
Toward a Feasible Functional Logic Compiler

Employing Fair Search

A Dissertation Submitted to the Faculty of
Portland State University in

Partial Fulfillment of the Requirements for an
Honors Baccalaureate Degree in Computer Science

Marius Nita

June 10, 2005

Abstract

Traditionally, implementations for functional logic languages (FLP)
have used depth-first search to implement narrowing, a well-known search
strategy. While this approach yields good performance, it is unnecessarily
restrictive in the sense that some programs lead to non-termination (the
search computes forever in one part of the search space, failing to consider
the rest) when clearly they should yield results. As a result, a number
of recent FLP research efforts have focused on designing efficient FLP
systems based on breadth-first search strategies, which hold an important
fairness property: if a solution is known to exist, it will (eventually) be
found.

The work presented in this paper addresses issues of efficiency in the
context of FLC, a FLP compiler that employs fair search and a novel ap-
plication of first-class stores in its implementation of narrowing. We show
that in order to be tractable, FLC needs an efficient data representation
for first-class stores and an efficient garbage collector. We discuss and
compare several data representations for first-class stores, and show that
a hashing-based data structure exhibits desirable performance. We show
that proper collection of an efficient first-class store data representation in
FLC involves additional work in the collector, to collect some reachable
values which are known to be garbage. We describe the implementation
of a complete generational copy collector that correctly handles collection
of first-class store data structures. Finally, we evaluate the performance
of the complete system, showing favorable results.

Contents

1 Introduction 5
1.1 Contributions . 6

2 Background 6
2.1 Fair search strategies . 6
2.2 The FLC system . 8
2.3 First-class stores (FCS) . 9
2.4 Challenges . 11
2.5 Summary . 13

3 Technical Details 13
3.1 The compiler . 14
3.2 The thread model . 14
3.3 First-class store interface . 15

4 Data Representation 16
4.1 Stores holding data . 19

4.1.1 Red-black trees . 19
4.1.2 Contiguous memory regions 20
4.1.3 Summary . 21

4.2 References holding data . 21
4.2.1 Linked lists . 24
4.2.2 Hash tables . 26

4.3 Comparisons . 27
4.4 Conclusion . 29

5 Garbage Collection 30
5.1 Design requirements . 30
5.2 The basic collector . 31

5.2.1 Implementation overview 33
5.2.2 Gathering roots . 35
5.2.3 The write barrier . 35

5.3 A new notion of liveness . 36
5.3.1 Implementation . 38

5.4 Conclusion . 39

6 System Evaluation 39

7 Conclusions and Future Work 41

2

A Source Code for Tests 45

3

List of Figures

1 FLC: compilation pipeline . 9
2 A Standard ML signature for first-class stores 10
3 A Standard ML implementation for first-class stores 10
4 A Standard ML narrowing implementation 12
5 FLC: thread model . 15
6 FLC: first-class store interface . 16
7 FLC: first-class store usage (percentages) 17
8 Linked list FCS representation . 24
9 FCS comparison: relative execution time slowdown 28
10 FCS comparison: relative total allocation 28
11 GC: heap states at various points in mutation and collection. . . . 32
12 Bad checkpoint situation . 37
13 Evaluation: basic run times (seconds) with heap sizes 40
14 Evaluation: time spent in collector/deref (seconds) 40
15 Evaluation: percentage of live data (calculated at majors) 40

4

1 Introduction

Functional logic programming (FLP) is a paradigm which integrates features
of both functional and logic programming into a unified model. It provides
first-class functions and pattern matching, as well as logic variables and built-in
search. Several functional logic languages exist, e.g. Curry [9], Escher [12], and
Toy [13], of which Curry, the result of an effort to build a standard for FLP, is the
most prominent. Current practical Curry implementations, e.g. Pakcs [8] and
the Münster Curry Compiler (MCC) [14], use backtracking as a search strategy,
which, as in PROLOG, has the undesired effect of causing non-termination in
some situations in which a solution is known to exist.

To obviate this shortcoming, recent efforts, e.g. the FLVM [1] and the FLP
interpreter by Tolmach, et al. (hereafter referred to as FLI) [19], have attempted
to employ fair search strategies using breadth-first search in a concurrent setting.
In a nutshell, each search alternative runs in a private thread, in parallel with
all other alternatives. Consequently, each one is given fair and equal treatment,
guaranteeing that no alternative is run indefinitely while others might lead to
answers.

FLI not only implements a fair search strategy; it also features a novel ap-
plication of first-class stores (Section 2.3) in its implementation of narrowing
(Section 2.1). The FLI work left open questions with respect to whether the
presented model can lead to an implementation that is as efficient as popular
backtracking-based systems. In particular, it was unclear whether first-class
stores would introduce an unsurmountable performance problem into low level
implementations (compilers) following the FLI model.

The work presented in this dissertation begins where FLI left off and pursues
these issues in the context of a compiler, named FLC, which follows the general
FLI approach to fairness. Although this work does not attempt to give a definite
answer to the question of whether this novel approach is tractable, it has yielded
interesting results and we believe it is a step in the right direction. This paper
presents the design, implementation, and evaluation of (a) an efficient low level
representation for first-class stores, and (b) a complete garbage collector which
is novel in its collection of first-class store data structures. As we will learn, it is
necessary to adjust the runtime system’s notion of liveness; in order to respect a
set of desirable properties concerning space usage, we will explicitly kill off some
data which is reachable but known to be garbage.

This document is structured as follows. Section 1.1 identifies the author’s
contributions to the FLC project and to the work presented here. Section 2
will introduce the reader to the research setting. Section 3 sets the stage for
our low-level development by giving a more detailed technical explanation of
the FLC runtime system. Section 4 discusses data representation issues; design

5

constraints, approaches, and results. Section 5 describes the design and imple-
mentation of the garbage collector. Finally, we evaluate our completed system
in Section 6 and conclude.

1.1 Contributions

The work presented in this paper was done in collaboration with, and under
the close supervision of, my research advisor, Prof. Andrew Tolmach. He imple-
mented the initial FLI system, the FLC compiler, and a large portion of the FLC
runtime. The “references holding data” approach to first-class store representa-
tion (Section 4.2) and the space-related problems (Section 5.3) were identified
by Andrew and presented in the original FLI work [19].

The author’s contributions to the project have consisted of researching vari-
ous data representations for first-class stores and identifying hashing-based data
structures (Section 4.2.2) as a good speed-for-space tradeoff; implementing a
complete garbage collector for FLC and augmenting it with code that solves the
space problems identified in the FLI work; implementing other support structures
in the runtime; evaluating the resulting system; and writing this document.

2 Background

2.1 Fair search strategies

Narrowing [7] is an evaluation strategy which provides a suitable foundation for
implementing FLP systems which employ fair search. It combines term reduc-
tion (as in functional programming) with logic variable instantiation (as in logic
programming). To understand how narrowing is applied, consider the following
Curry program:

data State = Full | Half | Stopped

rate :: State -> Float

rate Full = 1.0

rate Half = 0.5

rate Stopped = 0.0

Suppose that we want to encode a function, named anyRate, which computes a
rate that corresponds to a state, but does not care which state it corresponds to.
In a conventional language, we might “fix” the state:

6

anyRate :: Float

anyRate = 0.5 -- Half

which would be “good enough.” However, it does not match the specification,
and as encoded above, and arguably, it is easy to write a buggy version, e.g.:

anyRate = 0.6

Curry allows us to encode anyRate such that it exhibits neither problem:

anyRate = rate x where x free

which can be read as “call rate with an argument which is valid, but whose
value we do not care about.” When evaluating this program, we say that it
“narrows on x,” since the value of x is needed despited the fact that x has no
value (it is uninstantiated). The net effect of narrowing is to invoke rate with
every possible value for x in an unspecified order. Every invocation, in this case,
will independently contribute an answer to the final result of the program. Since
order is insignificant, the final result of anyRate is the multiset {0.0,0.5,1.0}.

In general, the evaluation of a program may be visualized as a tree whose
nodes are narrowing points and whose edges are linear evaluation sequences as in
traditional programming. Successful evaluation of a program, then, boils down
to performing a full search of this tree and collecting all possible results. One
simple approach to doing this would be to search depth-first. In our example,
we would first instantiate x to Full, say, and then evaluate (rate Full) all the
way down to an answer. When done, we would return to the narrowing point,
instantiate x to Half, evaluate (rate Half) all the way down to an answer,
and so on. This approach has the obvious shortcoming that if we “get stuck”
somewhere in the search tree, we won’t have a chance to consider the rest. For
example, if (rate Full) failed to terminate, we would not have a chance to
consider (rate Half), which may terminate and lead to a final answer.

A faithful implementation of narrowing will compute the possible search al-
ternatives in a breadth-first manner, making sure that each alternative is given
fair consideration without starving its siblings. Thus, even if (rate Full) might
fail to terminate, we would pause its evaluation after its time slice had expired,
and move on to evaluating (rate Half) for some period of time. Eventually,
(rate Half) would lead to and report an answer. The idea is that even if one or
more search alternatives computed indefinitely, we would still see all the answers
resulting from the search alternatives that are known to terminate.

Currently, there are at least two known approaches to implementing nar-
rowing using a fair search strategy. To illustrate them, consider the following
algebraic type declaration:

7

data T = C1(T11, . . . , T1k1
)

| C1(T21, . . . , T2k2
)

| . . .
| Cn(Tn1, . . . , Tnkn

)

Now suppose that while evaluating a term t, the value of an uninstantiated logic
variable x of type T is needed. Then the two approaches are as follows:

Reduction with term copying Separate terms t1, t2, . . . , tn are created,
where

ti ≡ t[(Ci(xi1, . . . , xiki
) where xi1, . . . , xiki

free)/x]

and the substitution is assumed capture-free. Then, n concurrent threads are
spawned, where the ith thread proceeds with reducing the term ti. The FLVM [1]
takes this approach.

Fixed code with store copying This approach considers a functional logic
computation to be the pair (t, s), where t is our term, represented as a pointer
to immutable code, and s is a store: a mapping from variables in t to values.
Separate computations (t, s1), (t, s2), . . . , (t, sn) are created, where

si ≡ s[xi1 7→ •] . . . [xiki
7→ •][x 7→ Ci(xi1, . . . , xiki

)]

where a variable which is mapped to • is uninstantiated. The FLI interpreter
follows this model.

The former approach has the advantage of being straightforward to implement
and enjoys the property that reduction of sub-terms which do not contain logic
variables can be shared across search alternatives. However, a significant amount
of term copying still occurs at narrowing points and being reduction-based, it is
naturally less efficient than compiled systems.

The latter approach avoids the overhead incurred by reduction, compiling
each function into an immutable piece of code. It also moves the copying problem
away from the term and into the store, thus opening the question of whether store
copying can lead to overall more efficient implementations than term copying. It
remains to be shown whether one approach is strictly superior to each other.

The work presented in this paper is concerned with ways to make store copy-
ing tractable in the FLC system.

2.2 The FLC system

A result of the ongoing FLP research effort at Portland State University, the
FLC compiler is a natural extension of the FLI interpreter. The goal of the

8

C C o r e S C o r e C P S C o r e R C o r eG N U Ca . o u tR T S
s t r i c t i f y c p s i f y c l o s e c o m p i l eg c cl i n k

Figure 1: FLC: compilation pipeline

FLC project is to provide a tractable, efficient, and low-level implementation
of functional logic programming. Unlike more widely accepted FLP language
processors (e.g. MCC [14] or Pakcs [8]), FLC implements a fair search strategy.
And unlike systems with a similar intent as its own (e.g. the FLVM [1]), FLC
takes the fixed code with store copying (see Section 2.1) approach to implementing
narrowing.

Figure 1 depicts the FLC compilation stages. Like the interpreter, its input
is CCore, a high level, lazy FLP language. CCore is translated into SCore, a
strict language with explicit operators for building and activating thunks. Fol-
lowing the compilation model described by Appel [3], SCore is translated into
continuation passing style (CPSCore), closure converted (RCore), and compiled
into a version of C which makes use of GNU extensions for reasons of practicality.
Finally, the resulting code is compiled and linked against the runtime system,
yielding a self-executable binary.

The FLC runtime system is composed of two main subsystems: memory and
thread management. The memory management system consists of a memory
allocator whose heap is presided over by a generational copy collector. Threads
are needed to implement fair search, with each search alternative running in
a separate thread. Threads are not truly parallel; the execution of threads is
explicitly interleaved by a scheduling algorithm which resides in the FLC runtime,
with each thread being given a fixed amount of CPU usage before it is preempted.
Finally, as discussed in Section 2.1, each search alternative (corresponding to a
thread in the runtime) is associated with its own variable store. FLC uses a
formulation of first-class stores for this purpose.

2.3 First-class stores (FCS)

Generally speaking, the term first-class store (FCS) describes a language con-
struct which allows treating stores as first-class citizens. The term store in
this context typically refers to a reference store, as in Standard ML [4] and
O’Caml [11]; but more abstractly, a store is simply a mapping from references
to values. FCS systems typically allow several stores to coexist, and any given

9

signature FCS =

sig

type ’a store

type ’a sref

exception BadIndex

val new : ’a -> ’a store

val checkpoint : ’a store -> ’a store

val update : ’a store -> ’a sref -> ’a -> unit

val allocate : ’a store -> ’a -> ’a sref

val deref : ’a store -> ’a sref -> ’a

end

Figure 2: A Standard ML signature for first-class stores

structure Fcs : FCS =

struct

type ’a sref = int

type ’a st = (’a Array.array) * (’a sref ref)

exception BadIndex

fun new v = (Array.array(SIZE,v),ref 0)

fun checkpoint (s,nextRef) =

let val (ret as (newStore,nr)) = new (Array.sub (s,0))

in Array.copy {di = 0, dst = newStore, src = s};

nr := !nextRef;

ret

end

fun allocate (s,nextRef) v =

let val next = !nextRef

in nextRef := !nextRef + 1;

Array.update(s,next,v);

next

end

fun update (s,_) r v =

Array.update(s,r,v) handle Subscript => raise BadIndex

fun deref (s,_) r =

Array.sub(s,r) handle Subscript => raise BadIndex

end

Figure 3: A Standard ML implementation for first-class stores

10

reference can be successfully dereferenced in one or more stores.
Figure 2 presents a possible Standard ML signature for FCS and Figure 3

gives a very simple implementation which should capture all of the important
invariants that implementations of first-class stores should respect.

The new operation generates a fresh store, unrelated to any other store in the
program. The allocate, deref, and update operations correspond to the usual
operations on store references. They correspond, for example, to the O’Caml
ref, (!), and (:=) operators, respectively. The main difference is that each FCS
operator is also parameterized by the store in which to perform the respective
operation, in addition to the reference itself. The checkpoint operation takes
a store and yields a complete copy of that store. Subsequent operations in one
store (either the copy or the original) are not to affect the other in any way.

The checkpoint operation is fundamentally important to most uses of FCS,
and a prime motivator for the invention of FCS systems. Since stores are used to
maintain state for some part of a program, copying a store effectively “freezes”
program state, allowing it to later be restored. This pattern allows attractive
solutions to problems such as undo/redo [6], replay debugging [20], demonic
memories [22], nested transaction systems [15], and thread local storage.

Other formulations of FCS can be found in the GL programming language
by Johnson and Duggan [10], and Morrisett’s FCS extension for Standard ML
of New Jersey [15].

2.4 Challenges

To give a better feel for how first-class stores are used in the runtime system,
Figure 4 sketches a Standard ML implementation of the core narrowing rou-
tine, using an implementation for the FCS signature presented in Figure 2 that
respects the first-class store properties we established in Section 2.3.

The implementation sketch follows the fixed code with store copying model
that we established in Section 2.1. A type is represented as a sequence of con-
structors of fixed arity. Among the terms in our language we have Undef, de-
noting the uninstantiated state in a logic variable; Var, denoting a logic variable;
and Constr, denoting a constructor. The threadQueue object represents the
global computation queue, containing all the pending search alternatives (which
are computations) at any given point.

The function narrow takes a computation (which as discussed in Section 2.1,
is represented as a pair of a term and a store), a reference into the store, repre-
senting the variable that is being “narrowed on,” and the type of that variable,
and creates several concurrent computations, one for each constructor in the
type. The spawn function spawns one computation given a corresponding con-
structor. First, a copy of the original store is made by invoking checkpoint (line

11

1 type name = ...

2 type arity = int

3 type typ = (name * arity) list (* type *)

4 datatype term =

5 ...

6 | Undef (* uninstantiated *)

7 | Var of (term Fcs.sref) (* logic variable *)

8 | Constr of name * term list (* constructor *)

9

10 type comp = term * term Fcs.st (* computation *)

11

12 (* global computation queue *)

13 val threadQueue : comp Queue.queue = Queue.mkQueue()

14

15 fun narrow (term,store) refn dType =

16 let fun spawn (cName,cArity) =

17 let

18 val newStore = Fcs.checkpoint store

19 val cArgs = List.tabulate

20 (cArity,

21 fn _ => Var(Fcs.allocate newStore Undef))

22 in

23 Fcs.update newStore refn (Constr(cName,cArgs));

24 Queue.enqueue(threadQueue,(term,newStore))

25 end

26 in

27 List.app spawn dType

28 end

Figure 4: A Standard ML narrowing implementation

12

18). Then, new uninstantiated variables, corresponding to the the constructor’s
arguments, are allocated in the new store (lines 19-21). A new constructor value
is created and used to update the original variable (that is being narrowed on)
in the new store (line 23). Finally, the new computation is added to the global
computation queue (line 24).

Whenever the value of an uninstantiated logic variable is demanded in a
certain computation, this function is executed, causing the store at that com-
putation to be checkpointed several times. Since this process is quite common
in FLP, it is necessary that the checkpoint operation is implemented very ef-
ficiently. Moreover, as we will see, benchmarking in FLC has shown that the
deref function is executed often and should be as efficient as possible. The
problem is further exacerbated by the fact that choosing a data representation
solely for efficiency purposes solves only part of the problem. Tolmach, et al. [19]
observed that several garbage collection-related issues arise when using first-class
stores to implement narrowing as explained in this section. To see why this is,
briefly consider our first-class store representation in Figure 3. Suppose that,
using this implementation, we ran a program that allocated many objects in
one store never needed to checkpoint that store. If running with a “normal”
garbage collector, all the allocated objects would remain live until the end of
the program, despite the fact that the store references by which they could be
accessed from the user program might have become garbage.

2.5 Summary

The implementation challenge boils down to finding an FCS data representation
which will allow near constant-time operations on stores while remaining straight-
forward to garbage collect. Fortunately, there are ways to design a semantics-
preserving representation for FCS that improve the situation significantly. The
work of Driscoll, et al. [5] offer a good start toward inspecting efficient imple-
mentations in terms of versioned data structures.

3 Technical Details

The purpose of this section is to introduce the reader to the FLC system, in order
to facilitate understanding the details of later sections. We begin by quickly
introducing the compiler, and then give an overview of the runtime system’s
internal architecture.

13

3.1 The compiler

As mentioned in Section 2.2, FLC compiles a high level FLP core language
(CCore) to GNU C. GCC is then invoked on the resulting code to produce an
object file, which is then linked against the runtime system to obtain a standalone
program. Reasons for choosing GNU C as our final target language included
GCC’s ubiquitousness and portability, but most importantly, we chose GCC due
to a crucial non-standard extension: first-class labels [17]. First-class labels allow
assigning labels (jump points) into variables, pass them into and out of functions,
and generally treat them as any other program value. This allowed us to build
a simple compiler from closure-converted CPS to C with the following general
properties:� The resulting program consists of only one C routine: main().� Each function is compiled into a sequence of C code preceded by a label.� Arguments to functions are local variables in main(), named arg1 through

arg10.� Calling a function with N arguments consists of (a) setting arg1 through
argN to the appropriate argument values, and (b) jumping to the label
corresponding to the function.� Indirect calls (e.g. calling a function that is stored in a variable) are handled
by the use of first-class labels.

This approach to compilation yields programs which use constant C stack
(namely one frame for main()) and no extra work has to be done to enforce this
property.

3.2 The thread model

As briefly mentioned in Section 2.2, FLC implements a simple scheduler which
explicitly interleaves the execution of search alternatives, which we also refer
to as “threads.” Figure 5 shows the basic thread structure in FLC and some
important global objects pertaining to the thread system. A thread, as discussed
in previous section, is composed of executable code (the codeptr field) and a
first-class store mapping variables in that code to values. The codeptr field is
a suspended closure: a closure which is stored together with the argument it is
to be applied to. The details of code representation are beyond the scope of this
paper, however, and will not be considered any further.

14

typedef struct Thread {
Fcs store;

Code codeptr;

} * Thread;

Thread thread_current; /* currently executing thread */

Queue thread_queue; /* pending threads */

Figure 5: FLC: thread model

The thread current global contains the currently executing computation
and the thread queue contains all pending threads, i.e., all threads in the pro-
gram except for the currently executing thread. To schedule the next thread, the
scheduler enqueues thread current onto thread queue, sets thread current

to the first element on thread queue, and begins executing it. When a thread
fails or is done computing, it is dropped (it will not be enqueued again); the next
thread is then dequeued and executed.

3.3 First-class store interface

FLC uses first-class stores in its implementation of narrowing, as discussed in
section 2.2. The first-class store implementation in FCS is hidden behind an
interface which and the runtime system and mutator guarantee not to violate,
meaning that the runtime system and mutator are unaware of the underlying
data representation. (In fact, the mutator is disallowed, by design, to hold a
direct pointer to a first-class store object.) Figure 6 shows the basic C-level
interface for first-class stores, which corresponds directly to the SML signature
in Figure 2. Since, in FCS, there is no reason for a dereference operation to fail
legitimately, there is no error return from fcs deref; failure halts the program,
as it is proof of a bug.

FLC maintains two important FCS-related invariants, which we will be ex-
ploiting later. First, the FCS implementation is completely shielded by the in-
terface; no part of the system accesses the internal data representation, except,
of course, for the garbage collector. And second, the running program is not al-
lowed, by design, to hold a direct pointer to a first-class store object. First-class
store objects are pointed to strictly by Thread objects, which are all maintained
by the runtime system, and to which the running program is agnostic. More-
over, the only store object that can be “acted upon” at any point, whether by
the running program or RTS itself, is the store in the current thread. This is
enforced by exposing only a specialized interface to the program, which fixes the

15

typedef Fcs ...

typedef SRef ...

Fcs fcs_new(void);

Fcs fcs_checkpoint(Fcs);

SRef fcs_allocate(Fcs, Value);

void fcs_update(Fcs, SRef, Value);

Value fcs_deref(Fcs, SRef);

Figure 6: FLC: first-class store interface

store argument to the store belonging to the current thread. E.g.,

#define DEREF(r) fcs_deref(thread_current->store,(r))

#define UPDATE(r,v) fcs_update(thread_current->store,(r),(v))

...

4 Data Representation

In this section, we explore issues related to discovering and implementing a good
data representation for first-class stores in FLC. A key point to note right from
the start is that what might be a tractable implementation elsewhere, or a good
general implementation, could prove to be completely inadequate in FLC. To
understand why this is, we will state and motivate two major design constraints
to guide the rest of our exploration. The data structure we design must admit

1. a very efficient implementation of deref

2. easy, efficient, and correct garbage collection

While the latter constraint appears quite superfluous at first glance, we will see
that, with all tradeoffs considered, it becomes of central concern; in some cases
we will need to “enhance” the system’s notion of liveness to gain acceptable
runtime behavior.

To shed some light on the first constraint, consider the data in Figure 7. Us-
ing a straightforward FCS implementation1, we recorded runtime data for four
programs (see Appendix A) and determined that deref, update, and allocate

are the three FCS operations in highest demand. The table shows percentage
of calls to FCS operations over the runs of the four programs. The first four
columns show demand of each operation, as a percentage of the total number of

1The implementation we used in this test is discussed in Section 4.2.1

16

deref update allocate checkpoint FCS Overall
ndtest 7 79.07 9.36 11.22 0.03 12.38
perms 7 75.35 13.29 11.29 0.03 12.86
nat 400 400 70.78 17.04 12.17 — 10.68
fibo 27 77.74 13.00 9.24 0.00 11.46

Figure 7: FLC: first-class store usage (percentages)

calls to the FCS interface. The last column shows percentage of calls for all FCS
operations combined, with respect to the total number of calls in the runtime.
A value of “—” denotes a number that was too low to measure accurately. The
data points out two major important factors to consider when designing a FCS
data representation. First, the deref operation is in substantially higher demand
than its peers, indicating that we should give it special consideration; perhaps,
at the expense of slowing down other FCS operations. Second, the FCS imple-
mentation is in high demand in the runtime in general, meaning that changes in
FCS performance have a large impact on general FLC performance. We should
therefore look to make our first-class store representation very efficient.

To fully capture the essence of the second constraint, we will be formulating
a number of properties and definitions which will guide our approach to system
design and implementation in later sections.

Property (Stores One-to-one Correspondence): There is a one-to-one
correspondence between threads and stores. There are two points in the RTS
which yield new threads: (a) system initialization, when the program is prepared
to be run, and (b) narrowing in an existing thread. In (a), the new thread is
given a store which is acquired via the new operation and so the thread and store
have a one-to-one correspondence. In (b), the store is acquired via checkpoint,
which we know to produce an independent copy of a current store, so the thread
and store are in one-to-one correspondence again. �

An important consequence of the One-to-one Correspondence property is the
fact that when a thread becomes unreachable, so does its corresponding store.
We can further elaborate this fact into another important property:

Property (Stores Correct Collection): Once a thread becomes garbage,
its corresponding store and all the values that are reachable only through its cor-
responding store will immediately become garbage. �

One may think that the latter property is superfluous; that when a store
becomes unreachable, those values that are reachable only from that store should
necessarily follow. However, we intend to be very clever in data structure design;
for example, it may be desirable to avoid keeping values in the store altogether,

17

and keep them in other, related, data structures.
Now that we have established some properties for correct store collection, we

turn to the more complex issue of store reference collection. When a reference
becomes unreachable, we should not have to wait for its corresponding store to
become garbage before the value “indexed” by that reference becomes garbage.
In fact, the issue is much more complicated: there may be several stores, perhaps
a very large number of them, in which the reference can be looked up. We arrive
to the following property:

Property (Reference Garbage): When a store reference becomes garbage,
the data that it points to (in all the stores that it can be dereferenced in), provided
it is not reachable from elsewhere, also becomes garbage. �

Earlier, we have established that checkpoint is directly associated with nar-
rowing, and stores are in a one-to-one relationship with threads. The thread
that narrowing occurs in is replicated a number of times, and its corresponding
store is checkpointed accordingly. After this process, however, the thread is
discarded, and so is its corresponding store! We can then state the following
property:

Property (Store Liveness): Upon narrowing, the thread that narrowing oc-
curs in immediately becomes garbage, and so does its corresponding store. There-
fore, subsequent operations in that store are illegal. �

The FLC runtime respects this property, but it is not explicitly enforced in
the store interface or implementations. We state one final set of invariants which
will play an important role in the rest of the paper:

Property (Store Reachability): The mutator is disallowed by design to
hold references to stores. All the stores in the program can be found in (a) the
current thread, and (b) threads on the global queue.

Definition (Checkpoint Path): We say that there is a checkpoint path
between two stores Hc and Hp if either (a) Hc was checkpointed from Hp, or
(b) Hc was checkpointed from H ′

p and there is a checkpoint path between H ′

p

and Hp. �

Property (Reference One-to-many Correspondence): A reference p
can be dereferenced in any number of stores H1, . . . , Hn as long as there is a
checkpoint path between Hi and H, where H is the store in which p was initially
allocated. �

In the rest of this section, we will consider various approaches to data rep-
resentation for first-class stores. In Section 4.1, we will consider a “traditional”
approach to stores, where stores are data structures holding data and references
are indices into these structures. Section 4.2 reverses the roles of stores and
references; data is stored in references and stores are indices into references.
Throughout the design process, we will make sure that every approach strictly

18

respects the properties established above.

4.1 Stores holding data

Traditionally, stores have been implemented as straightforward mappings from
“keys” to “values” (or references to data). A trivial implementation might rep-
resent the store as an array of data and references as integer offsets into the
array. Fancier implementation might represent stores as self-balancing trees or
fine-tuned hash tables. In this section, we explore two representations for first-
class stores, where the data is held in the store data structure. First, we briefly
consider a hypothetical red-black tree implementation and then an array-based
implementation.

4.1.1 Red-black trees

It is conceivable that we could represent stores as red-black trees (or any func-
tional data structure for dictionaries), and references as any suitable key type.
This approach seems promising with respect to our first constraint: searching
a store is order O(log n). Although we are yet unsure whether this is sufficient
performance for our goals, there are more important issues to consider. For
example, checkpoint might become unduly expensive if stores are sufficiently
large on average.

Leveraging ideas from the world of purely functional data structures [16], we
can attempt to devise a tractable checkpointing mechanism. Instead of building
a complete duplicate of a store, we instead do no work at all and return a pointer
to the tree. Upon update, we copy the tree nodes on the spine leading to the
node containing the value in question, but maintain the rest of the tree as-is. We
do the same thing upon allocate. If allocate induces a rotation, we also have
to copy all nodes which change their position relative to the root. In a worst-
case scenario, a rotation near the top of the tree might cause the entire tree to
be copied... Note that while it may seem that we are violating the One-to-one
Correspondence property, this is actually not the case. Two threads can point
to the same store as long as they are ready to copy it upon mutation.

Overall, since we make copies of everything that we “mutate” and never assign
to existing data structures, we maintain a non-interference property between any
two stores related by a fork path. This approach, however, has one irreconcilable
complication with respect to our garbage collection-related constraints. If the
program being run contains no non-determinism, and hence no narrowing, the
entire execution will occur in the context of a single store. Presumably data
will repeatedly be allocated in this store, but will it ever be freed? Without
additional work in the collector, every allocated value will remain live until the

19

end of the program; a clear violation of the Reference Garbage property. This is
certainly unacceptable, but is there something we can do to fix it?

We could “notice” when references become garbage and try to manually force
their corresponding values to garbage during collection. This would involve a
large amount of bookkeeping; we would have to actively maintain a mapping
from references to lists of stores, updated during allocation. During collection,
we would identify the garbage references, look them up in our map, track down
their corresponding stores, and remove their corresponding values from each
store.

This approach is infeasible, however, due to the fact that identifying all the
garbage references at collection time before collecting all the stores is impossible.
Since references are first-class citizens, they can certainly be stored as values in
stores, meaning that identifying all the live references involves scanning all the
live data. Due to its several complications, this approach will not be considered
further.

4.1.2 Contiguous memory regions

Having given up on our fancy red-black tree data structure, we attempt a more
“bare-metal” approach: we represent stores as arrays and references as integer
offsets. An encoding in FLC might look like the following2:

typedef unsigned int SRef;

typedef struct {

size_t size;

size_t cursor;

Value data[1];

} * Fcs;

The purpose of size is to keep track of the overall size of the number of pos-
sible elements in the data array, and cursor holds the next free index. When
(size==cursor) becomes true, the store is resized. To accommodate for the fact
that the allocation routine may return a new (resized) store, we need a slight
change to the store interface:

SRef fcs_allocate(Fcs*, Value);

The advantage of this scheme is extremely good (constant-time) deref and
update performance. These operations can be implemented as trivial macros:

#define fcs_deref(h,i) ((h)->data[i])

#define fcs_update(h,i,v) {(h)->data[i] = (v);}

2
Value is used as a typedef for void*

20

Checkpointing, however, is slightly more complex. Unlike in the red-black tree
case, we do not have the luxury of partial copying; we must copy the entire store.
Since checkpointing is quite infrequent and copying contiguous memory regions
is a very straightforward, fast operation (one allocation plus one memcpy()), so
speed is not an issue. We should, however, be concerned with potential space
usage issues. Brief testing showed that stores make up more than half of the live
data at any point; a very worrisome figure.

One may think that a sort of copy-on-write policy can be deployed here, where
stores are not copied immediately upon checkpoint, and the copying could be
delayed until the next update or allocate operation. This could certainly be
done, but it turns out it is a quite useless optimization, since the general pattern
of narrowing entails a checkpoint immediately followed by an update in the
new store.

Contiguous memory regions look quite good performance-wise, but they be-
have just as badly as red-black trees when it comes to collection. They suffer
from the same reference liveness detection problem: all the live data must be
scanned before we can determine exactly which references are garbage. Further-
more, explicitly deleting garbage values results in sparse stores, which can cause
large space leaks unless we deploy a more complex allocation algorithm which
can efficiently reuse indices. Finally, due to its several complications, we decide
not consider this approach any further.

4.1.3 Summary

The general patterns that have surfaced in our exploration of the “stores hold-
ing data” approach are that the operations that we are concerned with can be
made very fast and we get the Stores Correct Collection property for free, but
significant complications are encountered when factoring in garbage collection.
Namely the Reference Garbage property does not follow naturally, and significant
(intractable) machinery must be exercised in order to correct this shortcoming.

4.2 References holding data

In previous work [19], we presented an approach to first-class store representation
that was very different than the “traditional” view which we discussed above.
Instead of storing data in the store data structure, we store it in the reference
itself! While in the previous approaches we considered stores to be collections of
values, each value “tagged” by a reference, here we reverse the roles of store and
reference, and consider references to be collections of values, where each value is
tagged by the store it was allocated in. Essentially, references become versioned
pointers, or “fat nodes,” as discussed by Driscoll et al. [5].

21

This approach leads to an important issue: if all the data is stored in ref-
erences, (a) how do we represent stores, and (b) how do we implement the
checkpoint operation? As explained earlier, stores are now simply tags which
are used to look up a value in a reference. Therefore, to answer part (a), stores
need not be anything more than generated values, such as integers or reference
cells. Part (b) is a bit more complicated. An extremely naive approach would
be to, when given a store to checkpoint, do something of the form:

checkpoint(h) ≡
h′ = generate new store number

for every reference p
if (h,v) exists in p then

insert into p (h′,v)

where (h, v) denotes a tagged value: v is the value and h is the store tag. If we
were to take this approach, the following property should hold:

Property(Correct Dereference): If a reference p can be dereferenced in
a store h then a value tagged by h must exist in p. Therefore, dereferencing p in
h is a matter of searching p’s contents. �

The approach is, however, intractable. Not only would we have to maintain
a side list of all the references in the program, but the checkpoint operation
would be order O(pq), where p is the total number of references in the program
and q is the average number of values per reference.

Fortunately, we can take advantage of an important FCS invariant to improve
the situation significantly. The Store Liveness property states that threads be-
come unreachable after being narrowed in, and so do their corresponding stores.
Since checkpointing occurs exactly at narrowing points, it is always the case
that after narrowing, the checkpointed store becomes immediately unreachable,
and so we are guaranteed that no further operations can be performed on it.

We can exploit this property to represent stores as sequences of tags which
encode “checkpoint histories.” In a sequence h0, h1, . . . , hn, h0 is the tag of the
store in question, h1 is the tag of the store that h0 was checkpointed from, and
so on. In any checkpoint history, the last element is the tag of a store which
was acquired via the new operation. The general idea is that by representing
stores as checkpoint histories, for any given store we can very quickly access
its “ancestors.” This allows us to have a light checkpoint operation, which
does not modify the contents of any store references. Then, when looking up a
reference in a store that was the result of a checkpoint, we can look up that
reference in each of the “ancestors” until we succeed. We need not worry that
“ancestors” might be modified in another part of the program and so we might
end up looking up bogus values, because, as established above, any store that is

22

an “ancestor” (i.e, checkpoint has been invoked on it) is unreachable from the
program.

The first obvious consequence of this approach is that the checkpoint oper-
ation is constant time:

checkpoint(hseq) ≡
h′ = generate new store number

return (h′ :: hseq)

where (a :: b) (pronounced “a cons b”) is used to represent a sequence whose
first element is a and whose “tail” (the rest of the sequence) is the sequence b.
The second consequence is that the Correct Dereference property, as stated in
the context of the previous approach, no longer holds. We have to restate it:

Property(Correct Dereference’): If a reference p can be dereferenced in a
store h :: hs, then either a value tagged by h exists in p, or p can be dereferenced
in hs. �

With this in mind, we can sketch the deref operation as follows:

deref(store,p) ≡
if store is the empty sequence then error

else

store ≡ h :: hseq
if (h,v) exists in p then return v
else deref(hseq,p)

deref is now order O(n+k), where n is the maximum length of a store sequence
and k =

∑n

1
ki, ki being the cost of determining whether a reference contains a

value tagged by a given store. As we will see, ki can be easily reduced to the
number of values in a reference, or even amortized to a constant.

The key advantage that the references holding data approach has over the
previously considered stores holding data approach (Section 4.1) is the fact that
it is significantly easier to respect the properties we established at the outset of
this section. The Reference Garbage property now is implicitly respected; we
do not need to do additional work to enforce it. On the other hand, the Stores
Correct Collection property no longer holds naturally, but it is relatively easy to
enforce. Notably, no bookkeeping is necessary during mutation, and the overhead
added to the collection phase is negligible. We can notice at collection time when
stores become garbage; then, when scanning individual values in a reference, we
can determine very quickly whether their corresponding stores are garbage, and
purposely fail to mark them as live. The details involved in this process will be
explained in Section 5, but for now suffice it to say that we believe the references
holding data approach has numerous benefits, leads to good implementations,
and we will favor it over our previous attempts.

23

1 40
3 2 4 b 0 a2 d 1 e4 f

r 0r 1r 2 3 cs 0s 1
s 3 s 2 s 4

Figure 8: Linked list FCS representation

4.2.1 Linked lists

We begin by considering an obvious approach to implementing the references
holding data approach: we represent references as linked lists of (store tag, value)
pairs, stores as linked lists of store tags, and store tags as integers. Data decla-
rations for this approach in FLC might be as follows:

typedef struct SRef *SRef;

struct SRef {
int store_tag;

Value value; /* tagged value */

SRef next;

};
typedef struct Fcs *Fcs;

struct Fcs {
int tag; /* store tag */

Fcs next; /* checkpoint history */

};

A store and store reference are both linked lists. The former is a sequence of store
tags (the checkpoint history) and the latter is a sequence of tagged values. To
visualize how this approach works in general, consider Figure 8, which shows the
state of five stores and three references after the following sequence of commands:

Fcs s0,s1,s2,s4,s4; SRef r0,r1,r2;

s0 = fcs_new();

r0 = fcs_alloc(s0,(Value)’a’);

s1 = fcs_checkpoint(s0);

r1 = fcs_alloc(s1,(Value)’e’);

s2 = fcs_checkpoint(s1);

fcs_update(s2,r1,(Value)’d’);

24

s3 = fcs_checkpoint(s2);

fcs_update(s3,r1,(Value)’c’);

s4 = fcs_checkpoint(s0);

fcs_update(s4,r0,(Value)’b’);

r2 = fcs_alloc(s4,(Value)’f’);

As can be seen, though each store is a linked lists of tags, the entire set of stores
forms a reversed tree in memory. The tree is an accurate account of checkpoint
activity; it is evident which stores are the descendents of which stores.

We have established that in order for a store representation to be viable, it has
to provide good deref performance, and it has to admit an efficient garbage col-
lection implementation while respecting the properties stated at the beginning of
this section. To start addressing the former, we might try a very straightforward
implementation for deref, where a linear search is performed in the reference
for each tag number:

Value fcs_deref(Fcs st, SRef ref) {

SRef r;

for (; st; st = st->next)

for (r = ref; r; r = r->next)

if (r->store_tag == st->tag)

return r->value;

}

This implementation runs in O(nk) time, where n is the maximum length of a
store and k is the length of a store reference. This is quite bad, given our goals.
We can quickly improve the situation by simply keeping data in references sorted
by store tag, in reverse order. Since stores are also reverse-ordered sequences of
store tags, we can iterate the two sequences in a concurrent manner:

Value fcs_deref(Fcs st, SRef ref) {

while (st && ref) {

if (st->tag == ref->store_tag)

return ref->value;

else if (st->tag > ref->store_tag)

st = st->next;

else

ref = ref->next;

}

}

The new implementation runs in O(n + k), a clear improvement over the for-
mer. Performance of the other store operations is not affected by our change.

25

checkpoint and alloc remain unchanged; update still has to perform a linear
search (O(k)).

With respect to garbage collection, we established earlier in this section that
the Reference Garbage property holds trivially. When a reference becomes un-
reachable, so do all of its nodes. If some values are reachable only from the
reference, they will naturally become garbage. The Stores Correct Collection
does not immediately hold, however. A store (which is a list of tags) can natu-
rally become unreachable when its corresponding thread becomes unreachable,
but several live references may hold values tagged by that particular store, val-
ues which, without additional work, remain unnecessarily live. We can fix this
problem by using a collection algorithm which roughly performs the following
steps:

1. Walk the thread queue and mark all stores on the queue as live. (See the
Stores Reachability property).

2. Perform a normal GC; however, when encountering a store reference node,
if its corresponding store has not been marked live, re-link the reference
list around it.

The latter may be done with light bookkeeping, by creating a list of all the live
stores during step (1). We can, however, avoid all bookkeeping by replacing
the store tag in each reference node with a store pointer. This would involve a
slight change to our store implementation to do pointer comparison instead of
tag comparison, but it would allow us to very quickly identify whether the store
associated with a tagged value in a store reference was live.

4.2.2 Hash tables

Another data representation for the “references holding values” approach might
involve using a hash table [18] instead of a sorted linked list to represent a store
reference. The hash table would give amortized constant time to determine
whether a value exists in the reference for a given tag, so deref would run in
O(n) where n is the length of the store (checkpoint history). An added bonus
of a hash table representation is that update becomes constant-time. With a
proper implementation, we should expect to see a big speed increase over the
linked list approach, at the expense of space.

During the evaluation of the hash table approach, we discovered that the
deref operation is indeed an extremely important variable in system perfor-
mance. So much so that a simple tweak of the hashing function could result in
very notable differences in performance. Therefore, we were faced with a set of
important tradeoffs. First we had to pick the right hash function; better hash

26

functions are more expensive but lead to better data distribution and fewer colli-
sions, and simpler hash functions run very fast but may lead to poor distribution
and a high number of collisions. Second, we had to decide whether we should
try to shrink tables when occupancy became very low. Tables whose size is a
prime number offer overall good behavior under appropriate hash functions [18],
but shrinking such a table is an expense we cannot afford: one would have to
rehash every value in the table to its new location. On the other hand, tables
whose size is a power of 2 (assuming a chaining implementation) can be shrunk
down very efficiently, via an algorithm linear in the table size.

We attempted several hash table implementations, using both open address-
ing and chaining. In each, the hash function turned out to be a major perfor-
mance variable. In fact, anything more complex than a mod operation would
easily make deref the most expensive operation in the system. In the end, a
power-of-2 hash table with chaining and a mod function turned out to be the best
performer. In addition to being relatively easy to garbage collect, the power-of-2
table admits a very fast mod operation, since the following property holds when
size is a power of 2:

mod(key,size) ≡ key & (size-1)

where (&) is the logical and operator.
Garbage collection issues for chained hash tables remain relatively the same

as those for the linked list approach (Section 4.2.1). Instead of fixing a single
linked list per store reference during collection, we now work with an array of
linked lists (buckets). For each bucket, we proceed to force dead values to garbage
in a way identical to the linked list approach.

4.3 Comparisons

In this section, we compare the relative performance of the representations we
have considered so far. We have gathered data for five implementations on four
programs. The five implementations are as follows:� Hash open addressing: A store reference is a prime sized table which uses

open addressing for collision resolution.� Hash chaining (prime size): A prime sized table which uses chaining for
collision resolution. The table is an array of linked lists, each list holding
values which hashed to that same “bucket.”� Hash chaining (power of 2 size): Same as above, but uses power of 2 sizes.� Linked list: A store reference is a linear linked list of store-tagged values.

27

 0

 1

 2

 3

 4

 5

fibo 27nat 400 400perms 7ndtest 7

R
el

at
iv

e
sl

ow
do

w
n

hash open addressing
hash chaining (prime size)

hash chaining (^2 size)
linked list

stores as arrays

Figure 9: FCS comparison: relative execution time slowdown

 0.6

 0.8

 1

 1.2

 1.4

fibo 27nat 400 400perms 7ndtest 7

R
el

at
iv

e
to

ta
l a

llo
ca

tio
n

hash open addressing
hash chaining (prime size)

hash chaining (^2 size)
linked list

stores as arrays

Figure 10: FCS comparison: relative total allocation

28

� Stores as arrays: A “stores hold data” implementation, where stores are
arrays and store references are integer offsets, as discussed in Section 4.1.2.

The “stores as arrays” implementation was included in the comparison due to
its excellent runtime performance; it provides a very good normalization point
for speed, especially in deref-intensive programs such as ndtest.

Figure 9 shows relative execution time slowdown for the five implementations,
normalized around stores as arrays. The first thing to note is that the linked
list implementation is slightly over 16 times slower than the normal, which is not
evident in the graph in order to allow discerning between the other implemen-
tations. The power of 2 implementation is impressive, only slightly slower than
the normal in all tests, with prime size following closely. Note that the linked
list implementation, though proving to be inadequate in general, performs well
in the latter two tests. This is because they are not very deref-intensive, and
perform more allocation and checkpointing.

Figure 10 shows relative total memory allocation for the five implementations.
The numbers are normalized around the linked list implementation, which is
“optimal:” every allocated word is immediately needed. The relative differences
between the implementations are much smaller than in the timing test, but once
again, we can see that the power of 2 implementation is a good performer. Our
speed-for-space tradeoff is certainly reasonable.

Although the stores as arrays approach is very attractive, we will not be
considering it further due to severe garbage collection complications, as discussed
in Section 4.1. Whether this approach could be made feasible with clever enough
bookkeeping is an issue left for future work.

4.4 Conclusion

We have investigated various approaches to data design for first-class stores in
FLC. The unique design constraints that FLC imposes on our design process
led to a data representation that is quite esoteric: stores are linked lists of store
“tags” (unique numbers), representing checkpoint histories, and store references
are hash tables of values, keyed on store tag.

We favor the power of 2 implementation over the others in the rest of the
document due to its good overall performance and the fact that we believe it
can be garbage collected fairly easily. The next section describes the rest of a
complete, properly collected system which uses power-of-2-sized hash tables to
represent store references.

29

5 Garbage Collection

Having decided on a data representation for first-class stores, we now present
the design and implementation of a garbage collector that, besides working to
provide decent performance, enforces the properties we established in Section 4.

5.1 Design requirements

Like functional programs in a typical functional language processor, functional
logic programs in FLC involve a tremendous amount of implicit allocation. Fur-
thermore, FLC’s source language is lazy, meaning that every function invocation
causes its arguments to be suspended in “thunks,” which are also allocated in
the heap. Finally, FLC programs are concurrent, which involves added heap
allocation upon context switches. Therefore, the allocation routine must be very
fast.

Another important property of functional and functional logic programs is
that “most data die young.” A quick survey in FLC shows that 93% of closures
are garbage by the time a collection phase should kick in. On average over
the four programs considered in the previous section, approximately 78% of all
data is garbage by the time a collection should take place. We would like our
collector to avoid collecting prematurely; to avoid discovering a large amount of
live data right before it becomes unreachable. Collection should be delayed as
much as possible, to give data a good opportunity to become garbage before it
is considered.

A moving collector (e.g. copying, mark and compact [21]) satisfies the former
requirement: memory is allocated in a contiguous free region, so the allocation
routine consists of simply incrementing a pointer. The latter requirement is
typically satisfied by a generational collector. Instead of considering the entire
heap in one monolithic collection phase, we have two types of collections:� Minor: Frequent cycle which collects data in a small part of the heap

dedicated to allocation (a.k.a. nursery)� Major: Much less frequent cycle which collects a larger part of the heap.
In a two-generation collector, the major collects the entire heap.

The general idea is that the minor cycle “delays” a full heap collection by col-
lecting a little at a time. When the major kicks in, the overwhelming majority
of the data is expected to be garbage.

30

5.2 The basic collector

Given our design constraints, we decided to implement the generational copy
collector described by Appel [2]. The collector maintains two generations: newer
(or nursery) and older. The newer generation contains data allocated since the
last minor cycle, and it is the memory area that the minor cycle operates on.
The minor cycle copies all the live data in newer to to the end of older. Similarly,
the older generation contains data copied into it by the minor cycle since the last
major cycle, and it is the memory area that the major cycle operates on.

The collector makes one fundamental guarantee: as long as the live data is
equal to or less than half the size of the heap, the collector will not run out of
memory. Why do we need to make this guarantee? First of all, a copy collector
needs auxiliary free space to copy live data into at collection time. In a typical
two-space copy collector [21], the heap is divided exactly in two equal regions:
the allocation space and the auxiliary space. At collection time, the live data in
the allocation space is copied into the auxiliary space, and the roles of the two
spaces are reversed. The reason that the auxiliary space is equal in size to the
allocation space is that in case the entire allocation space is almost full with live
data, we would like the collection to succeed. We would like to make a guarantee
in our generational collector that is at least as strong as that of the two-space
one. In a nutshell, we maintain that if the size of the live data is less than half
of the heap size when a major cycle kicks in, the major will necessarily succeed.

To give a better idea of how the collector works, we show various heap states
during different phases of mutation and collection in Figure 11. Initially, in part
(a), the heap is divided exactly in two equal regions: older and newer. As the
mutator invokes the allocation routine, memory (gray area) is allocated in newer
until it fills up, as shown in part (b). Whenever newer fills up, a minor cycle
collects the newer space, moving the live data to the end of older, as shown in
parts (b) and (c).

After some period of time has elapsed and several minor cycles have occurred,
the heap is brought in a state similar to one illustrated in part (d). The older
generation is very close to the middle of the heap and the newer generation is
full. First, a minor cycle occurs as usual, collecting data in newer to the end of
older, as shown in (d) and (e). If, during a minor, the older generation becomes
larger than half of the heap, a major collection is invoked. A major is made up
of two phases. First, all the data in older, but ignoring the part of older that
was the result of the immediately preceding minor, is collected into the empty
space to the right of older, as shown in (e) and (f). Second, all the live data (all
shades of gray) is moved to the beginning of the heap, as shown in (f) and (g).
The newer pointer is then reset and mutation resumes.

There are a few subtle points in this process. For example, how does the

31

o l d e r n e w e r
o l d e r n e w e r

o l d e r n e w e r
o l d e r

n e w e r
o l d e r
o l d e r

o l d e r n e w e r

(a)
(b)
(c)
(d)
(e)
(f)
(g)

n e w e rG C
M O V E

G C

G C

Figure 11: GC: heap states at various points in mutation and collection.

32

major cycle get away with ignoring the memory collected in the last minor? And
how can we block-move an entire memory region without invalidating pointers
into that region? The answer to the former is simple: all the data copied into
older by the last minor is guaranteed live, since that’s the criterion by which it’s
copied. There is no need to collect a region which we know to be 100% live. The
answer to the latter is that we cannot simply copy the area as we claimed. We
must also re-adjust all memory references which point into the space where our
region used to be. Every root and every heap pointer is potentially in need of
re-adjustment.

5.2.1 Implementation overview

Before beginning to describe the collector itself, we need to explain some low-level
choices for data structures and introduce some C-level terminology. We chose
to represent the heap as a contiguous region of bytes, instead of say, words. As
such, our fundamental data type is

typedef char* GCPtr;

and the heap is presided over by a number of pointers:

GCPtr heap_begin; /* also the beginning of older */

GCPtr heap_reserve; /* end of older */

GCPtr heap_newer;

GCPtr heap_allocpt; /* end of newer */

GCPtr heap_middle;

GCPtr heap_end;

The end of newer (heap allocpt) is where new memory is allocated. The al-
location routine simply increments heap allocpt and returns its value prior to
the increment.

The collector is based around one fundamental routine, inspired by the im-
plementation of Appel’s collector in the 1992 version of the Standard ML of New
Jersey [4] runtime system:

void gc(GCPtr from_begin, /* beginning of space to collect */

GCPtr from_limit, /* end of space to collect */

GCPtr to_begin, /* beginning of "to" space */

GCPtr to_limit, /* end of "to" space */

GCPtr start_ptr, /* end of data already copied */

GCPtr **roots, /* roots */

GCPtr **wb, /* write barrier */

GCPtr *from_new); /* return end of copied data */

33

The gc() routine intends to be fully agnostic with respect to the rest of the
collector’s context. It refers to no global data and makes no special assumptions.
It simply copies all the live data between from begin and from limit into the
region delimited by to begin and to limit. The notion of liveness, for now, is
defined in terms of reachability via a pointer path of any length starting at the
roots array or the write barrier array (wb). It begins copying data into the “to”
space starting at start ptr, just in case some data has already been copied there
prior to the current invocation of gc(). Admittedly this feature exists solely to
make major collection easier, but the routine makes no further assumption about
whether it is performing a minor or a major cycle.

In addition to gc(), the collector is composed of a number of other routines,
the most important of which are:

/* public interface */

void gc_init(void);

Value gc_alloc(size_t nbytes)

void gc_collect(void);

void gc_barrier_add(Value *v);

/* key private routines */

void gc_callgc(GCPtr **roots,GCPtr **wb);

GCPtr forward(GCPtr ptr,

GCPtr from_begin,

GCPtr from_limit,

GCPtr to_begin,

GCPtr to_limit,

GCPtr *next);

The mutator invokes gc init() to initialize the collector: the heap is allocated,
and proper initial values are given to all the the heap pointers. As mutation
proceeds, memory is allocated via the gc alloc() routine. Whenever an update
which may assign a pointer into newer into a record in older, the mutator is
required to invoke gc barrier add() to place a reference to the pointer in older
on the write barrier. Finally, when the mutator decides that a collection should
occur, gc collect() is invoked.

Behind the public interface, when gc collect() is invoked, all the (pointers
to) roots are collected into a local array. The roots array and (the already
existing) write barrier array are then passed to gc callgc(). The latter routine
invokes gc() to perform a minor collection:

gc(heap_newer, heap_allocpt, heap_reserve, heap_newer,

heap_reserve, roots, wb, &new_reserve);

34

i.e., collect from newer into the end of older, and set new reserve to the end of
the copied memory. If in this process the older region straddles the middle of
the heap, gc collect() invokes a major:

gc(heap_begin, heap_reserve, heap_reserve, heap_end,

new_reserve, roots, NULL, &major_end);

Notice the key trick: the memory between heap reserve and new reserve is
ignored, since it is known to be 100% live (copied in the immediately preceding
minor). After the major, the area between heap reserve and new major is our
live data; it is block-moved to the beginning of the heap and all pointers are
readjusted accordingly. Finally, forward() is used by gc() to forward a single
pointer from one space to another. The next pointer holds the location where
the record should be copied. The routine modifies next accordingly, leaves a
forwarding pointer in the old record, and returns a pointer to the new copy.

5.2.2 Gathering roots

The following are sources of roots in FLC:� the execution context� the global thread queue� arguments to the currently executing mutator function

The execution context contains the current store and the currently executing
code. The store is a root; the code pointer is a root. The global thread queue
is processed similarly. Every store and every code pointer associated with each
thread are roots.

The arguments to the currently executing function are communicated be-
tween the mutator and the collector via an array. The array is set at system
initialization time to hold pointers to all the variables in which function argu-
ments are stored (see Section 3.1 for how function arguments are represented).
The mutator then communicates the arity of the current function to the collec-
tor, so the collector will know exactly how many elements in the roots array to
consider.

5.2.3 The write barrier

The write barrier is the set of pointers from the old generation into the newer
generation. It is necessary to keep track of these pointers in order to maintain
a correct notion of liveness throughout collection. To understand why we must

35

keep track of a write barrier, consider a record in newer which is pointed to
exclusively from older. When running a minor collection cycle, we only consider
the typical roots (previous section) to determine liveness. Therefore, our record
would be found to be garbage and subsequent uses of it (through the older
pointers) would be invalid. To ensure that the collector does not leave these
kinds of dangling pointers, the write barrier must be actively maintained and
considered as a source of roots.

The write barrier is eligible to be extended at any point in the mutator which
involves updating a record field. In the case of FLC, updates are strictly limited
to the update operation in the first-class store implementation. In a chained
hash table implementation for first-class stores, however, there are many (subtle)
opportunities for extending the write barrier, since internal table operations may
involve table resizing and bucket reassignment. Namely:� When inserting a value in the table, which we place at the head of the

bucket list, if the table is in older, the address of bucket goes on the write
barrier.� When updating, if the node whose value is to be replaced is in older and
the new value is in newer, the address of the value field in that node goes
on the write barrier.� When resizing a table, and therefore re-shuffling nodes, if the next pointer
of a node in older is assigned a bucket in newer, the address of the next
pointer goes on the write barrier.

Finally, the hash table insertion operation may return a new table, acquired via
an internal resize. In that case, if the store reference record which points to that
table is in older, the address of its table field goes on the write barrier.

5.3 A new notion of liveness

As discussed in earlier, without special modifications to the collector, our first-
class store implementation violates some of the properties we established in Sec-
tion 4, most importantly the Stores Correct Collection property. A liveness
estimate based strictly on reachability is therefore inadequate for our needs. To
better understand why it is so crucial that we adjust the implementation to
respect all established properties, consider Figure 12. The arrows represent com-
putation paths, or threads; each “fork” represents a narrowing point, where an
thread is split into two new threads. The right-side branches of the checkpoints
keep computing, repeatedly hitting narrowing points. The left-side branches,
however fail quickly after updating the reference p with a value. Upon failure,

36

f c s _ u p d a t e (h 1 , p , v 1) ;. . .< F A I L >
h 1

f c s _ u p d a t e (h 2 , p , v 2) ;. . .< F A I L >
h 2

f c s _ u p d a t e (h 3 , p , v 3) ;. . .< F A I L >
h 3

c h e c k p o i n t
c h e c k p o i n t

c h e c k p o i n t
Figure 12: Bad checkpoint situation

the thread becomes garbage and so does its respective store (denoted by h1,
h2, and h3). Since the stores die right away, if the reference p is still reachable
somewhere else in the program (which is likely), the values v1, v2, etc., will be
reachable though they are obviously garbage. This is clearly a problem if this
“narrow and fail” pattern computes for a considerable amount of time and if
the values v1, v2, etc., are large objects. The program nat (See Appendix A)
behaves precisely in this manner. We will later see (Section 6) that modifying
the collector in the manner described in this section is indeed essential.

To adjust our notion of liveness, we introduce a couple of definitions:
Definition(FLC Reachability): A record is reachable if a pointer to it can

be acquired via a pointer traversal of any length starting at the roots or the write
barrier.

Definition(FLC Garbage): A record is garbage if either� It is not reachable, or� It is reachable only from one or more store references in which it is associ-
ated with a store tag whose corresponding store is garbage.

Then, any record that is not garbage is said to be live. Without additional work,
it is obvious that the second clause of the FLC Garbage definition is violated.
We must augment the collector with code which explicitly forces those particular
records to garbage.

37

5.3.1 Implementation

Given our “references hold data” approach to FLC data representation, a fairly
simple, bookkeeping-free, garbage collection algorithm can be devised:

1. Copy all the live stores from the allocation space to the “to” space; all
stores that are garbage remain in the allocation space.

2. Copy all other live data; for each store reference node, check if the tag
belongs to a store that remained in the allocation space (and is therefore
garbage). If the store is garbage, re-link the store reference list around that
particular node.

The high level sketch may seem straightforward, but there are a number of subtle
details.

First of all, how do we copy all the live stores to the “to” space while ignoring
all other data? Since all pointers to live stores in the allocation space are either
in the current thread’s context or on the global thread queue, they are known to
be on the roots array. In a first phase, we could walk the roots array and copy
to the to space only stores and nothing else:

for each root r
if r is a store

forward r to the "to" space

Then, in a forwarding phase, we could forward all the stores’ next pointers,
making sure that all live stores are ultimately in the to space:

while there are more records to consider

scan <- next record

if scan is a store

forward scan->next to the "to" space

Finally, we could begin a normal collection.
Another question is, how can we identify whether a store is garbage given

only its tag? Our answer involved simply using store pointers, as opposed to
tags, to tag values in store references. We then have a simple way of determining
whether a reference node should be re-linked around: a reachable reference node
is said to be garbage, hence it can be safely discarded, if its store pointer points
to a store record which resides in the allocation space and has not been forwarded
to the “to” space.

The approach we took avoids walking the roots array several times, at the
expense of some code complexity. In the initial phase, we forward all the roots

38

and the write barrier, which includes all the live stores. However, when encoun-
tering a store reference, we put it on a worklist for future consideration. When
done forwarding all the live data, we turn to the worklist, processing it via an
algorithm similar to the following:

for each item s on the worklist

for each element b in s->table
for each node n in b

if n is garbage

link prev(n) to next(n)
else

forward n to the "to" space

We then alternate between forwarding and worklist processing until no more data
remains to be scanned. In the forwarding phase, we put all the store references
on the worklist. We then process the worklist, which may uncover yet more store
references.

5.4 Conclusion

We have presented the design implementation of a generational copy collector
for FLC, and augmented it with code that explicitly forces to garbage some
reachable values that are known to be garbage. Our decision to choose a copy
collector was based on the observation that allocation in FLC must be very fast;
a contiguous allocation space fulfilled this requirement. Our implementation,
especially of the aforementioned augmentation, is by no means optimized, and
we intend to improve it in future work (see Section 7).

6 System Evaluation

Figures 13, 14, and 15 give basic performance comparisons between our system
running without a collector, with a basic collector, and with a collector modified
to account for our adjusted definition of liveness (Section 5.3). The numbers
show averages over ten different runs in each case, and the tests were performed
on a 1.25 GHz Apple Powerbook G4 with 1GB of RAM.

We found it hard to perform a highly accurate, head-to-head comparison due
to the fact that our augmented collector is different than the normal collector in
ways besides the addition of the worklist algorithm. First, data representation for
a few of the runtime structures is slightly different between the two collectors,
causing the augmented one to allocate at a slightly slower rate, thus causing
fewer collections for an identical program run in identical conditions. Even after

39

ndtest 7 perms 7 nat 400 400 fibo 27

no collector 1.51 1.53 2.15 4.75
collector (30M) 1.98 (30M) 2.31 (40M) 5.93 (100M) 13.90
augm. collector (30M) 2.21 (30M) 2.63 (40M) 1.87 (100M) 10.81

Figure 13: Evaluation: basic run times (seconds) with heap sizes

ndtest 7 perms 7 nat 400 400 fibo 27

collector 0.300/0.546 0.690/0.482 3.546/0.509 5.254/1.195
augm. collector 1.219/0.019 0.817/0.481 0.020/0.355 4.302/0.089

Figure 14: Evaluation: time spent in collector/deref (seconds)

ndtest 7 perms 7 nat 400 400 fibo 27

collector 75.83 74.77 76.33 73.12
augm. collector 21.07 22.89 7.43 71.54

Figure 15: Evaluation: percentage of live data (calculated at majors)

adjusting heap sizes so that the two collectors performed an equal number of
collections, we still saw notable differences in runtime behavior. The main effect
of these differences can be seen in the (fibo 27) column in Figure 13. We should
expect this program to exhibit identical run times in the two collectors, possibly
slower on the augmented collector, due to the fact that the worklist code does
nothing useful in pure functional programs (i.e., programs which run in only one
store on which checkpoint is never invoked). Nonetheless, our final collector is
slightly faster; we suspect that low level data locality and layout differences play
a major role in the discrepancy. Finally, GC performance is highly dependent
on GC parameters. Since, as it stands, GC parameters are fully static (e.g.,
heap size is picked once at compile time), numbers between the uncollected and
collected systems should be taken with a grain of salt.

Figure 13 shows basic run times on the three systems on four test programs,
where the number in parentheses shows the (fixed) heap size that the program
was run in, where applicable. Going from an uncollected system to the basic
collector, we see a collector-induced performance overhead from about 30% in
programs with a significant amount of non-determinism to an extreme 290% in
the case of (fibo 27). The latter is due to the fact that the time spent in the
collector is largely wasted, since not much of the (very large amount of) data is

40

garbage at any point. Again, better performance could have been easily achieved
with a larger heap. Going from the simple collector to the augmented one, we
see a worklist-induced performance overhead of about 12% in the ndtest and
perms tests and, as discussed, a surprising speedup in the fibo case. The nat

test, however, exhibits a significant speedup over both the simple collector and
the original uncollected system.

Admittedly engineered to exhibit exactly the problem that the augmented
collector fixes, (nat n l) (see Appendix A for the source) narrows n times,
and at each narrowing point, it allocates a list of length l in a store whose
corresponding thread dies immediately. The augmented collector easily wins
because it identifies all the lists as garbage and collects them, while the simple
collector keeps every allocated list live and scans them on each cycle. The reason
that the augmented collector also outperforms the uncollected system is in part
because heap operations are less expensive in the collected system: pointers
contain fewer values, which cuts down on hash table size and number of times a
table is resized during the program run.

The latter two figures compare the collected systems. Figure 14 shows col-
lection overhead in time spent in the collector. The amount of time spent in the
deref operation is also shown, to give an idea of how the added code affected
its performance. The ndtest and perms examples show why the slowdown rate
in Figure 13 was so small: the significant increase in collection overhead (due
to the added worklist code) is proportional to a significant increase in deref

performance; again, due to the fact that deref traverses fewer nodes on aver-
age. Once again, nat shows a drastic overhead decrease in both deref and the
collector. The former is due to the fact that, as explained above, the collector
avoids scanning any of the allocated lists. The fibo test does not exhibit a big
difference, as expected.

Finally, Figure 15 shows the percentage of live data throughout the program
run. We calculated the live data at major collections; the numbers presented
are averages over all majors in each run. The data indicates that the augmented
collector does indeed collect more garbage in nondeterministic programs than
the simple collector can. The difference is most evident in nat, as expected, but
significant improvements can be seen in both ndtest and perms. Again, fibo
exhibits no big difference.

7 Conclusions and Future Work

We have designed, implemented, evaluated, and presented an efficient, hashing-
based data representation for first-class stores, and a complete generational copy
collector that is novel in its treatment of first-class store data structures. In

41

order to make our system exhibit intuitive space behavior, we found it necessary
to augment the collector with code that explicitly forces to garbage some values
which are reachable but known to be garbage. Our evaluation of the completed
system shows promising results. In particular, the performance overhead in
nondeterministic programs is manageable (especially given that our collector has
not been optimized for speed), and the collector induces a performance boost in
highly nondeterministic programs with a high rate of search failure. Though we
are not not ready for a formal comparison between FLC and other popular FLP
systems, a quick informal survey that FLC programs are between four and eight
times slower than equivalent programs running in the Münster Curry Compiler.
Given that our system has not yet been optimized, we believe that it has very
good potential.

The most obvious area of the collector that we can (and plan to) improve in
the immediate future is the code that forces dead values to garbage. Figure 14
shows that, when the these values are small (e.g., boxed integers), the collection
overhead increases significantly. We have a number of ideas for how to improve
this code. One is to keep all the stores on a side list (or chain them together) to
allow a fast way to forward them all in one step. When forwarding the rest of
the data, we would already know which stores are live and which are not.

In order to begin comparing our system to the Münster Curry Compiler,
Pakcs, and the FLVM, there are several standard optimizations that we would
like to apply. First, we would like to unbox integers. We expect this to complicate
the collector significantly, but it should yield a significant speedup in numerically
intensive code. Second, the runtime code, as it stands, is not optimized. Our
queue representation is relatively inefficient, for example, and several routines in
the runtime (including the collector) are inefficient first-approximations. Finally,
we would like to improve the FLC compiler backend with several static analyses.

Acknowledgements

Many thanks to my research advisor, Andrew Tolmach, for his very effective
guidance, useful criticism, and helpful comments on this paper. Many thanks to
Prof. Sergio Antoy for his very generous support during this project.

References

[1] Antoy, S., Hanus, M., Liu, J., and Tolmach, A. A Virtual Ma-
chine for Functional Logic Computations. In Proc. of the 16th International

42

Workshop on Implementation and Application of Functional Languages (IFL
2004) (2004), Technical Report 0408, University of Kiel, pp. 169–184.

[2] Appel, A. W. Simple Generational Garbage Collection and Fast Alloca-
tion. Software Practice and Experience 19, 2 (1989), 171–183.

[3] Appel, A. W. Compiling with Continuations. Cambridge University Press,
1992.

[4] Appel, A. W., and MacQueen, D. B. Standard ML of New Jersey.
In Proceedings of the Third International Symposium on Programming Lan-
guage Implementation and Logic Programming (1991), J. Maluszyński and
M. Wirsing, Eds., no. 528, Springer Verlag, pp. 1–13.

[5] Driscoll, J. R., Sarnak, N., Sleator, D. D., and Tarjan, R. E.
Making Data Structures Persistent. In Proceedings of the eighteenth annual
ACM symposium on Theory of computing (1986), ACM Press, pp. 109–121.

[6] G. B. Leeman, J. A Formal Approach to Undo Operations in Program-
ming Languages. ACM Trans. Program. Lang. Syst. 8, 1 (1986), 50–87.

[7] Hanus, M. A Unified Computation Model for Declarative Programming. In
Proc. 1997 Joint Conference on Declarative Programming (APPIA-GULP-
PRODE’97) (1997), pp. 9–24.

[8] Hanus, M., Antoy, S., Höppner, K., Koj, J., Niederau, P., Sadre,
R., and Steiner, F. PAKCS: The Portland Aachen Kiel Curry System,
2002.

[9] Hanus (ed.), M. Curry: An Integrated Functional Logic Language (Vers.
0.7). Available at http://www.informatik.uni-kiel.de/~curry, 2000.

[10] Johnson, G. F., and Duggan, D. Stores and Partial Continuations as
First-Class Objects in a Language and its Environment. In Proceedings of the
15th ACM SIGPLAN-SIGACT symposium on Principles of programming
languages (1988), ACM Press, pp. 158–168.

[11] Leroy, X., Doligez, D., Garrigue, J., Remy, D., and Vouillon,
J. The Objective Caml System.

[12] Lloyd, J. Programming in an Integrated Functional and Logic Language.
Journal of Functional and Logic Programming 1999, 3 (1999), 1–49.

43

[13] López-Fraguas, F., and Sánchez-Hernández, J. TOY: A Multi-
paradigm Declarative System. In Proc. of RTA’99 (1999), Springer LNCS
1631, pp. 244–247.

[14] Lux, W. The Münster Curry Compiler, 2004.

[15] Morrisett, J. G. Refining First-Class Stores. In Workshop on State in
Programming Languages (Copenhagen, Denmark, June 1993).

[16] Okasaki, C. Purely Functional Data Structures. Cambridge University
Press, 1998.

[17] Stallman, R. M. Using and Porting GCC. Technical report, The Free
Software Foundation, 1993.

[18] Thomas H. Cormen, Charles E. Leiserson, R. L. R. C. S. Intro-
duction to Algorithms. McGraw-Hill, 2001.

[19] Tolmach, A., Antoy, S., and Nita, M. Implementing Functional
Logic Languages Using Multiple Threads and Stores. In Proc. of the 2004
International Conference on Functional Programming (ICFP) (Snowbird,
Utah, USA, September 2004), ACM, pp. 90–102.

[20] Tolmach, A. P., and Appel, A. W. A Debugger for Standard ML.
Journal of Functional Programming 5, 2 (1995), 155–200.

[21] Wilson, P. R. Uniprocessor Garbage Collection Techniques. In Proc. Int.
Workshop on Memory Management (Saint-Malo (France), 1992), no. 637,
Springer-Verlag.

[22] Wilson, P. R., and Moher, T. G. Demonic Memory for Process His-
tories. In Proceedings of the ACM SIGPLAN 1989 Conference on Program-
ming language design and implementation (1989), ACM Press, pp. 330–343.

44

A Source Code for Tests

-- because mcc and pakcs disagree on the type of (&>)

onSuccess :: Success -> a -> a

onSuccess u v | u = v

norm x = seq x x -- x can’t be free

normList [] = []

normList (x:xs) = (norm x):(norm (normList xs))

-- nat --

data Nat = Zero | Succ Nat

nat :: Int -> Int -> Int

nat n l = nat’ n x z

where nat’ :: Int -> Nat -> [Int] -> Int

nat’ n Zero z = onSuccess (z =:= normList [0..l]) failed

nat’ n (Succ x) z

| n == 0 = 1

| otherwise = nat’ (n-1) x z

x,z free

-- ndtest --

member :: a -> [a] -> Bool

member y [] = False

member y (x:xs)

| x == y = True

| otherwise = member y xs

permute :: [a] -> [a]

permute [] = []

permute (z:zs) = onSuccess (u ++ v =:= permute zs) (u ++ (z:v))

where u,v free

ndtest :: Int -> Int

ndtest n = onSuccess (member 0 (permute [0..n]) =:= True) failed

45

-- perms --

perms :: Int -> Success

perms n = permute [0 .. n] =:= []

-- fact --

fact :: Int -> Int

fact n | n == 0 = 1

| otherwise = n * (fact (n-1))

-- fibo --

fibo :: Int -> Int

fibo n | n < 2 = 1

| otherwise = fibo (n-1) + fibo (n-2)

46

