CS 578 Programming Language Semantics Review Quiz - Spring 2024 Sample Solutions

1. Proof by induction over n.

Base case: $n=0$. Left and right hand sides are both 0 , so equation holds.
Induction case. Suppose as induction hypothesis (IH) that the equation is true for some n, i.e. $\sum_{i=0}^{n} i(i+1)=\frac{n(n+1)(n+2)}{3}$.
We must show that $\sum_{i=0}^{n+1} i(i+1)=\frac{(n+1)(n+2)(n+3)}{3}$.
We have

$$
\begin{aligned}
& \sum_{i=0}^{n+1} i(i+1)=(\text { splitting off last term }) \\
& \sum_{i=0}^{n} i(i+1)+(n+1)(n+2)=(\text { by IH }) \\
& \frac{n(n+1)(n+2)}{3}+(n+1)(n+2)=(\text { forming common denominator }) \\
& \frac{n(n+1)(n+2)+3(n+1)(n+2)}{3}=(\text { regrouping }) \\
& \frac{(n+3)(n+1)(n+2)}{3}=(\text { reordering }) \\
& \frac{(n+1)(n+2)(n+3)}{3}
\end{aligned}
$$

as desired.
2. We need to make (implicit or explicit) use of the definition of \subseteq, namely that if $T \subseteq U$, then $x \in T$ implies $x \in U$.

The three defining properties of a partial order follow easily.

- Reflexivity. For any set, it is immediate that $T \subseteq T$.
- Transitivity. If $T \subseteq U$ and $U \subseteq V$, then any element of T must be in U and hence also in V, so $T \subseteq V$.
- Antisymmetry. If $T \subseteq U$ and $U \subseteq T$, then every element of T must be in U and vice-versa, so indeed $T=U$.

3. Here's an OCaml solution:
```
type \(\exp =\)
    True
| False
| And of \(\exp * \exp\)
| Or of \(\exp * \exp\)
| Not of exp
let rec eval e = match e with
    True -> true
| False -> false
| And(e1,e2) -> eval e1 \&\& eval e2
| Or (e1,e2) -> eval e1 || eqval e2
| Not e -> not (eval e)
```

