
Contextual Semantics

Andrew Tolmach

April 11, 2024

Small-step semantics rules, such as those for the language of booleans and numbers presented in
TAPL Chapter 3, can generally be divided into two different categories. Rules such as

if true then t2 else t3 → t2 (E-IfTrue)

and

iszero true → true (E-IsZeroZero)

capture the essence of the language’s computational behavior, and hence are sometimes called
“computation rules” (or “basic rules”). (Actually, these are rule schemas, since they can contain
metavariables.) Rules such as

t1 → t′1

if t1 then t2 else t3 → if t′1 then t2 else t3
(E-If)

and

t1 → t′1

iszero t1 → iszero t′1
(E-IsZero)

serve to indicate where the computation rules can be applied inside larger terms; they essentially
enforce an evaluation strategy (order of evaluation) for the language. These rules are sometimes
called “congruence rules” or “structural rules.” Arguably, presenting both kinds of rules together
in a single uniform system tends to obscure the computation rules, which are in some sense more
important. Moreover, if we examine the congruence rules, we can see that they all share a common
pattern: the premise of each rule is an arbitrary evaluation step of the form t → t′, and the
conclusion is an evaluation step in which the left and right sides of the rule are the same term
except that one instance of t has been replaced by t′. This suggests that the congruence rules
could be represented more compactly. Contexts provide a means to do this.

A (term) context is simply a term (or a term schema, if it contains metavariables) that has a
hole, typically written [] or □, in place of a subterm. For example, if [] then t2 else t3 and
iszero pred [] are two possible contexts for the term language of Chapter 3. The idea is that the
hole can be “filled in” later to form a complete term. If c is a context, we write c[t] to represent
the result of substituting t for the hole in c.1 For example,

1Note that this is simple textual substitution, unlike the capture-avoiding substitution studied in Chapter 5.

1

(if [] then 0 else succ 0)[true] = if true then 0 else succ 0

(where the parentheses on the left-hand side are just to clarify that the substitution applies to the
entire term). Dually, we can also view a context as a pattern that can be matched against a term,
where a hole is like a “wild-card” that can match anything; if the match is successful, we can read
out the subterm that corresponds to the hole.

Using contexts, we can rewrite the E-If rule as

t1 → t′1

(if [] then t2 else t3)[t1] → (if [] then t2 else t3)[t
′
1]

(E-If′)

Note that the hole in each conclusion context specifies the position of the subterm to be rewritten
according to the premise transition. Clearly we could do the same thing with the other congruence
rules.

Now we would like to capitalize on the regularity in congruence rules noted above by somehow
condensing all the congruence rules into a single rule. In fact, we can condense all combinations
of the congruence rules into a single rule. To do so, we define a set of contexts, using a (perfectly
ordinary) grammar. For the language of Chapter 3, the appropriate grammar is

C ::= [] | succ C | pred C | iszero C | if C then t2 else t3

This defines an (infinite) set of contexts

C = {[], succ [], pred [], iszero [], if [] then t2 else t3, succ succ [], succ pred [], . . .}

The intuition is that if a context c ∈ C matches a top-level term t, then the hole in c corresponds
to a subterm in t where a computation rule can potentially be used (if a suitable one exists). Thus
matching against a context works much like repeated use of congruence rules to guide us to a spot
where a computation rule can be used.

More precisely, we can define a new variety of rule-based semantics, called contextual semantics, as
follows:

(a) Define a basic stepping relation t →cmp t′ consisting of just the computation rules from the
small-step semantics (with the cmp subscript added to the arrow in each rule).

(b) Fix a grammar C of contexts, and define an evaluation relation t →ctx t′ on top-level terms
(only) as the single rule

t →cmp t′

C[t] →ctx C[t′]
(E-Step)

where this rule should be read as a schema in which C may be replaced by any context c ∈ C

(and t and t′ may be replaced by any term, as usual). We take t →ctx t′ as the fundamental
definition of the semantic behavior of terms.

2

Example: Consider the term if iszero pred 0 then 0 else pred 0.

As a reminder, under the small-step semantics, the one-step evaluation behavior of this term is
given by the following derivation:

pred 0 → 0 E-PredZero

iszero pred 0 → iszero 0 E-Iszero

if iszero pred 0 then 0 else pred 0 → if iszero 0 then 0 else pred 0 E-If

Under contextual semantics, the one-step evaluation behavior of any term is given by applying
E-Step. To do that, we must first find a context c ∈ C that matches the term. In fact, there are
several:

Context Subterm matching hole

c1 = [] if iszero pred 0 then 0 else pred 0

c2 = if [] then t else t′ iszero pred 0

c3 = if iszero [] then t else t′ pred 0

c4 = if iszero pred [] then t else t′ 0

Of these, only the hole of context c3 matches a computation rule (E-PredZero). Hence, E-Step
can only be applied by instantiating C with c3, giving the following overall deriviation:

pred 0 →cmp 0 E-PredZero

if iszero pred 0 then 0 else pred 0 →ctx if iszero 0 then 0 else pred 0 E-Step

Compared with the small-step derivation, this one condenses all the uses of congruence rules (E-
If,E-Iszero) into a single use of E-Step. Note that the details of which context c ∈ C is used and
how this context matches the term are elided in this derivation. The fact that only one choice of c
works is a natural corollary of the language’s being deterministic.

As we would hope, the evaluation behavior is the same under both semantics. Indeed, for the
small-step semantics of Chapter 3 and the definition of C above, we have

Theorem 1: t → t′ ⇐⇒ t →ctx t′.

Proof: (⇐). Proof is via a lemma: Suppose u →cmp u′; then, for any c ∈ C, c[u] → c[u′]. Assuming
this lemma, we proceed as follows: If t →ctx t′ then, by inversion of E-Step, there must exist a
context c ∈ C and a term u such that t = c[u], u →cmp u′, and t′ = c[u′]. Applying the lemma to
this u, u′ and c immediately gives us t → t′ as required.

We prove the lemma by structural induction on c. If c = [], then c[u] = u and c[u′] = u′; since
u →cmp u′, certainly u → u′, so the conclusion is immediate. If c = if c1 then t2 else t3,
then c[u] = if c1[u] then t2 else t3 and c[u′] = if c1[u

′] then t2 else t3. By induction,
c1[u] → c1[u

′]. So by E-If, c[u] → c[u′] as required. The other cases in the context grammar are
similar.

(⇒) Left as an exercise. □

This approach for developing contextual semantics is quite general; it does not rely on any peculiar
features of the Chapter 3 language. In particular, it extends to non-deterministic languages, where
E-Step might allow a computation rule to be applied at more than one subterm.

3

Exercise 1: Proof the ⇒ direction of Theorem 1.

Exercise 2: Suppose we proceed as in Exercise 3.5.13.(2) and add the congruence rule E-Funny2
to our small-step semantics. What corresponding change do we need to make in the grammar of C
to produce an equivalent contextual semantics?

Exercise 3: Change the definition of the eval1 function in the arith implementation to use
contextual style.

Notes

Contextual semantics were introduced in Felleisen and Hieb [1992]. Harper [2016, sect. 5.3] has
a formal treatment, including a proof of Theorem 1 (for a somewhat different language). The
suggested solution for coding eval1 in inspired by the Haskell code given in Hutton [2023].

Matthias Felleisen and Robert Hieb. The revised report on the syntactic theories of sequential
control and state. Theor. Comput. Sci., 103(2):235–271, 1992. URL https://doi.org/10.101

6/0304-3975(92)90014-7.

Robert Harper. Practical Foundations for Programming Languages (2nd. Ed.). Cambridge Univer-
sity Press, 2016. URL http://www.cs.cmu.edu/~rwh/pfpl/abbrev.pdf.

Graham Hutton. Programming language semantics: It’s easy as 1,2,3. Journal of Functional
Programming, October 2023. URL https://www.cambridge.org/core/journals/journal-o

f-functional-programming/article/programming-language-semantics-its-easy-as-123

/EC2C046CF94382B3B408036B84475DC7.

Solutions to Exercises

Exercise 1 Proof of ⇒ case of Theorem 1: We assume t → t′ and must show t →ctx t′ using
E-Step. So we must show that there exist c ∈ C and a term u such that t = c[u], u →cmp u′,
and t′ = c[u′]. We proceed by induction on the structure of the derivation of t → t′ and case
analysis on the rule used at the root of the derivation. If the root is a computational rule, we take
c = []; then t = u and t′ = u′, so the result is immediate. If the root is rule T-If, then the
conclusion of the rule has the form if t1 then t2 else t3 → if t′1 then t2 else t3 and the
premise is t1 → t′1. By induction on that premise, there exist a context c1 ∈ C and a term u such
that t1 = c1[u], u →cmp u′, and t′1 = c1[u

′]. Take c = if c1 then t2 else t3 . Then c ∈ C and
t = c[u] and t′ = c[u′], as required. The cases for the other congruence rules are similar.

Exercise 2

C ::= [] | succ C | pred C | iszero C | if C then t2 else t3 | if t1 then C else t3

Exercise 3 In arith/core.ml replace the definition of eval1 with the following code:

type context =

CtxHole

| CtxIf of context * term * term

| CtxSucc of context

4

https://doi.org/10.1016/0304-3975(92)90014-7
https://doi.org/10.1016/0304-3975(92)90014-7
http://www.cs.cmu.edu/~rwh/pfpl/abbrev.pdf
https://www.cambridge.org/core/journals/journal-of-functional-programming/article/programming-language-semantics-its-easy-as-123/EC2C046CF94382B3B408036B84475DC7
https://www.cambridge.org/core/journals/journal-of-functional-programming/article/programming-language-semantics-its-easy-as-123/EC2C046CF94382B3B408036B84475DC7
https://www.cambridge.org/core/journals/journal-of-functional-programming/article/programming-language-semantics-its-easy-as-123/EC2C046CF94382B3B408036B84475DC7

| CtxPred of context

| CtxIsZero of context

let rec subst (c:context) (t:term) : term = match c with

| CtxHole -> t

| CtxIf(c1,t2,t3) -> TmIf(dummyinfo,subst c1 t,t2,t3)

| CtxSucc c1 -> TmSucc(dummyinfo,subst c1 t)

| CtxPred c1 -> TmPred(dummyinfo,subst c1 t)

| CtxIsZero c1 -> TmIsZero(dummyinfo,subst c1 t)

let rec split (t:term) : (context * term) list =

(CtxHole,t)::

match t with

TmTrue(_) -> []

| TmFalse(_) -> []

| TmZero(_) -> []

| TmSucc(_,t1) -> List.map (fun (c’,t’) -> (CtxSucc c’,t’)) (split t1)

| TmPred(_,t1) -> List.map (fun (c’,t’) -> (CtxPred c’,t’)) (split t1)

| TmIsZero(_,t1) -> List.map (fun (c’,t’) -> (CtxIsZero c’,t’)) (split t1)

| TmIf(_,t1,t2,t3) -> List.map (fun (c’,t’) -> (CtxIf(c’,t2,t3),t’)) (split t1)

let eval_cmp (t:term) : term = match t with

TmIf(_,TmTrue(_),t2,t3) ->

t2

| TmIf(_,TmFalse(_),t2,t3) ->

t3

| TmPred(_,TmZero(_)) ->

TmZero(dummyinfo)

| TmPred(_,TmSucc(_,nv1)) when (isnumericval nv1) ->

nv1

| TmIsZero(_,TmZero(_)) ->

TmTrue(dummyinfo)

| TmIsZero(_,TmSucc(_,nv1)) when (isnumericval nv1) ->

TmFalse(dummyinfo)

| _ ->

raise NoRuleApplies

let eval1 (t:term) : term =

match List.concat

(List.map

(fun (c,t) ->

try [subst c (eval_cmp t)]

with NoRuleApplies -> [])

(split t)) with

h::_ -> h

| _ -> raise NoRuleApplies

5

