HW2 Additional sample solution information

Question 1. Contextual Semantics for Pure λ-calculus.

Following the outline on p. 2 of the Contextual Semantics handout, we need to define a basic computational stepping relation $\rightarrow_{c m p}$, a grammar of contexts C, and a contextual stepping relation $\rightarrow_{c t x}$.

The computational stepping relation is just given by rule E-ABSAPP from the small-step semantics:

$$
\begin{equation*}
(\lambda \mathrm{x} . \mathrm{t}) \mathrm{v} \rightarrow_{c m p} \mathrm{t}[\mathrm{v} / \mathrm{x}] \tag{E-AbsApp}
\end{equation*}
$$

The grammar is $C::=[]|C \mathrm{t}| \mathrm{v} \mathrm{C}$.
The contextual stepping relation is exactly as for the language of the handout, namely:

$$
\begin{equation*}
\frac{\mathrm{t} \rightarrow_{c m p} \mathrm{t}^{\prime}}{\mathrm{C}[\mathrm{t}] \rightarrow_{c t x} \mathrm{C}\left[\mathrm{t}^{\prime}\right]} \tag{E-STEP}
\end{equation*}
$$

Question 5. Pierce 5.3.6.

In addition to what's given in the book, the solution for full beta-reduction should include a rule allowing unrestricted reduction under lambdas:

$$
\begin{equation*}
\frac{\mathrm{t}_{1} \rightarrow \mathrm{t}_{1}^{\prime}}{\lambda \mathrm{x} \cdot \mathrm{t}_{1} \rightarrow \lambda \mathrm{x} \cdot \mathrm{t}_{1}^{\prime}} \tag{E-ABS}
\end{equation*}
$$

Question 6. Pierce 5.3.8

A correct solution for the big-step formulation is:

$$
\begin{gather*}
\lambda \mathrm{x} . \mathrm{t} \Downarrow \lambda \mathrm{x} . \mathrm{t} \tag{B-VALUE}\\
\mathrm{t}_{1} \Downarrow \lambda \mathrm{x} \cdot \mathrm{t}_{12} \quad \tag{B-App}\\
\mathrm{t}_{2} \Downarrow \mathrm{v}_{2} \quad\left[\mathrm{x} \mapsto \mathrm{v}_{2}\right] \mathrm{t}_{12} \Downarrow \mathrm{v} \\
\mathrm{t}_{1} \mathrm{t}_{2} \Downarrow \mathrm{v}
\end{gather*}
$$

Theorem: $\mathrm{t} \rightarrow^{*} \mathrm{v} \Longleftrightarrow \mathrm{t} \Downarrow \mathrm{v}$.
PRoof
(\Longrightarrow). [Thanks to Nicholas for this improved proof structure.]
First, we prove a lemma: if $t \rightarrow t^{\prime}$ and $t^{\prime} \Downarrow v$ then $t \Downarrow t$. Proof is by structural induction on the derivation of $t \rightarrow t^{\prime}$, casing over the rule used at the root of this derivation.

- (E-AppABS $) \mathrm{t}=\left(\lambda \mathrm{x} . \mathrm{t}_{12}\right) \mathrm{v}_{2}$ and $\mathrm{t}^{\prime}=\left[\mathrm{x} \mapsto \mathrm{v}_{2}\right] \mathrm{t}_{12}$. Since $\lambda \mathrm{x} . \mathrm{t}_{12}$ and v_{2} are already values that evaluate to themselves under B-VALUE, we can immediately apply B-App.
- (E-APP1) $t=t_{1} t_{2}$ and $t^{\prime}=t_{1}^{\prime} t_{2}$, where $t_{1} \rightarrow t_{1}^{\prime}$. Since t^{\prime} is not a value, the derivation of $\mathrm{t}^{\prime} \Downarrow v$ must be rooted by a use of B-APP, so we have (i) $\mathrm{t}_{1}^{\prime} \Downarrow \lambda \mathrm{x} . \mathrm{t}_{12}$, (ii) $\mathrm{t}_{2} \Downarrow \mathrm{v}_{2}$ and (iii) $\left[\mathrm{x} \mapsto \mathrm{v}_{2}\right] \mathrm{t}_{12} \Downarrow \mathrm{v}$. Since $\lambda \mathrm{x} . \mathrm{t}_{12}$ is a value, we can apply the inductive hypothesis to (i) to obtain (i') $\mathrm{t}_{1} \Downarrow \lambda \mathrm{x} . \mathrm{t}_{12}$. Then we can re-apply B-APP to (i'),(ii), and (iii) to obtain $\mathrm{t} \Downarrow \mathrm{v}$.
- (E-APP2) $t=v_{1} t_{2}$ and $t^{\prime}=v_{1} t_{2}^{\prime}$, where $t_{2} \rightarrow t_{2}^{\prime}$. Similar to previous case, where we apply induction to $\mathrm{t}_{2}^{\prime} \Downarrow \mathrm{v}_{2}$ to obtain $\mathrm{t}_{2} \Downarrow \mathrm{v}_{2}$.

Now given the lemma, the main proof is by induction on the length of $v t \rightarrow^{*} v$. If there are no steps, $\mathrm{t}=\mathrm{v}$ and $\mathrm{t} \Downarrow \mathrm{v}$ follows immediately by B-Value. If there is more than one step, we have $\mathrm{t} \rightarrow^{*} \mathrm{t}^{\prime} \rightarrow \mathrm{v}$, where by induction $\mathrm{t}^{\prime} \Downarrow \mathrm{v}$. Then we can immediately apply the lemma to get $\mathrm{t} \Downarrow \mathrm{v}$.
(\Longleftarrow) We proceed by induction on the big-step derivation, casing on the rule used at the root.

- (B-ABS) Immediate, since $\lambda \mathrm{x} . \mathrm{t}$ is already a value.
- (B-APP) We have $\mathrm{t}=\mathrm{t}_{1} \mathrm{t}_{2}, \mathrm{t}_{1} \Downarrow \lambda \mathrm{x} . \mathrm{t}_{12}, \mathrm{t}_{2} \Downarrow \mathrm{v}_{2}$, and $\left[\mathrm{x} \mapsto \mathrm{v}_{2}\right] \mathrm{t}_{12} \Downarrow \mathrm{v}$. By induction, we have (i) $\mathrm{t}_{1} \rightarrow^{*} \lambda \mathrm{x} . \mathrm{t}_{12}$, (ii) $\mathrm{t}_{2} \rightarrow^{*} \mathrm{v}_{2}$, and (iii) $\left[\mathrm{x} \mapsto \mathrm{v}_{2}\right] \mathrm{t}_{12} \rightarrow^{*} \mathrm{v}$. By (i) and repeated use of (E-App1) [there is an inductive argument hiding here, but it is hardly worth spelling out], we can conclude $\mathrm{t}_{1} \mathrm{t}_{2} \rightarrow^{*}\left(\lambda \mathrm{x} . \mathrm{t}_{12}\right) \mathrm{t}_{2}$. Then by (ii) and repeated use of (E-App2) [ditto], we can conclude ($\lambda \mathrm{x} . \mathrm{t}_{12}$) $\mathrm{t}_{2} \rightarrow^{*}\left(\lambda \mathrm{x} . \mathrm{t}_{12}\right) \mathrm{v}_{2}$. By (E-AppABS) and (iii), ($\lambda \mathrm{x} . \mathrm{t}_{12}$) $\mathrm{v}_{2} \rightarrow$ $\left[\mathrm{x} \mapsto \mathrm{v}_{2}\right] \mathrm{t}_{12} \rightarrow^{*} \mathrm{v}$. Combining these sequences gives the desired result.

