CS 578 Programming Language Semantics Review Quiz - Spring 2024

1. Prove the following equation by induction over natural numbers.
$\forall n \geq 0,(1 \times 2)+(2 \times 3)+\ldots+(n \times(n+1))=\frac{n(n+1)(n+2)}{3}$.
2. Recall some basic definitions about sets and relations.

- A binary relation R over a set S is a subset of the cartesian product $S \times S$. If $(x, y) \in R$, we say x and y are related by R, often written $x R y$.
- Such a relation is reflexive if $x R x$ for all $x \in S$.
- It is transitive if $x R y$ and $y R z$ implies $x R z$ for all $x, y, z \in S$.
- It is antisymmetric if $x R y$ and $y R x$ implies $x=y$ for all $x, y \in S$.
- A binary relation is a partial order if it is reflexive, transitive, and antisymmetric.
- The power set $\mathscr{P}(S)$ of a set S is the set of all subsets of S.

Now show that for any set S, the set inclusion relation \subseteq forms a partial order over $\mathscr{P}(S)$.
3. Consider the following abstract syntax grammar for boolean expressions.
exp $::=$ True \mid False $|\operatorname{And}(\exp , \exp)| \operatorname{Or}(\exp , \exp) \mid \operatorname{Not}(\exp)$
Show how to represent these expressions using an algebraic data type in OCaml or Haskell, or a set of case classes in Scala, or an appropriate mechanism in some other language of your choice. Then write a function that evaluates an arbitrary expression of this type to a boolean value using the "obvious" meaning of expression constructors.

