM (F, st, E, k, σ, M)
t−→ (F ′, st′, E′, k′, σ′, M ′)

Here G is the global environment, which maps function names to
definitions and global variables to memory locations; F is the cur-
rent function definition; st is the statement at the current program
point; E is the local environment, which maps parameters and lo-
cals to values; k is the continuation, which describes both the re-
mainder of the current function and the call stack, including the lo-
cal environments of suspended activations; σ points to the explicit
stack frame; M is the memory; and t is a trace of the observable
events (system calls) that occur as a side-effect of evaluation.

The meaning of a program is given by the (finite or infinite)
trace it produces when started from a suitable initial state, together
with its final result value (if it terminates). As usual, possible

unchecked errors during program execution are modeled by the
absence of a suitable transition rule, in which case evaluation is
said to “get stuck.”

A distinctive feature of the Compcert architecture is that all
intermediate languages in the pipeline, from C through assembly
code, share the same memory model [19] and notion of values.
The memory M is composed of an unbounded number of dis-
joint blocks, indexed by (mathematical) integers. Cminor uses one
statically-allocated block per global variable and one dynamically-
allocated block per stack frame. Each block has fixed upper and
lower bounds (signed mathematical integers) set at block-allocation
time. The block contains values indexed by byte offsets (signed
machine integers) within these bounds. Operations on the memory
include Mem.alloc, which (always) returns a fresh block, with ini-
tially undefined contents; Mem.high bound and Mem.low bound,
which return the bounds of a specified block; Mem.load and
Mem.store, which operate on a specified block, offset, and chunk;
and Mem.free, which renders a block inaccessible (but does not
permit the block number to be re-used). Chunks describe the
type, size, and signedness of memory being accessed; they include
int8unsigned, int32 and float64.

Values are described by the grammar

value := Vint n | Vfloat f | Vptr b n | Vundef

where n is a 32-bit machine integer (which can represent both
signed and unsigned numbers), f is a double-precision IEEE float,
and b ∈ Z is a memory block number. Vptr b n is a pointer
to offset n within block b. The null pointer is represented by
Vint 0. Vundef represents undefined values, e.g., the contents of
uninitialized offsets within a block.

Memory loads and stores only succeed within the boundaries
of a valid block. Also, it is not possible to cast one kind of value
to another (without applying an explicit coercion operator), so in
particular, Vptr values cannot be forged.

As a concrete example of a semantics transition rule, here is one
for the store statement:

G, E, M, σ ` ea → Vptr b n
G, E, M, σ ` ev → v

Mem.store M ch b n v = Some M ′

G `CM (F, store(ch,ea,ev), E, k, σ, M)
ε−→

(F, skip, E, k, σ, M ′)

Here the hypotheses of the form G, E, M, σ ` e → v invoke a
separate set of rules for evaluating expressions e to values v. If the
parameters to Mem.store are invalid, the rule will not apply, and the
program will get stuck. For statements such as store that do not
alter control flow, we define the next statement to be just skip; we
can then encapsulate all the details of inspecting the continuation to
determine what to do next within the transition rule for skip. The
trace annotation ε represents the empty trace.

Assembly code semantics. Other intermediate languages in the
Compcert pipeline use similar small-step semantic formulations.
For example, the assembly code semantics transition relation has
the form

G `AS (R, M)
t−→ (R′, M ′)

where R maps target machine registers to values, and G, M , and
t are as above. As with Cminor, the assembly code semantics
uses one statically-allocated block per global variable and one
dynamically-allocated block per stack frame. Note that because this
semantics uses the same models of values and memory as earlier
languages in the pipeline, assembly code programs will get stuck
if they attempt to forge pointers or access arbitrary parts of mem-
ory. Thus, “non-stuck” assembly programs enjoy a memory safety

property. This property is somewhat accidental, in the sense that if
Compcert elected to use a lower-level memory model for assembly
code—e.g., a flat array of bytes—then progress of assembly pro-
grams might not imply anything about memory safety.1

Semantics preservation. Semantics preservation proofs in Comp-
cert generally take the form of forward simulations. Let L1 and L2

be adjacent languages in the compiler pipeline, P1 be a program in
L1 and P2 be the corresponding program in L2. To show that P1

and P2 have the same observable behavior, we define a simulation
relation ∼ between the semantic states of L1 and those of L2, and
then show that this relation is preserved as execution of P1 and P2

progresses.

S1

S2

S'1

S'2

t

t

~ ~

*

In words, the diagram says that if state S1 is simulated by state S2,
and S1 can reach S′

1 by taking a single step, generating trace t, then
there exists a state S′

2 such that S2 can reach S′
2 by taking zero or

more steps also generating t, and S′
1 is simulated by S′

2. By induc-
tively applying this diagram over an entire L1 execution sequence,
we can prove the existence of an equivalent L2 sequence: that is,
any observable behavior of P1 can be mimicked by P2. Moreover,
if P2 is deterministic, we can also show that every P2 behavior is
equivalent to a P1 behavior, and hence that the translation preserves
specifications about the behavior; see Leroy [18] for details.

Memory embeddings. In many cases, a key part of the state sim-
ulation relation S1 ∼ S2 describes how the memory components
M1 and M2 of the two states are related. Depending on the transfor-
mation, memory blocks may be added, removed, or combined. For-
mally, the memory relation is specified by an memory embedding
φ from the blocks of M1 to addresses in M2 [19]. For a semantics
preservation proof to succeed, the embedding must guarantee that
successful loads and stores in M1 are simulated in M2.

3. GCminor
GCminor is our target language for generated mutator code. A pri-
mary design goal for GCminor is that it be as general-purpose
as possible. On the mutator side, we support both functional and
object-oriented languages. The principal restriction on clients is
that heap roots must be identified statically; we do not support
collectors that distinguish dynamically between pointer and non-
pointer values, e.g., by stealing a bit from each value to flag point-
ers, a trick that cannot be expressed in Compcert’s current memory
model. This limitation makes GCminor unsuitable as a target for
compilers that generate a single piece of object code for functions
that are polymorphic over both boxed and unboxed values. On the
collector side we support a range of “stop-and-collect” styles, in-
cluding both copying and mark-sweep collectors; we also include
hooks supporting generational collectors. We leave extension to in-
cremental and concurrent collectors for future work.

GCminor provides a well-defined interface for communication
between the mutator and collector. There are two main aspects to
the interface:

i. Garbage collection roots are mutator variables that hold point-
ers to heap records. The collector uses these as the starting

1 On the other hand, informally the existence of the observational equiva-
lence proof would still be very comforting, as it is hard to imagine that a
(non-malicious) compiler could systematically violate memory safety and
still generate correct code for all programs!

s ::= ... as in Cminor
|
−→
id = alloc(~i); heap record allocation

| rstore(ch,ebl,eoff,eval); store to heap record
| [id =] extcall(e,~e); call to external function

f ::= fun(
−→
id) { stack n; vars

−→
id; roots

−→
id; ~s }

Figure 3. Syntax of GCminor statements(s) and functions (f).
Expressions (e) and programs (p) are the same as in Cminor.

points of its search for reachable records; if a moving collec-
tor is used, it may also update root values. Roots are explicitly
declared in GCminor functions.

ii. The layout for a heap record tells the collector how long the
record is, and which fields contain pointers. As with roots,
pointer fields must be traced to find other reachable records,
and may also be updated by a moving collector. In our system,
pointer layout is always determined by the record header, but
the precise method by which this is done is an auxiliary param-
eter of the system, specified outside of GCminor itself.

Language. GCminor (see Figure 3) extends Cminor with three
syntactic features that support a garbage-collected heap. First, the
language is augmented with an alloc statement that allocates fresh
heap records of specified sizes, after performing garbage collection
if necessary. Second, each function definition is annotated with a
list of the variables (parameters and locals) that hold heap pointers;
the garbage collector uses these variables as roots for its traversal
of the live data graph within the heap. Finally, rstore is a new
variant of the memory store statement specifically for updating
heap records, which provides a hook for a write barrier. We also add
a syntactic distinction between calls to GCminor code and calls to
external functions, which lets the implementation of GCminor use
different calling conventions for these two cases (see Section 4).

The statement id1,. . .,idn = alloc(i1,. . .,in) allocates n
records with data sizes i1, . . . , in (counted in words) and assigns
pointers to them into id1, . . . , idn respectively. Each record is pre-
fixed by an additional one-word header, which is not included in the
size argument. The alloc statement does not initialize the records;
it is the responsibility of the mutator to keep the heap well-formed
by filling in the header and data fields consistently before the next
allocation, as described in more detail below. If there is insuffi-
cient heap memory for the requested records even after a collection,
the program’s behavior is undefined (semantically, it gets stuck); in
practice, the allocator issues a runtime error.

The alloc statement supports multiple simultaneous alloca-
tions; this is necessary to allow the mutator to build mutually re-
cursive records efficiently. If the GCminor implementation allo-
cates by bumping a free pointer (as with a copying collector), it
can combine the storage requirements of the multi-allocation be-
fore checking the heap limit. Thus, mutators can make natural use
of multi-allocation to obtain code that does just one limit check
per basic block, an important common optimization. At the same
time, keeping the allocations distinct at the GCminor level pre-
serves the possibility of switching transparently to an underlying
allocator that uses free lists (as in a mark-sweep collector).

Any allocation may invoke the garbage collector, which calcu-
lates the set of live heap records and reclaims the space used by
dead (garbage) records for use in subsequent allocations. More pre-
cisely, the collector computes the set of records that are reachable
via a chain of heap pointer dereferences starting from the roots
declared in the current function activation and all suspended ac-
tivations. Roots are either local variables or function parameters.
For simplicity, GCminor does not currently support roots in global

3 2 2 0

1 7

8 9

NULL

Descriptors

Records
Heap

Global store

Figure 4. Example of standard layout descriptor scheme

data regions or in explicitly-allocated stack frames; these restric-
tions would be straightforward to remove. Correct specification of
roots by the mutator is essential, because only pointers to reachable
records are guaranteed to remain valid after a collection. Mutator
code must obey the invariant that each declared root variable al-
ways holds either a heap record pointer obtained from an alloc or
null. To make this task easier, GCminor implicitly initializes all
local roots to null; the subsequent translation from GCminor to
Cminor can usually eliminate these initializations.

Record layout. Both the semantics of GCminor and the actual
implementation of the underlying collector need to know which
record fields contain heap pointers. We classify all values as having
either GC type Ptr, meaning a heap pointer, or GC type Atomic,
meaning an integer, float,2 or a pointer into the global static data
area. (The value Vint 0, which represents null, has both types.)
The collector needs to identify all fields that contain Ptr values.

Concretely, there are many possible ways to associate a record’s
header with its layout description: e.g., the size and pointer infor-
mation might be stored directly in bit fields within the header, or
indirectly in an auxiliary data structure pointed to by the header.
When designing GCminor, we considered hiding this choice from
clients, and, e.g., simply including a list of pointer field locations
as an additional parameter of the alloc statement. But we re-
jected this approach: in practice, clients need concrete control over
headers and descriptors, because they are often used for additional
purposes besides garbage collection. For example, our prototype
Haskell compiler (Section 6) uses an additional descriptor field to
encode the type of closures; similarly, object-oriented languages
often use the header to point to a class descriptor record or vtable.
Therefore, although GCminor requires that the record layout can
always be determined from the record header, it is flexible about
exactly how this connection is made. A record returned by alloc
always contains a header, but the mutator is responsible for writing
the header contents explicitly; if headers point to auxiliary static de-
scriptors, the mutator must provide explicit global data definitions
for those descriptors.

In general, therefore, the client must specify its desired layout
description scheme to our system. Abstractly, the necessary infor-
mation consists of two functions:

size : memory → value → nat
ptrP : memory → value → nat → bool

where size M h gives the total length (in words) of the record with
header h in memory M , and ptrP M h n returns true if and only if
field n of the record (numbered from 0) with header h in memory
M contains a heap pointer. Concretely, the system requires

i. Cminor code macros size and ptrP that implement size M
and ptrP M within the collector code.

ii. A Coq logical predicate
layout desc : memory → value → nat → (nat → bool) → Prop

2 Our proofs do not currently cover floats, because the Compcert v1.4
memory model does not permit us to write a collector that manipulates ints
and floats uniformly as raw bytes.

Source code (Haskell notation, but strict):

f xs a = case xs of
[] -> []
x:zs -> (x+a):(f zs a)

GCminor code:

functions f = fun (xs,a) {
stack 0; vars x,y,ys; roots xs,y,ys;
if xs = null {
return null;

} else {
ys = call(f,[load(int32,xs+4),a]);
x = load(int32,xs);
y = alloc(2);
rstore(int32,y,-4,cons_header);
rstore(int32,y,0,x+a);
rstore(int32,y,4,ys);
return y;

}
}; ...
vars cons_header = {int32 2, int32 1}; ...

Figure 5. Possible GCminor code for a simple function over lists.

where layout desc M h s p holds exactly when s = size M h
and p = ptrP M h. The formal semantics of GCminor is param-
eterized by this predicate.

iii. A Coq lemma showing that size and ptrP are consistent with
layout desc, and that they are invariant under changes to the
heap; the correctness proof for the collector is parameterized
over this lemma.

Standard scheme. To let clients use our system without doing ad-
ditional proofs, we provide a standard instantiation of these com-
ponents for a particular, simple layout descriptor scheme. In this
scheme, field order in records is constrained so that all Atomic
values come before any Ptr values. (This ordering is convenient
for describing closure records and simple class-based objects with-
out inheritance.) Record layouts can thus be described by a simple
two-element descriptor: the first element gives the total number of
words in the record, and the second gives the number of words in
the atomic prefix. We store these descriptors in global static mem-
ory; each record header is a pointer to such a descriptor. Figure 4
gives an example. The corresponding Cminor GC macro imple-
mentations are

size h := load(int32,h)
ptrP h n := load(int32,h+4) <= n

and the logical predicate is defined by

Mem.load int32 M b o = Some (Vint s)
Mem.load int32 M b (o+4) = Some (Vint a)

layout desc M (Vptr b o) s (λn.a ≤ n)

Example Figure 5 shows an example of GCminor code, such as
might be produced for a simple recursive function over integer lists.
We assume that lists are represented by two-word cons cells in the
usual way, with the empty list represented by the null pointer.
The global cons header gives the layout of a cons cell using the
standard layout descriptor scheme.

Formal semantics. GCminor’s small-step transition rules have
the form

G `GCM (F, st, E, k, σ, M, A)
t−→ (F ′, st′, E′, k′, σ′, M ′, A′)

` M1 : A
enough mem R M1 s

R = env root values F.roots E ∪ cont root values k
(M2, b) = Mem.alloc M1 (−4) (4 · s)
E′ = env clear non roots A F.roots E

k′ = cont clear non roots A k
E′′ = E′{x 7→ Vptr b 0}

A′ = A ∪ {b}
G `GCM (F, x = alloc(s), E, k, σ, M1, A)

ε−→
(F, skip, E′′, k′, σ, M2, A

′)

Figure 6. GCminor alloc semantics transition rule

where most of the components are the same as in the rules for
Cminor (see Section 2). In addition to global data and stack frame
blocks, the memory M now contains a block for each heap record
allocated so far. The set of these blocks is recorded in the new state
component A. Continuations k now record the root sets as well as
the environments of suspended function activations.

Representing each heap record by an entire fresh memory block
is essential to abstraction. It makes it impossible to forge a pointer
to a record, and prevents order comparisons (e.g., ≤) between
pointers into different records. The former ensures that records un-
reachable from roots are truly inaccessible, while the latter allows
GCminor to hide any movement of records that occurs in the imple-
mentation. Neither would be possible in a conventional flat memory
model.

As noted above, it is the mutator’s responsibility to initialize the
header and fields of allocated records consistently, so that every
field designated in the header as a Ptr contains a valid pointer
into the set of heap records A (or is null). This well-formedness
property is captured by the predicate heap record ok, defined as:

Mem.load int32 M b (−4) = Some h
layout desc M h s p

is atomic A h
Mem.high bound M b = 4 · s

fields ok A M b s p

heap record ok A M b

Here the is atomic clause asserts that the header h is not itself a
heap pointer, and fields ok asserts that each field in record b has the
correct GC type according to the pointer map p.

The mutator has some flexibility in initializing records, but
it must ensure that every record is well-formed at any potential
collection point, i.e., at any execution of an alloc (recall that we do
not support incremental or concurrent collection). This is reflected
in the semantics rule for alloc, shown in Figure 6; for simplicity,
we give a version that allocates just one record at a time. This rule
relies on a number of auxiliary predicates, which we describe in the
remainder of this section. We write ` M : A as an abbreviation for
(∀a ∈ A, heap record ok A M a), i.e., the entire heap A is well-
formed in M . Note that a well-formed heap is necessarily closed:
i.e., each Ptr field in each heap record points to some other heap
record.

The enough mem clause asserts that in the current program state
there is still enough space to add a record of size s to the heap.
The definition of this predicate depends on the style of memory
manager being used. For a compacting collector and bump-pointer
allocator, we can use the following definition, where the maximum
allowed heap size is a symbolic parameter of the overall semantics.

` M : A′

∀b, (Vptr b 0) ∈ R ⇒ b ∈ A′

sizeofM (A′) + s ≤ maximum heap size
enough mem R M s

This predicate doesn’t actually compute the live heap; instead, it
just asserts that there exists some well-formed, and hence closed,
heap A′ that contains all the root values and is small enough to
permit the desired allocation. In fact, A′ will be a subset of the A
in the alloc rule, but we don’t need to use this fact explicitly. The
root value set R is calculated as the union of the root values in the
current environment (env root values) and for any environments
stored within the current continuation (cont root values).

If enough mem does not hold, the alloc rule is not enabled, and
the program gets stuck. (An alternative approach would be to add
a companion rule stating that when there is insufficient memory,
the alloc statement issues a runtime error message and enters an
infinite loop representing a fatal exception. Unfortunately, it would
be difficult to preserve these semantics through the remainder of the
compilation pipeline, because subsequent compiler transformations
can actually decrease the size of the live heap, so some allocations
that fail at the GCminor level would succeed in the generated code!)

Mem.alloc allocates a fresh block in Compcert’s underlying
memory model, giving it appropriate lower and upper offset bounds
(in bytes, and allowing for the header). A pointer to the first data
word of the resulting block is assigned to x.

As noted above, GCminor hides any heap and environment
changes to reachable pointers caused by a relocating collector.
However, in the formal semantics, collection does have an observ-
able effect on any non-root variables containing heap pointers: it
clears them (i.e., sets them to the value Vundef). To keep the GCmi-
nor semantics deterministic, pointers are cleared at each alloc
operation, both in the current environment (env clear non roots)
and in any environments stored within the current continuation
(cont clear non roots).

Well-behaved GCminor programs that specify their roots cor-
rectly will never observe pointer clearing, but ill-behaved programs
that attempt to dereference a pointer fetched from a non-root vari-
able will get stuck. For example, in the code of Figure 5, if we
had omitted the declaration of xs as a root, the value of xs would
have been cleared by an alloc within the recursive call, and the
subsequent load into x would have gotten stuck. Since our seman-
tics preservation proof for the GCminor-to-Cminor translation only
needs to hold for non-stuck programs, it can ignore programs that
mis-specify roots, which is essential to making the proof work. Of
course, GCminor’s actual implementation doesn’t clear the non-
accessible roots; this would be pointless, since correct programs
wouldn’t be able to tell the difference anyway.

4. GCminor Implementation
GCminor is implemented by translation to Cminor. This translation
involves two key steps:

i. GCminor alloc statements are translated into calls to a fixed
library function, written in Cminor, that performs the allocation
after garbage collecting if necessary. (This call could be inlined
for efficiency.)

ii. Code is inserted around each function call (including alloca-
tion calls) to save and restore live roots into in-memory stack
frames. If the collector is invoked, it examines this data struc-
ture to find roots.

The remainder of the GCminor language is essentially identical to
Cminor, so its translation is trivial.

2 1[x] [y] [z]f g h...

Figure 7. Stack layout example. We suppose that f, with two root
variables x and y, calls g, with one root variable z, and that g in
turn calls h.

Allocation. Translating alloc statements to calls is straightfor-
ward. Although the translation does not commit to a specific col-
lection method, it does assume a bump-pointer allocator (such as in
a Cheney collector). With this kind of allocator, it is more efficient
for the mutator to make a single large allocation request than a se-
ries of small ones, so the translation of a multi-record alloc sums
the requested sizes, requests a single record, and then updates the
target variables with appropriate offsets into the resulting record.

Roots. The translation of root declarations is more complex. The
fundamental difficulty is that the collector must be able to find—
and, for a moving collector, also update—all roots for all functions
suspended on the current call stack. But Cminor provides no direct
access to local variables in suspended activations (unsurprisingly,
since C doesn’t require such a feature).

Our solution is to use a “shadow stack” [9, 15] in which live
root values are stored in memory across calls. Specifically, the
translation generates code to dump the local live roots to the stack
before each call and restore them after each return. Roots are stored
in a record in the function’s explicit stack frame. Each root record
is linked to that of its caller, so that the entire chain of root records
can be traversed given a pointer to the most recent record, which is
passed as an extra argument to every call (but not to extcalls).
Figure 7 shows an example of the stack layout at the Cminor level.

As an important optimization, we store only live roots in root
records. GCminor constrains root variables to contain valid roots
at all times, so it would be safe to record all roots, but this could
prevent some garbage from being collected. We also have some
minor optimizations for cases when no local variables need to be
stored on the stack.

LowGCminor. To subdivide the implementation and proof effort,
we introduce LowGCminor, a further intermediate language be-
tween GCminor and Cminor. LowGCminor is syntactically iden-
tical to GCminor, except that there is no per-function list of roots;
instead, each alloc statement and non-tail call to an internal func-
tion has an additional component listing the set of live roots at this
particular site. This set can be thought of as an abstract form of the
GC root tables used by many collectors. As in GCminor’s seman-
tics, any heap pointers omitted from the root set are (conceptually)
cleared by a collection.

Cheney collector. Our actual GCminor implementation currently
uses a simple Cheney-style copying collector.3 The collector uses
two large fixed semi-spaces declared in Cminor’s global data re-
gion. The allocation pointer and the limits of the current and reserve
spaces are also held in globals.

Other collector architectures. Changing to a different collector
would have only modest impact on the structure of the GCminor-
to-Cminor translation. A collector (e.g., mark-sweep) that doesn’t
move records still needs to read roots from all suspended functions,
but doesn’t need to change them. For such a collector, it would be
unnecessary to restore values from the root records after returning
from calls. For an allocator that uses free lists rather than pointer

3 We thank Xavier Leroy for providing collector code on which ours is
closely based.

bumping, we would want to generate separate allocation requests
for each record in a multi-allocation. For a generational collector,
the translation would need to generate suitable write barrier code at
rstore statements.

5. Semantics preservation
Our overall semantics preservation proof for the GCminor-to-
Cminor translation is conducted in the same style as the existing
Compcert proofs. It assumes correctness of the allocation function
with respect to a low-level specification. The proof has two parts,
bridged by LowGCminor. We describe each part in turn, and then
discuss the allocator specification and how it can be realized.

LowGCminor. The essence of the translation from GCminor to
LowGCminor is an analysis that computes the liveness of root
variables at each point where a root record must be constructed. The
proof that the translation preserves semantics must show that no
live pointers are omitted, i.e., that the liveness analysis is correct.4

The simulation relation for the proof is very simple: GCminor state
S1 and LowGCminor state S2 are related only if they are identical
except for their local environment components E1 and E2, which
need only agree on the live variables L computed for that state:

E1 ∼L E2 ::= ∀x ∈ L. ∀v. E1(x) = v → E2(x) = v

For technical reasons, LowGCminor requires that values written
to root records be valid pointers. The proof of this invariant fol-
lows easily from GCminor’s invariants and from the insertion of
explicit null initializers for variables that are used before they are
assigned. The simulation proof is particularly simple because each
LowGCminor program contains exactly the same statements as its
GCminor original, except for the added initialization code.

Cminor. The semantics preservation proof for LowGCminor to
Cminor is much harder. First, the structure of source and target
code differs substantially at allocations and call sites, where the
Cminor code introduces new statements to invoke the allocation
library function and to copy root variables to and from the shadow
stack explicitly. The invariant relation between LowGCminor and
Cminor states must account for the addition of explicit root records
in stack frame memory at the Cminor level, and extra parameters
and local variables in the environment. Furthermore, because we
reason using a precise model of machine arithmetic, we have the
burden of proving that none of the generated code (such as the save
and restore code) causes arithmetic overflow.

Second, and more fundamentally, there is a major change in
the representation of the heap. In (Low)GCminor, each allocated
heap record is represented by a pointer to an independent memory
block, and these records appear never to move. In Cminor, the
actual implementations of the allocator and collector are exposed.
For example, if a Cheney copying collector is used, records are
represented by pointers into the middle of a single large block
that holds the entire current semi-space, and they can move at any
collection.

The invariant relation between (Low)GCminor memory and
Cminor memory is thus a dynamic isomorphism over live blocks,
described by a memory embedding φ that maps GCminor addresses
to Cminor addresses. Initially, φ is empty. It is extended every time
an object is allocated: at the GCminor level the object is stored in a
fresh block, while at the Cminor level it is stored at a free location
in the heap block. When a collection occurs, the old embedding
can be composed with a partial map describing the movement (and
possible freeing) of each object to create a new embedding.

4 Our current proof makes this easy by omitting support for loops, which
our example front end doesn’t need.

(R, M1, A) ∼φ (P, M ′
1)

` M1 : A
enough memory R M1 s
∀v, v ∈ R ⇒ is pointer v

∃M ′
2, b

′, ofs′, φ′.„
G `CM (F, x = call(alloc,[P, s]), E, k′, σ, M ′

1)
ε−→

(F, skip, E{x 7→ Vptr b′ ofs′}, k′, σ, M ′
2)

«
∧ (R, M1, A) ∼φ′ (P, M ′

2)
∧ free block φ′ M1 M ′

2 b′ ofs′ s
∧ stack preserve mem k′ m′

1 m′
2 P

∧ nobj preserve φ φ′

Figure 8. Cminor-level allocator specification, with roots in the
shadow stack P .

To manage this part of the proof, we factor out the behavior
of the allocation function into an abstract specification, which is
then refined several times until we reach a low-level description
specialized to a Cheney collector. We have proved correctness of
the translation relative to each refinement level of this specification.

Allocator specification. The allocator specification at each refine-
ment level describes the behavior of the Cminor-level alloc func-
tion call corresponding to the GCminor allocation in Figure 6. The
alloc function may choose to perform a GC; the assumptions of the
specification ensure that the GC will not crash when run, while the
conclusion describes the state after the allocation is successful.

At the highest level, the alloc specification describes the effect
of collection on local variables in the current environment and con-
tinuation. For brevity, we avoid describing this specification level
and instead concentrate on the next refinement level, where roots
are assumed to be stored in the shadow stack. This specification,
given in Figure 8, is the most important part of the interface be-
tween GCminor and the GC. This style of specification is abstract
enough to describe a range of collectors, including those that move
or coalesce heap records, and has been used successfully in prior
work [14, 22, 24] to verify copying, mark-sweep and incremental
copying collectors.

The core of the specification is the simulation relation ∼φ. The
initial GCminor state (represented by the root values R, GCminor
memory M1 and set of objects A) must be related to the initial
Cminor state (the shadow stack, viewed as a list of root frame ad-
dresses P , and the Cminor memory M ′

1) via the embedding φ,
written as (R, M1, A) ∼φ (P, M ′

1). This relation states that the
the root values in R are represented in a linked list of arrays with
nodes given by P , which ensures the correctness of root restora-
tion. It also requires that M1 is embedded in M ′

1 via φ, without
overlapping in memory. The precise definition of the memory em-
bedding depends on the collector being used, and will include the
private data needed by the GC. The other preconditions come di-
rectly from the GCminor semantics (the heap must be well-formed
and there must be enough free memory) or from LowGCminor (all
roots must be valid).

The first part of the postcondition asserts that the call to the
function alloc will succeed and return to the state including mem-
ory M ′

2. alloc is called with two arguments, a pointer to the linked
list of saved roots (the first element of P) and the number of words
to be allocated, s. The allocation function will return a pointer
Vptr b′ ofs′ to a fresh record 4s bytes long, by setting the local vari-
able x to the start of the record.

After the collection, the embedding φ has changed to φ′. How-
ever, the same fragment of GCminor state (R, M1 and A) is rep-
resented in the new Cminor memory M ′

2. From the client’s per-
spective, this means that the roots and memory have not changed.

From the collector’s perspective, the use of a new embedding al-
lows records to be moved at the Cminor level.

The free block predicate states that there is enough unallocated
space at address Vptr b′ ofs′ to hold s words of memory. The defi-
nition of this predicate depends on the collector being used. Taken
together with the ∼φ′ injection, free block φ′ M1 M ′

2 b′ ofs′ s en-
sures that when we extend M1 with a fresh object block b to pro-
duce a new memory M2 at GCminor level (see Figure 6), we will
be able to extend φ′ to a fresh embedding of M2 into M ′

2 that maps
b to the address Vptr b′ ofs′.

Finally, the specification ensures that the GC does not damage
other parts of memory. The predicate stack preserve mem states
that the length and content (aside from the saved roots) of Cminor
stack frames must be unchanged from M ′

1 to M ′
2. This ensures that

the collector does not change the portion of the stack frame visible
at the GCminor level. The predicate nobj preserve states that the
GC does not move any non-records (i.e., stack frames and global
memory).

Cheney collector In this section we describe the further refine-
ment of the alloc specification for a typical Cheney copying col-
lector, by defining φ and free block. A Cheney collector stores all
objects in a single semispace block objb. A free pointer free points
to the next unused location in objb and the limit pointer limit points
to the end of objb. The injection φ maps GCminor blocks that
contain objects to offsets within objb, and other GCminor blocks
directly to Cminor blocks (disjoint from objb). For this injection
to be well-formed, no two pieces of GCminor memory can be
mapped onto a single piece of Cminor memory. For free block, a
Cheney collector requires that free ≤ Vptr b′ (ofs′ − 4) and that
Vptr b′ (ofs′ + 4s) ≤ limit.

Cheney collection causes reachable objects to be copied to a
new semispace block. Generating the new injection φ′ after a col-
lection is the key part of the preservation proof. At the concrete
level, the movement of objects by the collector can be given by an
isomorphism ϕ from the initial location of a reachable Cminor ob-
ject to the final location of that object. The mapping φ′ from GCmi-
nor objects in M1 to the new Cminor objects in M ′

2 can then be
defined as the composition of the old mapping φ with ϕ, as shown
by the following diagram:

M1

M'1 M'2

Φ

φ

φ ◦ Φ

In other words, if b is a reachable GCminor object, then φ′(b) =
ϕ(φ(b)). φ(b) produces the initial location of the concrete repre-
sentation of b, and ϕ produces the final concrete location of that
object. If b is unreachable (and thus was not copied by the collec-
tor), then φ′(b) is undefined.

Low-level collector proof. We have partially verified the safety
and completeness of our Cheney copying collector (Section 4)
written in Cminor using separation logic tactics [21], but have
not yet formally connected this separation-logic specification to
the one given in Fig. 8. In order to connect this proof to the rest
of our system, we must show that the concrete specification of
the collector matches the abstract specification given here, verify
termination of the collector, and formally relate the separation-
logic proof system to the style of specification shown here (where
separation facts must be made explicit).

6. Case Study: Haskell to Dminor to GCminor
To assess the utility of GCminor as a compilation target for an
existing programming language, we have built a prototype compiler
for a subset of Haskell [26]. Our compiler supports most of the
features of Haskell 98, except for floating point, file I/O, arrays,
and seq.

Compiling Haskell to a low-level, call-by-value language such
as GCminor involves a number of major program transformations,
including an implementation of lazy evaluation using force and
delay constructs [1, p. 261], conversion of higher-order functions
and delayed thunks to first-order functions and closure records [4],
and conversion from an expression-based, purely functional form
to a statement-based, imperative one. Although a number of com-
pilers have compiled Haskell by transformation to a strict language
with explicitly lazy constructs [5, 6, 11, 12], currently GHC in-
stead relies on specialized runtime system support for laziness [27].
Demonstrating that our minimalist runtime system is adequate to
run Haskell programs is an important step towards increasing the
overall assurance of Haskell-based applications.

The starting point of our compilation pipeline is External
Core [35], a text-based representation of code in GHC’s interme-
diate language Core [28]. Core is based on System FC , which
is an implicitly lazy language that extends System F with alge-
braic data types, a let construct, and type equality coercions [30].
Our compiler takes as input a Core program that has already been
heavily optimized by GHC’s front end. It then passes the program
through the transformations described above, each of which pro-
duces a program in a different call-by-value intermediate language.
These transformations expose further opportunities for standard
functional language optimizations such as uncurrying, let-floating,
identifying functions that do not require closures, and inlining, as
well as removal of redundant force and delay operations. Finally,
the pipeline produces a GCminor program.

Memory safety. In addition to demonstrating that GCminor is a
reasonable compilation target for a sophisticated high-level source
language, this prototype illustrates how our framework can provide
useful assurance guarantees short of full semantics preservation.
Building a fully semantics-preserving compiler accepting Haskell
source would be a daunting task (even if there were a generally-
accepted formal semantics for Haskell), especially since we would
need to prove the correctness of the optimizations that GHC applies
to Core. Instead, we lay the groundwork for an assurance argu-
ment based on a combination of semantics preservation proofs and
weaker, but much easier, type soundness proofs. Specifically, we
select one of our intermediate languages, called Dminor, to serve
as the boundary between the two kinds of proofs.

Dminor has a type system, which is designed to be sound:
well-typed programs don’t get stuck.5 Semantics preservation for
the remainder of the pipeline guarantees that a non-stuck Dminor
program yields a non-stuck assembly language program. Finally,
Compcert’s definition of assembly language semantics (Section 2)
implies that a non-stuck program is memory-safe, in the sense that
it cannot forge pointers or dereference memory outside of properly
allocated stack frames or global memory regions. Combining these
properties yields a memory safety guarantee for the entire back
end. By typechecking the Dminor code generated by our front
end, we obtain a memory-safe Haskell compiler with “fail-stop”
behavior: any program that compiles successfully will be memory-
safe. In fact, we have also implemented type-checkers for Core
and our other intermediate languages, which we use to check type-
correctness at each compilation stage; this technique is an excellent

5 Strictly speaking, even a well-typed program might get stuck unless the
Dminor analogue of enough mem holds at every allocation point.

way to find compiler bugs. Of course, if the front end is bug-free, it
should always generate well-typed Dminor code. We lack machine-
checked soundness proofs for the type systems of our languages,
but we believe that doing these proofs would be straightforward.
We also expect that the various transformations and optimizations
performed along the pipeline all preserve types, although for the
most part we do not have formal proofs. We are confident that these
type preservation results could, with sufficient effort, also be proved
within Coq, obviating the need for compile-time typechecking of
the intermediate forms.

Minimalist type system. Unfortunately, while proofs about types
are typically much easier than proofs of semantics preservation,
they may still be quite hard if the type systems involved are com-
plex. Standard type systems that can typecheck closure-converted
code and record initialization require features such as existential
types and initialization types [23]. Explicit forces require strong
updates, which would add yet more complexity to our type system.
Moreover, in our compiler, these features would need to be added
to the already very complex System FC . We therefore adopt a dif-
ferent approach, and give the intermediate languages in our pipeline
extremely rudimentary type systems that serve only to distinguish
which local variables hold heap pointers and to describe the pointer
layout corresponding to each heap record tag. These type systems
are about as minimalist as they can be while still supporting static
identification of roots at the GCminor level.

This approach simplifies both engineering of type checkers and
proofs involving types. However, our type systems are so weak that
they can neither distinguish function closures from ordinary data
records nor track which algebraic data type a data record belongs
to. If our front end had bugs, it could produce Dminor programs that
tried to apply data records as functions or inspect function closures
with case expressions; yet, these programs would still be well-
typed. Thus, in order to prove the type systems sound, we must
add additional runtime checks at closure applications and some
record accesses, so that these nonsensical programs yield a checked
runtime error. Checks never fail in code generated by a bug-free
compiler, but they may increase execution time even so. We think
that this idea of trading off verification complexity against runtime
performance has some merit, but we stress that the use of dynamic
checks is quite independent of the remainder of our framework.

Dminor syntax and semantics. Dminor (Figure 9) is a low-level,
first-order, strict, expression-based, pure functional language with
a very simple type system. Its design is a compromise between ease
of typability and simplicity of translation. Including closure appli-
cation and thunk forcing as primitive operations in the language
facilitates typability, while using almost the same set of underlying
pure operations as GCminor simplifies translation.

The language divides expressions into two categories: pure and
monadic [13]. Pure expressions correspond directly to GCminor
expressions, with the addition of a separate rload operator to read
from heap objects (which avoids the need to type address arith-
metic) and the omission of stackaddri (as there are no explicit
stack frames). Monadic expressions may have effects. They can ap-
pear only in tail position or in a let; all other subexpressions must
be pure. This syntactic structure sequences effectful operations ex-
plicitly and simplifies subsequent translation to GCminor.

Dminor supports just three type constructors: unboxed integers
(Int), pointers to heap records with unknown tag (�, pronounced
“box”), and pointers to heap records of known tag, written 〈c〉
where c is a constructor tag (explained below). Any value of type
〈c〉 can be statically coerced to type �. In code translated from
Core, most variables have type �; only variables explicitly declared
as unboxed integers (type Int# in GHC) or pointers to static global
memory such as string literals (type Addr# or Ptr in GHC) are

t ::= Int integer
| � pointer to record
| 〈c〉 pointer to record with tag c

e ::= . . . (as in GCminor)
| rload(ch,erecord,eoffset) load from record field
| stackaddri address of stack frame entry

m ::= e pure expression
| app(e,~t → t,~e) closure application
| call(f,~e) internal function call
| let [id :: t =] extcall(f,~e) in m external call
| let id :: t = force e in m thunk evaluation
| letrec

−−−−−−→
id = c(~e) in m record binding

| case e of
−−−−−−−−→
id :: 〈c〉 : m case analysis

| if e then m else m conditional
| let id :: t = m in m monadic binding

f ::= fun(
−−−→
id :: t) { vars

−−−→
id :: t; m }

p ::= functions
−−−→
id = f;

tags
−−−→
c 7→ ~t;

closuresigs
−−−−−−−−→
c 7→ (~t → t);

vars
−−−−−−−−−→
id = initializers;

main id

Figure 9. Syntax of Dminor types (t), monadic expressions (m),
functions (f), and programs (p). Atomic expressions (e) are the
same as for GCminor, except as noted. Record constructor tags (c)
are described in the text.

given type Int. Fortunately, GHC does not permit polymorphism
over unboxed values, so the boxity of a value is always apparent.
We introduce record types while doing closure conversion and
through static analysis to make the types of certain �-typed values
more precise (eliminating the need for some case expressions).
All bindings are statically typed, making it possible to compute the
type of any expression without an environment. No identifier can be
bound twice in the same function; this simplifies formalization of
the semantics and eases translation to GCminor, which lacks nested
scopes.

The semantics of most Dminor expressions are standard or
similar to their GCminor equivalents; we describe those that are
not. All memory is allocated by letrec expressions. Evaluating

letrec x1 = c1(e11, . . . , e1p1)
. . .
xn = cn(en1, . . . , enpn)

in m

simultaneously allocates n records such that record j has tag cj

and fields given by the values of pure expressions ej1, . . . , ejpj .
The bindings are recursive in the sense that the xi (but not loads
from them) may be mentioned in the ejk.

Closures and thunks (which are simply closures taking zero
arguments) are constructed just like ordinary data records; the only
difference is that the signature ~t → t of the closed-over function is
included in the closuresigs list. The semantics of force reflect
Haskell’s call-by-need semantics: forcing a thunk means evaluating
it, then overwriting the pointer to the thunk with a pointer to the
result. The latter step means changing a record’s tag, an operation
which would have complicated Dminor’s type system if expressed
explicitly in the language.

Every record, whether it is a closure record or a data record,
has two header fields (meaning that the size of every record incor-
porates two extra words in addition to the sizes of its fields). One

word—the record tag—is, abstractly, an index into the list tags
of record layouts. The tag plays two roles for any given record:
first, it points to layout information that the collector uses, as de-
scribed in Section 3; second, if the record is a data record, then a
case expression that deconstructs it will check its tag, and if the
record is a closure record, then an app expression that applies it
will check its tag to obtain the closure’s type signature. The second
word contains the code pointer for closure records and goes un-
used for data records (to obtain uniformity, we pay an extra word
per data record). The translation from Haskell to Dminor assigns
a unique tag to each declared algebraic data type constructor and
assigns a unique encoding to each possible closure type signature.

A case expression dispatches on the record’s tag value. The
type of a case discriminant x is normally �. Within an arm of the
form x′ :: 〈c〉 : m, identifier x′ is bound to the value of x and given
the refined type 〈c〉; this allows fields of x to be accessed within the
arm by rload(ch,x′,offset), which is well-typed if offset and ch
are valid for the record layout corresponding to c. Dminor’s type
system is not powerful enough to check that a case expression
is exhaustive; a case expression in which no listed constructor
matches the discriminant denotes a runtime error. As a result, the
compiled code may test more alternatives than would be required
if cases were known to be exhaustive.

In the expression app(op, ~t → t, args), the operator op should
evaluate to a pointer to a closure record, whose first field is a (top-
level) function f , which is invoked with the values of arguments
args and (implicitly) the closure record itself. The second field
~t → t is the expected type signature of the function being applied.
At runtime, the static signature is checked against the signature
associated with the operator closure record’s tag; if the record has
an unexpected signature, or isn’t a closure record at all, a runtime
error is raised. We chose to keep closure application as a primitive
operation in Dminor in order to make the language typable without
introducing existential types or more runtime checks. Dminor also
includes calls to known (top-level) functions; these do not require
a runtime type check. By default, the translation from Haskell
must compile function applications as closure applications, but
static analysis can transform some of these applications to known-
function calls.

Translation to GCminor. The translation of Dminor to GCminor
is largely straightforward. Expressions must be converted to state-
ments; the most complicated translation is from case expressions
to nested switch, block, and exit statements, but this is similar
to existing Compcert code for compiling C switch statements, so
we omit further details here. Each letrec expression is translated
to an alloc statement followed by a series of rstore statements to
initialize the headers and fields. The scopes of locally-bound iden-
tifiers are widened to the entire function; this is safe because no
identifier is bound twice in a Dminor function. Identifiers of type
� or 〈c〉 are declared as roots of the GCminor function.

Tags and closure signatures are made concrete as follows. Each
tag c is converted to an offset o into a static global descriptor array.6

We write dbase for the base of this array. At runtime, a record
header contains a direct pointer to the descriptor (that is, dbase+o).
The descriptor has three words: number of fields, number of atomic
fields, and encoded closure signature type s (explained below). This
format is compatible with the standard descriptor scheme described
in Section 3. (The translation will reorder fields as necessary to
keep atomic fields first.)

6 For historical reasons, our current system actually uses a version of Dmi-
nor in which the concrete descriptor array is already present; the Dminor
type checker is responsible for confirming that the abstract and concrete
representations of tag and closure signature information agree.

Program GT GM CT/GT CM/GM
circsim 1.81 672 3.94 4.98
clausify 1.04 228 1.56 2.11

cryptarithm1 2.04 1029 1.46 1.68
cse 4.26 <1 5.42 1.71
gcd 11.89 5209 1.91 2.33

hartel comp lab zift 1.09 405 1.98 1.97
hartel ida 1.19 364 1.62 2.06

hartel sched 3.31 1057 1.33 1.91
hartel transform 1.87 738 1.78 1.86
hartel typecheck 1.48 330 1.54 2.21

knights 4.62 170 0.88 4.59
lambda 3.16 634 1.82 2.10

last-piece 1.92 411 2.36 4.95
lcss 1.59 625 3.64 1.97

multiplier 1.55 464 2.50 1.76
power 41.1 13388 1.65 2.11

primetest 233 74750 2.82 3.62
rewrite 1.58 268 2.23 4.86
Mean 2.04 2.49

Figure 10. Comparing time and space usage for GHC and Haskell Comp-
cert. For each program, the “GT” column shows its runtime in seconds
and the “GM” column shows its allocation (in megabytes) when compiled
by GHC. The “CM/GM” column shows the ratio of memory allocated by
each Compcert-compiled program, compared to the GHC baseline. The
“CT/GT” column shows the same ratio, but for time instead of memory.
“Mean” shows the geometric mean ratios over all 18 programs.

The GCminor code generated for a case statement dispatches
on the record’s tag value, which must be retrieved from the header
by subtracting dbase; it is impractical to dispatch directly on the
descriptor pointer itself, because absolute descriptor addresses are
not known at compile time. We must implement the dispatch as a
binary comparison tree.7 At the GCminor level, the function sig-
natures that appear in app expressions and in the global descriptor
array are represented by distinct integer encodings s, which can be
cheaply compared for equality at runtime. These integers can be
easily assigned by a global traversal of the program during transla-
tion.

We have a machine-checked proof of semantics preservation for
most of the Dminor-to-GCminor translation, excluding only case,
app, and force expressions, which do not interact with allocation
in interesting ways. As usual, the key to a semantics preservation
proof for the translation is the simulation between Dminor and
GCminor states. Although the relationship between Dminor and
GCminor continuations is complicated, the heap memory compo-
nents are identical. Thus, the crucial proof obligation induced on
clients by the GCminor semantics, namely that ` M : A at each
allocation point, can be proved as an invariant of Dminor in iso-
lation. In fact, we prove that the heap is well-formed after every
possible Dminor evaluation step.

Practical experience. To assess the practicality of our Haskell
Compcert pipeline, we ran it on a number of benchmarks from
the “spectral” section of the Haskell nofib benchmark suite.
The “spectral” benchmarks are “small, key pieces from real pro-
grams” [25]. In order to compile real Haskell code, we had to make
some changes to GHC’s standard libraries to circumvent code that
is based on primitive operations we have not implemented. In par-

7 Jump tables, which require choosing the tags for each algebraic type from
a dense domain of small integers, may be a more efficient implementation.
But our choice of globally unique record tags forbids us from using them,
and our version of Compcert does not support them in any case.

ticular, we reimplemented I/O functions as foreign calls to func-
tions implemented in our simple RTS. In addition, we recompiled
GHC with a native Haskell version of the multi-precision integer
library [32] (substituting for GMP). We started with a baseline of
GHC version 6.10.4.

Of the 60 spectral benchmarks, we chose 18 to present in this
paper. We excluded benchmarks that ran for less than 1 second
when compiled by Haskell Compcert, as well as benchmarks that
used Haskell or GHC features we do not support. We used our
patched version of GHC to generate Core programs as input to
Haskell Compcert, as well as to generate baseline executables. We
ran GHC with the -O2 and -fvia-C flags, and ran all programs
with a 128 MB heap. We did the measurements on an Apple Xserve
G5 (2.3 GHz PowerPC dual core, 8 GB RAM, Mac OS X Server
10.4.11).

Figure 10 compares the performance of GHC-compiled and
Compcert-compiled programs. (In both cases, time measurements
included both mutator time and GC time.) On average, Compcert-
compiled programs ran about twice as slowly as GHC-compiled
programs, and also allocated 2.5 times as much memory. We can
explain some of the memory allocation overhead by reference to
our inefficient record layout (as described earlier in this section)
and our strategy for compiling laziness. Also, our thunk represen-
tation introduces an extra three-word record for every thunk the
program allocates. And in order to avoid implementing multiple re-
turn values in the back end, we compiled GHC’s unboxed tuples by
transforming them into boxed tuples. Given these pervasive sources
of overhead, a mean factor of 2.5 increase in memory usage is not
surprising.

Since allocation is expensive in our system (invoking the alloca-
tor requires function calls), a corresponding increase in execution
time is not surprising either, but in fact time and memory overheads
of individual benchmarks are often not well-correlated. Indeed, the
sources of time overhead are still somewhat mysterious to us. One
obvious possible source is the cost of maintaining the shadow stack
of GC roots. To test this possibility, we selected a subset of bench-
marks that do not require GC when run in a 1GB heap (the largest
we can configure). Removing the shadow stack management code
from these benchmarks improved their mean execution time by less
than 3%, with little variance among the programs. Runtime type
checks are another potential source of overhead. But compiling
our benchmark set without runtime checks had almost no effect on
mean execution time, although it did reduce the time of one bench-
mark (power) by 17%. Of course, the overhead of checks would in-
crease if we eliminated other sources of overhead and thus reduced
overall execution time. Another obvious point is that our garbage
collector is slow and simplistic compared to GHC’s highly tuned
generational collector, but again, higher execution time overheads
are not well-correlated with amount of GC performed. Investigat-
ing other possible sources of the performance gap remains as future
work.

7. Related work
Dargaye [9, 10] extends the Compcert framework to compile
miniML, a simple call-by-value functional language. The com-
piler uses a chain of new intermediate languages connected by
semantics-preserving translations and ending with Cminor. Dar-
gaye makes no attempt to present a general-purpose variant of
Cminor for interfacing to a collector. However, the last of her new
languages, Fminor, is quite similar to our Dminor (without support
for laziness), though higher-level in some respects (e.g., case ex-
pressions bind constructor fields to identifiers) and lower-level in
others (e.g., live roots are already explicitly identified, as in our
LowGCminor). One significant simplification is that miniML con-
tains no primitive types or operations; all values are boxed and all

heap blocks have the same format (a single atomic constructor tag
or closure function pointer, followed by value pointers) so there is
no need for the front end to pass record layout information.

Dargaye’s implementation of the memory management library
is also quite similar to ours; we share similar collector code and
shadow stack format, although she chooses to store roots in the
shadow stack permanently rather than to store and reload them
around calls. Like us, Dargaye axiomatizes the behavior of the al-
location function. She explicitly defines reachability in the heap
(made simpler because miniML heaps cannot have cycles of point-
ers), and specifies that collection should leave reachable memory
locations unchanged. We use a similar but simpler specification at
the GCminor level (all memory should remain unchanged), but at
the Cminor level we refine it to a more precise specification that
lets us describe the behavior of a moving collector.

McCreight et al. [20, 22] discuss the treatment of a garbage-
collected heap as an abstract data type to hide the implementation
details of a collector from the mutator, and verify in Coq that sev-
eral collectors satisfy this interface. Hawblitzel and Petrank [14]
apply this approach to realistic collectors for the Bartok C# com-
piler, using an automated theorem prover to verify the collectors.
The root and record descriptor information needed by the collector-
mutator interface is verified using a typed assembly language [7].
The final allocator interface of our work, given in Fig. 8, is also
based on this approach. The main difference in our work is that
it takes a local specification of parts of memory and wraps it up
into a global specification in the form of a complete intermediate
language, GCminor. This allows clients to reason about mutator
programs at a single level of abstraction that hides the action of the
collector.

Myreen [24] verifies a Cheney collector for a simple fixed
record format, and uses a memory embedding to hide the move-
ment of records from high-level code. However, the high-level state
does not include any non-root components, so he does not have to
deal with stale record pointers. Chlipala [8] carries out semantics-
preserving compilation of the simply-typed lambda calculus to a
low-level machine with garbage collection. He also uses an embed-
ding from a high-level memory to a low-level memory, but does
not hide the actions of the collector from the high level. Vander-
waart and Crary [37] use a type system to describe the interface to
a precise collector. Their focus is on describing the layout of roots
within the stack, and their work only supports reasoning about the
type safety of the mutator code.

The C-- generic intermediate language [29] has a small runtime
system with activation inspection primitives designed to support
an arbitrary garbage collector provided by the compiler front end
without the need for a shadow stack. It would be interesting to
attempt a semantics preservation proof for a version of Cminor
extended with primitives of this kind.

8. Conclusions and Future Work
We have described a general-purpose, machine-verified compila-
tion pipeline for garbage-collected languages. A key feature of this
system is the use of language abstraction to hide collection from the
mutator. This is embodied in our language GCminor, which makes
precise the often-subtle collector-mutator interface. Compiler writ-
ers can take advantage of our work simply by generating GCminor
code—verifying that code to whatever level they desire—and then
applying the existing Compcert back end to generate code for the
PowerPC or ARM.

The work reported here represents a serious engineering effort
stretching over several calendar years. The verified GCminor-to-
Cminor compiler is about 13,000 lines of Coq code and proof
scripts; the Core-to-GCminor front end is about 10,000 lines of

(heavily commented) Haskell and the Dminor-to-GCminor preser-
vation proof is another 5500 lines of Coq scripts.

Our framework depends heavily on the existing Compcert sys-
tem. Using Compcert has allowed us to build a working compiler
quickly and has given us an excellent model for developing se-
mantics preservation proofs for our extensions. We have remained
fully backwards-compatible with Compcert, so that existing proofs
are unaffected; indeed, we have changed only a very few existing
Compcert files at all (in order to extend module signatures). This
approach has caused a few problems: the Compcert memory model
cannot express some useful GC techniques, and the lack of stack
introspection requires using the awkward shadow stack technique.
These limitations are not inherent in the Compcert framework, but
removing them would be a significant task with possibly extensive
ramifications for the existing proofs.

We have exercised our framework by building a compiler from
GHC’s Core intermediate language to GCminor. With simplicity of
verification in mind, we designed intermediate languages for this
compiler that use a novel combination of static and dynamic type
checking. An alternative, which we plan to explore, would be to
build a more conventional TAL-like type system [23] for GCminor,
which would obviate the need for a Dminor-like higher-level typed
language and corresponding semantics preservation proof.

Our performance measurements show that our Compcert-based
compiler generates code that runs at about half the speed of GHC-
generated code on average. We achieved this level of performance
by combining an existing front end and back end, without extensive
performance tuning. We conclude that it is possible to increase
the assurance of high-level language compilers without seriously
injuring performance.

Choosing a real language and compiler as a testbed has some
obvious advantages, but also inevitably introduces a great deal of
“accidental” complexity. We initially underestimated how hard it
would be to understand the behavior of our back end on code
generated by GHC’s front end.

The verification story for our pipeline is almost complete. Our
first priority for future work is to fill the remaining gap, which is
between the allocator specification assumed by our GCminor-to-
Cminor proof and the one we have proven for our prototype Cheney
collector. We also plan to prove that the specification can be met by
more realistic collectors, such as a generational copying collector.

Finally, our garbage collection framework is just one compo-
nent of a larger effort to build a complete high-assurance runtime
system suitable for supporting safety-critical and security-critical
applications [33]. We hope to address other components, including
concurrency and foreign function interfacing, in future work.

References
[1] H. Abelson and G. J. Sussman. Structure and Interpretation of Com-

puter Programs. The MIT Press, first edition, 1985.

[2] ADT Coq. The Coq proof assistant. http://coq.inria.fr.

[3] A. W. Appel and S. Blazy. Separation logic for small-step Cminor. In
TPHOLs, volume 4732 of LNCS, pp. 5–21. Springer, 2007.

[4] A. W. Appel and T. Jim. Continuation-passing, closure-passing style.
In POPL, pp. 293–302. ACM Press, 1989.

[5] A. Bloss, P. Hudak, and J. Young. Code optimizations for lazy
evaluation. Lisp and Symbolic Computation, 1(2):147–164, 1988.

[6] U. Boquist and T. Johnsson. The GRIN project: A highly optimising
back end for lazy functional languages. In IFL ’96, volume 1268 of
LNCS, pp. 58–84. Springer, 1996.

[7] J. Chen, C. Hawblitzel, F. Perry, M. Emmi, J. Condit, D. Coetzee, and
P. Pratikaki. Type-preserving compilation for large-scale optimizing
object-oriented compilers. In PLDI, pp. 183–192, 2008.

[8] A. Chlipala. A certified type-preserving compiler from lambda calcu-
lus to assembly language. In PLDI, pp. 54–65. ACM, 2007.

[9] Z. Dargaye. MLCompCert Coq proofs. http://gallium.inria.
fr/∼dargaye/mlcompcert.html, 2009.

[10] Z. Dargaye. Vérification formelle d’un compilateur pour langages
fonctionnels. PhD thesis, Université Paris 7 Denis Diderot, July 2009.

[11] A. Dijkstra, J. Fokker, and S. D. Swierstra. The architecture of the
Utrecht Haskell Compiler. In Haskell Symp., pp. 93–104. ACM, 2009.

[12] K.-F. Faxén. Analysing, Transforming and Compiling Lazy Functional
Programs. PhD thesis, Royal Institute of Technology, June 1997.

[13] C. Flanagan, A. Sabry, B. F. Duba, and M. Felleisen. The essence of
compiling with continuations. In PLDI, pp. 237–247. ACM, 1993.

[14] C. Hawblitzel and E. Petrank. Automated verification of practical
garbage collectors. In POPL, pp. 441–453. ACM, 2009.

[15] F. Henderson. Accurate garbage collection in an uncooperative envi-
ronment. In MSP/ISMM, pp. 256–263, 2002.

[16] X. Leroy. Formal certification of a compiler back-end or: program-
ming a compiler with a proof assistant. In POPL, pp. 42–54, 2006.

[17] X. Leroy. The Compcert verified compiler. http://compcert.
inria.fr/doc/index.html, April 2009.

[18] X. Leroy. A formally verified compiler back-end. J. Autom. Reason.,
43(4):363–446, 2009.

[19] X. Leroy and S. Blazy. Formal verification of a C-like memory model
and its uses for verifying program transformations. J. Autom. Reason.,
41(1):1–31, 2008.

[20] A. McCreight. The Mechanized Verification of Garbage Collector
Implementations. PhD thesis, Yale University, New Haven, CT, USA,
2008.

[21] A. McCreight. Practical tactics for separation logic. In TPHOLs,
volume 5674 of LNCS, pp. 343–358. Springer, 2009.

[22] A. McCreight, Z. Shao, C. Lin, and L. Li. A general framework for
certifying GCs and their mutators. In PLDI, pp. 468–479. ACM, 2007.

[23] G. Morrisett, D. Walker, K. Crary, and N. Glew. From System F to
typed assembly language. TOPLAS, 21(3):527–568, 1999.

[24] M. O. Myreen. Formal verification of machine-code programs. PhD
thesis, University of Cambridge, 2008.

[25] W. Partain. The nofib benchmark suite of Haskell programs. In Proc.
1992 Glasgow Workshop on FP, pp. 195–202. Springer, 1993.

[26] S. Peyton Jones, editor. Haskell 98 Language and Libraries – The
Revised Report. Cambridge University Press, 2003.

[27] S. L. Peyton Jones. Implementing lazy functional languages on stock
hardware: the Spineless Tagless G-machine. JFP, 2(2):127–202, 1992.

[28] S. L. Peyton Jones. Compiling Haskell by program transformation: A
report from the trenches. In ESOP, pp. 18–44, 1996.

[29] S. L. Peyton Jones, N. Ramsey, and F. Reig. C–: A portable assembly
language that supports garbage collection. In PPDP ’99, pp. 1–28,
London, UK, 1999. Springer-Verlag.

[30] M. Sulzmann, M. Chakravarty, S. Peyton Jones, and K. Donnelly.
System F with type equality coercions. In TLDI, pp. 53–66, 2007.

[31] The GHC Team. GHC. http://haskell.org/ghc, 2009.
[32] The GHC Team. Replacing GMP. http://hackage.haskell.

org/trac/ghc/wiki/ReplacingGMPNotes, April 2009.
[33] The HASP Project. http://hasp.cs.pdx.edu.
[34] The Ocaml Development Team. The Caml language. http://caml.

inria.fr.
[35] A. Tolmach, T. Chevalier, and the GHC Team. An external representa-

tion for the GHC Core language. http://www.haskell.org/ghc/
docs/6.10.4/html/ext-core/core.pdf, July 2009.

[36] N. Torp-Smith, L. Birkedal, and J. C. Reynolds. Local reasoning about
a copying garbage collector. ACM TOPLAS, 30(4):1–58, 2008.

[37] J. C. Vanderwaart and K. Crary. A typed interface for garbage collec-
tion. In TLDI, pp. 109–122. ACM Press, 2003.

