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ABSTRACT
This paper describes an implementation of narrowing, an es-
sential component of implementations of modern functional
logic languages. These implementations rely on narrowing,
in particular on some optimal narrowing strategies, to exe-
cute functional logic programs. We translate functional logic
programs into imperative (Java) programs without an inter-
mediate abstract machine. A central idea of our approach
is the explicit representation and processing of narrowing
computations as data objects. This enables the implementa-
tion of operationally complete strategies (i.e., without back-
tracking) or techniques for search control (e.g., encapsulated
search). Thanks to the use of an intermediate and portable
representation of programs, our implementation is general
enough to be used as a common back end for a wide variety
of functional logic languages.

Categories and Subject Descriptors
D.3.2 [Programming Languages]: Language Classifica-
tions—Multiparadigm Languages

General Terms
Languages, Design, Theory, Experimentation

Keywords
Functional logic, narrowing, Curry, XML, Java

1. INTRODUCTION
This paper describes an implementation of narrowing for

overlapping inductively sequential rewrite systems [5]. Nar-
rowing is the essential computational engine of functional
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logic languages (see [14] for a survey on such languages and
their implementations). An implementation of narrowing
translates a program consisting of rewrite rules into exe-
cutable code. This executable code currently falls into two
categories: Prolog predicates (e.g., [4, 12, 15, 27]) or in-
structions for an abstract machine (e.g., [11, 19, 26, 29]). Al-
though these approaches are relatively simple, in both cases,
several layers of interpretation separate the functional logic
program from the hardware intended to execute it. Obvi-
ously, this situation does not lead to efficient execution.

In this paper we investigate a different approach. We
translate a functional logic program into an imperative pro-
gram. Our target language is Java, but we make limited
use of specific object-oriented features, such as inheritance
and dynamic polymorphism. Replacing Java with a lower-
level target language, such as C or machine code, would be
a simple task.

In Section 2 we briefly introduce the aspects of functional
logic programming relevant to our discussion. In Section 3
we review background information for the key concepts pre-
sented in this paper. In Section 4 we describe the elements
and the characteristics of our implementation of narrowing.
In Section 5 we describe aspects of our compilation process,
as well as execution issues such as input, output and trac-
ing/debugging that may greatly affect the usability of a sys-
tem. In Section 6 we summarize current efforts toward the
implementation of functional logic languages, particularly
w.r.t. implementations of narrowing and how they compare
to our work. Section 7 sketches planned extensions to our
framework, and Section 8 offers some conclusions.

2. FUNCTIONAL LOGIC PROGRAMS
Functional logic languages combine the operational prin-

ciples of two of the most important declarative program-
ming paradigms, namely functional and logic programming
(see [14] for a survey). Efficient demand-driven functional
computations are amalgamated with the flexible use of logi-
cal variables, providing for function inversion and search for
solutions. Functional logic languages with a sound and com-
plete operational semantics are usually based on narrowing
(originally introduced in automated theorem proving [32])
which combines reduction (from the functional part) and
variable instantiation (from the logic part). A narrowing
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step instantiates variables of an expression and applies a re-
duction step to a redex of the instantiated expression. The
instantiation of variables is usually computed by unifying a
subterm of the entire expression with the left-hand side of
some program equation.

Example 1. Consider the following rules defining the ≤
predicate leq on natural numbers which are represented by
terms built from zero and succ :

leq(zero,Y) = true
leq(succ(X),zero) = false
leq(succ(X),succ(Y)) = leq(X,Y)

The expression leq(succ(M),Y) can be evaluated (i.e.,
reduced to a value) by instantiating Y to succ(N) to ap-
ply the third equation, followed by the instantiation of M to
zero to apply the first equation:

leq(succ(M),Y) ;{Y7→succ(N) } leq(M,N)
;{M7→zero } true

Narrowing provides completeness in the sense of logic pro-
gramming (computation of all answers, i.e., substitutions
leading to successful evaluations) as well as functional pro-
gramming (computation of values). Since simple narrowing
can have a huge search space, a lot of effort has been made
to develop sophisticated narrowing strategies without los-
ing completeness (see [14]). Needed narrowing [7] is based
on the idea of evaluating only subterms which are needed
in order to compute a result. For instance, in a term like
leq( t1, t2) , it is always necessary to evaluate t1 (to some
variable or constructor-rooted term) since all three rules in
Example 1 have a non-variable first argument. On the other
hand, the evaluation of t2 is only needed if t1 is of the form
succ( t) . Thus, if t1 is a free variable, needed narrowing in-
stantiates it to a constructor term, here zero or succ(V) .
Depending on this instantiation, either the first equation is
applied or the second argument t2 is evaluated. Needed
narrowing is currently the best narrowing strategy for first-
order (inductively sequential) functional logic programs due
to its optimality properties w.r.t. the length of derivations
and the independence of computed solutions, and due to the
possibility of efficiently implementing needed narrowing by
pattern matching and unification [7]. Moreover, it has been
extended in various directions, e.g., higher-order functions
and λ-terms as data structures [18], overlapping rules [5],
and concurrent computations [16].

Needed narrowing is complete, in the sense that for each
solution to a goal there exists a narrowing derivation com-
puting a more general solution. However, most of the ex-
isting implementations of narrowing lack this property since
they are based on Prolog-style backtracking. Since back-
tracking is not fair in exploring all derivation paths, some
solutions might not be found in the presence of infinite
derivations, i.e., these implementations are incomplete from
an operational point of view. An important property of
our implementation is its operational completeness, i.e., all
computable answers are eventually computed by our imple-
mentation.

3. BACKGROUND
Since pattern matching is an essential feature of existing

functional logic languages, term rewriting systems (TRSs)

are an adequate formal model for functional logic programs.
Therefore, we review in the following some notions from
term rewriting [9].

We consider a (many-sorted) signature partitioned into a
set C of constructors and a set F of (defined) functions or op-
erations. We write c/n ∈ C and f/n ∈ F for n-ary construc-
tor and operation symbols, respectively. As usual, terms are
built from these symbols and variables (e.g., x, y, z). A con-
structor term is a term without operation symbols. The set
of variables occurring in a term t is denoted by Var(t). A
term t is ground if Var(t) = ∅. A term is linear if it does
not contain multiple occurrences of one variable.

A pattern is a term of the form f(d1, . . . , dn) where f/n ∈
F and d1, . . . , dn are constructor terms. A term is operation-
rooted (constructor-rooted) if it has an operation (construc-
tor) symbol at the root. A position p in a term t is repre-
sented by a sequence of natural numbers. t|p denotes the
subterm of t at position p, and t[s]p denotes the result of
replacing the subterm t|p by the term s.

We denote by {x1 7→ t1, . . . , xn 7→ tn} the substitution
σ with σ(xi) = ti for i = 1, . . . , n (with xi 6= xj if i 6=
j) and σ(x) = x for all other variables x. Substitutions
are extended to morphisms on terms by σ(f(t1, . . . , tn)) =
f(σ(t1), . . . , σ(tn)) for every term f(t1, . . . , tn).

A set of rewrite rules l = r such that l is not a variable and
Var(r) ⊆ Var(l) is called a term rewriting system (TRS).
The terms l and r are called the left-hand side (lhs) and the
right-hand side (rhs) of the rule, respectively. A TRS R is
left-linear if l is linear for all l = r ∈ R. A TRS is constructor
based (CB) if each lhs l is a pattern. In the remainder of this
paper, a functional logic program is a left-linear CB-TRS.

A rewrite step is an application of a rewrite rule to a
term, i.e., t→p,R s if there exists a position p in t, a rewrite
rule R = l = r and a substitution σ with t|p = σ(l) and
s = t[σ(r)]p (p and R will often be omitted in the notation
of a computation step). The instantiated lhs σ(l) is called
a redex and the instantiated rhs σ(r) is called the reduct
of this redex. A (constructor) head normal form is either
a variable or a constructor-rooted term. A term t is called
irreducible or in normal form if there is no term s with t→ s.
→+ denotes the transitive closure of→ and→∗ denotes the
reflexive and transitive closure of →.

To evaluate terms containing variables, narrowing non-
deterministically instantiates the variables so that a rewrite
step is possible. Formally, t ;p,R,σ t′ is a narrowing step
if p is a non-variable position in t and σ(t) →p,R t′. We
denote by t0 ;∗σ tn a sequence of narrowing steps t0 ;σ1

. . . ;σn tn with σ = σn ◦ · · · ◦ σ1. Since we are interested
in computing values (constructor terms) as well as answers
(substitutions) in functional logic programming, we say that
the narrowing derivation t ;∗σ c computes the result c with
answer σ if c is a constructor term. The evaluation to ground
constructor terms (and not to arbitrary expressions) is the
intended semantics of functional languages and also of most
functional logic languages.

A challenge in the design of functional logic languages is
the definition of a “good” narrowing strategy, i.e., a restric-
tion on the narrowing steps issuing from t, without losing
completeness. In the following, we briefly outline the needed
narrowing strategy (a formal description can be found in [7]).

Needed narrowing extends Huet and Lévy’s notion of a
needed reduction [23] and is defined on inductively sequential
programs [3]. Roughly speaking, in an inductively sequen-
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leq( X ,Y)

leq(zero,Y) = true

leq(succ(M), Y )

leq(succ(M),zero) = false

leq(succ(M),succ(N)) = leq(M,N)
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Figure 1: Definitional tree for the operation leq of
Example 1

tial program the rules for each function can be organized
in a tree-like structure (definitional tree [3]). The leaves
contain all (and only) the rules defining the function. The
inner nodes have a discriminating argument, also called an
inductive position: all child nodes have different constructor
symbols at this position. For instance, the definitional tree
for the function leq in Example 1 is illustrated in Figure 1;
the inductive position is marked by a surrounding box.

The computation of a needed narrowing step is guided
by the definitional tree for the root of the operation-rooted
term t. If t is a leaf node, we reduce it with the rule at
this leaf. Otherwise, we check the subterm corresponding to
the inductive position of the branch: if it is a variable, it is
(non-deterministically) instantiated to the constructor of a
child; if it is already a constructor, we proceed with the cor-
responding child; if it is a function, we evaluate it (to head
normal form) by recursively applying needed narrowing.

4. IMPLEMENTATION OF NEEDED NAR-
ROWING

In this section we describe the main ideas of our imple-
mentation of narrowing. We implement a strategy, referred
to as INS [5], proven sound and complete for the class of the
overlapping inductively sequential rewrite systems. In these
systems, the left-hand sides of the rewrite rules defining an
operation can be organized in definitional trees. However, an
operation may have distinct rewrite rules with the same left-
hand side (modulo renaming of variables): operation coin
(Section 4.8), is one example. To ease the understanding
of our work, we first describe the implementation of rewrite
computations in inductively sequential rewrite systems. We
then describe the extensions that lead to narrowing in over-
lapping inductively sequential rewrite systems.

4.1 Overview
The overall goals of our implementation are speed of exe-

cution and operational completeness. The following prin-
ciples guide our implementation and are instrumental in
achieving the goal.

1. A reduction step replaces a redex of a term with its
reduct. A term is represented as a tree-like data struc-
ture. The execution of a reduction updates only the
portion of this data structure affected by the replace-
ment. Thus, the cost of a reduction is independent
of its context. We call this principle in-place replace-
ment.

2. Only somewhat needed steps are executed. We use
the qualifier “somewhat” because different notions of
need have been proposed for different classes of rewrite
systems. We execute a particular kind of steps that
for reductions in orthogonal systems is known as root-
needed [30]. Thus, reductions that are a priori useless
are never performed. We call this principle useful step.

3. Don’t know non-deterministic reductions are executed
in parallel. Both narrowing computations (in most
rewrite systems) and reductions (in interesting rewrite
systems) are non-deterministic. Without some form of
parallel execution, operational completeness would be
lost. We call this principle operational completeness.

In inductively sequential rewrite systems, and when com-
putations are restricted to rewriting, it is relatively easy
to faithfully implement all the above principles. In fact,
our implementation does it. However, our environment is
considerably richer. We execute narrowing computations in
overlapping inductively sequential rewrite systems. In this
situation, two complications arise. The non-determinism
of narrowing and/or of overlapping rules imply that a re-
dex may have several replacements. In these situations,
there cannot be a single in-place replacement. Furthermore,
the steps that we compute in overlapping inductively se-
quential rewrite systems are needed, but only modulo non-
deterministic choices [5]. Hence, some step may not be
needed in the strict sense of [7, 23], but we may not be
able to know by feasible means which steps.

The architecture of our implementation is characterized
by terms and computations. Both terms and computations
are organized into tree-like linked (dynamic) structures. A
term consists of a root symbol applied to zero or more argu-
ments which are themselves terms. A computation consists
of a stack of terms that identify reduction steps. All the
terms in the stack, with the possible exception of the top,
are not yet redexes, but will eventually become redexes, and
be reduced, before the computation is complete. In terms,
links go from a parent to its children, whereas in computa-
tions links go from children to their parent.

A graphical representation of these objects is shown in
Figure 2. In this figure, the steps to the left represent the
terms in the stack of the computation. Step0 is the bottom
of the stack: it cannot be executed before Step1 is executed.
Likewise Step1 cannot be executed before Step2 is executed.

To ease understanding, we begin with an account of our
implementation of rewriting computations in inductively se-
quential rewrite systems. Although non-trivial, this imple-
mentation is simple enough to inspire confidence in both
its correctness and efficiency. Then, we generalize the dis-
cussion to larger classes of rewrite systems and finally to
narrowing computations and argue why both correctness
and efficiency of this initial implementation are preserved
by these extensions.

4.2 Symbol representation
Symbols are used to represent terms. A symbol is an ob-

ject that contains two pieces of information: a name and a
kind. Since there is no good reason to have more than one
instance of a given symbol in a program, each distinct sym-
bol is implemented as an immutable singleton object. The
name is a string. The kind is a tag that classifies a symbol.
For now, the tag is either “defined operation” or “data con-
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structor”. Additional tags will be defined later to compute
with larger classes of rewrite systems. The tag of a symbol
is used to dispatch computations that depend on the clas-
sification of a symbol. Of course, we could dispatch these
computations by dynamic polymorphism, i.e., by defining
an abstract method overridden by subclasses. Often, these
methods would consist of a few statements that use the en-
vironment of the caller. A tag avoids both a proliferation
of small methods and the inefficiency of passing around the
environment. Furthermore, this architecture supports im-
plementations in objectless target languages as well.

Nevertheless, in our Java architecture, class symbol has
subclasses such as operation and constructor. In particular,
there is one subclass of operation for each defined operation
f of a functional logic program. This class, according to our
second principle, contains the code for the execution of a
useful step of any term rooted by f . Operations are defined
by rewrite rules. We use the following rules in the examples
to come.

add (zero, Y) = Y
add (succ (X), Y) = succ (add (X, Y))

positive (zero) = false
positive (succ ( - )) = true

4.3 Term representation
Terms of user-defined type contain two pieces of infor-

mation: the root of the term, which is a symbol, and the
arguments of the root, which are terms themselves. Terms
of builtin types contain specialized information, e.g., terms
of the builtin type int contain an int. This situation sug-
gests defining a common base class and a specialization of
this class for each appropriate type of term. However, this is
in conflict with the fact that according to the first principle
of our implementation, a term is a mutable object. In Java,
the class of an object cannot change during execution.

Therefore, we implement a term as a bridge pattern. A
term delegates its functionality to a representation. Dif-
ferent types, such as user-defined types, builtin types, and
variables are represented differently. All the representations
provide a common functionality. The representation of a
term object can change at run-time and thus provide muta-
bility of both value and behavior as required by the imple-
mentation.

4.4 Computation representation
A computation is an object abstracting the necessity to

execute a sequence of specific reduction steps in a term.
Class computation contains two pieces of information:

1. A stack of terms to be contracted (reduced at the
root). The terms in the stack are not redexes except,
possibly, the top term. Each term in the stack is a
subterm of the term below it, and must be reduced to
a constructor-rooted term in order to reduce the term
below it. Therefore, the elements of the stack in a com-
putation may be regarded as steps as well. The under-
pinning theoretical justification of this stack of steps
is in the proof of Th. 24 of the extended version of [5].
We ensure that every term in the stack eventually will
be contracted. To achieve this aim, if a complete strat-
egy cannot execute a step in an operation-rooted term,
it reduces the term to the special value failure.

2. A set of bookkeeping information. For example, this
information includes the number of steps executed by
the computation and the elapsed time. An interest-
ing bookkeeping datum is the state of a computation.
Computations being executed are in a ready state. A
computation’s state becomes exhausted after the com-
putation has been executed and it has been determined
that no more steps will be executed at the root of
the bottom-most term of the stack. Before becoming
exhausted a computation state may be either result
or failure. Later, we will extend our model of com-
putation with residuation. With the introduction of
residuation, a new state of a computation, flounder, is
introduced as well.

Loosely speaking, an initial computation is created for an
initial top-level expression to evaluate. This expression is
the top and only term of the stack of this computation. If
the top term t is not a redex, a subterm of t needed to
contract t is placed on the stack and so on until a redex is
found. A redex on top of the stack is replaced by its reduct.
If the reduct is constructor-rooted, the stack is popped (its
top element is discarded).

Step0
// positive

Step1
// add

???????

�������

Step2
// coin t

Figure 2: Snapshot of a computation of term
positive(add(coin, t))

4.5 Search space representation
The search space is a queue of computations which are re-

peatedly selected for processing. The machinery of a queue
and fair selection is not necessary for rewriting in induc-
tively sequential rewrite systems. For these systems, com-
putations are strictly sequential and consequently a single
(possibly implicit) stack of steps would suffice. However, the
architecture that we describe not only accommodates the
extensions from rewriting to narrowing and/or from induc-
tively sequential rewrite systems to the larger classes that
are coming later, but it allows us to compute more efficiently.

A computation serves two purposes: (1) finding maximal
operation-rooted subterms t of the top-level term to eval-
uate and (2) reducing each t to head normal form. The
pseudo-code of Figure 3 sketches part (2), which is the most
challenging. Some optimizations would be possible, but we
avoid them for the sake of clarity.

Since inductively sequential rewrite systems are confluent,
replacing in-place a subterm u of a term t with u’s reduct
does not prevent reaching t’s normal form. When a term
has a result this result is found, since repeated contractions
of needed redexes are normalizing.

4.6 Sentinel
The first extension to the previous model is the intro-

duction of a “sentinel” at the root of the top-level expres-
sion being evaluated. For this, we introduce a distinguished
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while the queue is not empty
| select a ready computation k from the queue
| let t be the term at the top of k’s stack
| switch on the root of t
| | case t is operation-rooted
| | | switch on the reducibility of t
| | | | case t is a redex
| | | | | replace t with its reduct
| | | | | put k back into the queue
| | | | case t is not a redex
| | | | | switch on s, a maximal needed subterm of t
| | | | | | case s exists
| | | | | | | push s on k’s stack
| | | | | | | put k back into the queue
| | | | | | case s does not exist
| | | | | | | stop the computation, no result exists
| | | | | endswitch
| | | endswitch
| | case t is constructor-rooted
| | | pop k’s stack
| | | if k’s stack is not empty
| | | | put k back into the queue
| endswitch
endwhile

Figure 3: Procedure to evaluate a term to a head
normal form

symbol called sentinel that takes exactly one argument of
any kind. If t is the term to evaluate, our implementation
evaluates sentinel(t) instead. Thus, this is the actual term
of the initial computation. Symbol sentinel has character-
istics of both an operation and a constructor. Similar to
an operation, the stack of the initial computation contains
sentinel(t), but similar to a constructor, sentinel(t) cannot
be contracted for any t. Having a sentinel has several ad-
vantages. The strategy works with the sentinel by means
of implicit rewrite rules that always look for an internal
needed redex and never contract the sentinel -rooted term
itself. Also, using a sentinel saves frequent tests similar to
using a sentinel in many classic algorithms, e.g., sorting.

4.7 Failure
The second extension to the previous model is concerned

with the possibility of a “failure” of a computation. A failure
occurs when a term has no constructor normal form. The
computation detects a failure when the strategy, which is
complete, finds no useful steps (redexes) in an operation-
rooted term.

The pseudo-code presented earlier simply terminates the
computation when it detects a failure. For the extensions
discussed later it is more convenient to explicitly represent
failures in a term. This allows us, e.g., to clean up compu-
tations that cannot be completed and to avoid duplicating
certain computations. To this purpose we introduce a new
symbol called failure. The failure symbol is treated as a
constant constructor.

Suppose that u is an operation-rooted term. If the strat-
egy finds no step in u, it evaluates u to failure. A failure
symbol is treated as a constructor during the pattern match-
ing process. Implicit rewrite rules for each defined operation
rewrite any term t to failure when a failure occurs at a
needed position of t. For example, we perform the following

reduction:

add (failure, v) → failure

With these implicit rewrite rules, an inner occurrence of
failure in a term propagates up to the sentinel, which can
thus report that a computation has no result. The explicit
representation of failing computations is also important in
performing non-deterministic computations.

4.8 Non-determinism
The third extension to the previous model is concerned

with non-determinism. In our work, non-determinism is ex-
pressed by rewrite rules with identical left-hand sides, but
distinct right-hand sides. A textbook example of a non-
deterministic defined operation is:

coin = zero
coin = succ (zero)

This operation differs from the previous ones in that a given
term, say s = coin , has two distinct reducts.

The most immediate problem posed by non-deterministic
operations is that if s occurs in some term t and we replace
in-place s with one of its replacements, we may lose a result
that could be obtained with another replacement. If a term
such as s becomes the top of the stack of a computation
k, we change the state of k to exhausted and we start two
or more new computations. Each new computation, say k′,
begins with a stack containing a single term obtained by one
of the several possible reductions of s.

The procedure described above can be optimized in many
ways. We mention only the most important one that we
have implemented — the sharing of subterms disjoint from
s. We show this optimization in an example. Suppose that
the top-level term being evaluated is:

add (coin, t)

The non-determinism of coin gives rise to the computation
of the following two terms:

add (zero, t)
add (succ (zero), t)

These terms are evaluated concurrently and independently.
However, term t in the above display is shared rather than
duplicated. Sharing improves the efficiency of computa-
tions since only one term, rather than several equal copies,
is constructed and possibly evaluated. In some situations,
a shared term may occur in the stacks of two indepen-
dent computations and be concurrently evaluated by each
computation. This approach avoids a common problem of
backtracking-based implementations of functional logic lan-
guages, in which t will be evaluated twice if it is needed
during the evaluation of both add terms shown above.

4.9 Rewrite rules
The final relevant portion of our architecture is the im-

plementation of rewrite rules. All the rules of an ordinary
defined operation f are translated into a single Java method.
This method implicitly uses a definitional tree of f to com-
pare constructor symbols in inductive positions of the tree
with corresponding occurrences in an f -rooted term t to re-
duce. Let kt be a computation in the queue, ready the state
of kt, and t the term on the top of kt’s stack. The following
case breakdown defines the code that needs to be generated.

1. If t is a redex with a single reduct, then t is replaced
in-place by its reduct.
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2. If t is a redex with several reducts, then a new com-
putation is started for each reduct. The state of kt is
changed to exhausted.

3. If in a needed position of t there is failure, then t is
considered a redex as well and it is replaced in-place
by failure.

4. If in a needed position of t there is an operation-rooted
ordinary term s, then s is pushed on the stack of kt.

5. The last case to consider is when operation f is incom-
pletely defined and no needed subterm is found in t.
In this case, t is replaced in-place by failure.

4.10 Narrowing
At this point we are ready to discuss the extension of our

implementation to narrowing. A narrowing step instantiates
variables in a way very similar to a non-deterministic reduc-
tion step. For example, suppose that allnat is an operation
defined by the rules:

allnat = zero
allnat = succ (allnat)

Narrowing term add(X, t) , where X is an uninstantiated
variable and t is any term, is not much different from reduc-
ing add(allnat, t) .

There are two key differences in the handling of variables
w.r.t. non-deterministic reductions: (1) we must keep track
of variable bindings to construct the computed answer at
the end of a computation, and (2) if a given variable occurs
repeatedly in a term being evaluated, the replacement of a
variable with its binding must replace all the occurrences.
We solve point (1) by storing the binding of a variable in
a computation. Point (2) is simply bookkeeping. We rep-
resent substitutions “incrementally.” A computation com-
putes both a value (for the functional part) and an answer
(for the logic part). The answer is a substitution. In most
cases, a narrowing step produces several distinct bindings
for a variable. Each of these bindings increments a previ-
ously computed substitution. For example, suppose that the
expression to narrow is:

add (X, Y) = t

for some term t. Some computation may initially bind X
to zero . Later on, a narrowing step may bind Y indepen-
dently to both zero and succ(Y 1) . These bindings will
“add” to the previous one. The previous binding is shared,
which saves both memory and execution time.

4.11 Parallelism
Our implementation includes a form of parallelism known

as parallel-and. And-parallel steps do not affect the sound-
ness or completeness of the strategy, INS, underlying our
implementation, but in some cases they may significantly
reduce the size of the narrowing space of a computation —
possibly from infinite to finite. The parallel-and operation is
handled explicitly by our implementation. If a computation
k leads to the evaluation of t & u, where t and u are terms
and “&” denotes the parallel-and operation, then steps of
both t and u are scheduled. This requires to change the
stack of a computation into a tree-like structure. The set of
leaves of this tree-like structure replaces the top of the stack
previously discussed.

As soon as one of these parallel steps has to be removed
from the tree, which means that its term argument has been

reduced to a constructor term c (including failure), the par-
ent of the step is reconsidered. Depending on c’s value,
either the parent term is reduced (to a failure if c = failure)
and the other parallel steps are removed, or (if c = success)
the computation of the other parallel steps continues nor-
mally.

4.12 Residuation
Residuation is a computational mechanism that delays the

evaluation of a term containing an uninstantiated variable
in a needed position [1]. Similar to narrowing, it supports
the integration of functional programming with logic pro-
gramming by allowing uninstantiated variables in functional
expressions. However, in contrast to narrowing it is incom-
plete, i.e., unable to find all the solutions of some problems.
Residuation is useful for dealing with built-in types such as
numbers [10]. Residuation is meaningful only when a com-
putation has several steps executing in parallel. If a compu-
tation has only one step executing, and this step residuates,
the computation cannot be completed and it is said to floun-
der.

Operations that residuate are called rigid, whereas oper-
ations that narrow are called flexible. A formal model for
the execution of programs defining both rigid and flexible
operations is described in [16]. Our implementation already
has the necessary infrastructure to accommodate this model.
When a step s residuates on some variable V , we store (a
reference to) s in V , mark s as residuating and continue the
execution of the other steps. When V is bound, we remove
the residuating mark from s so that s can be executed as any
other step. If all the steps of a computation are residuating,
the computation flounders.

5. THE COMPILATION PROCESS
The main motivation of this new implementation of nar-

rowing is to provide a generic back end that can be used by
functional logic languages based on a lazy evaluation strat-
egy. Current work [6] shows that any narrowing compu-
tation in a left-linear constructor-based conditional rewrite
system can be simulated, with little or no loss of efficiency, in
an overlapping inductively sequential rewrite system, hence
by our implementation. Therefore, our implementation can
be used by languages such as Curry [21], Escher [25] and
Toy [28].

To support this idea, our implementation works indepen-
dently of any concrete source language. The source pro-
grams of our implementation are functional logic programs
where all functions are defined at the top level (i.e., no local
declarations) and the pattern-matching strategy is explicit.
This language, called FlatCurry, has been developed as an
intermediate language for the Curry2Prolog compiler [8] in
the Curry development system PAKCS [17] and is used for
various other purposes, e.g., meta-programming and par-
tial evaluation [2]. Basically, a FlatCurry program is (apart
from data type and operator declarations) a list of function
declarations where each function f is defined by a single rule
of the form f(x1, . . . , xn) = e, i.e., the left-hand side consists
of pairwise different variable arguments and the right-hand
side is an expression containing case expressions for pattern
matching.

To be more precise, an expression can take any of the
forms shown in Figure 4. The shallow patterns pi occur-
ring in case expressions have the form c(x1, . . . , xn), i.e., all
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x (variable)
c(e1, . . . , en) (constructor)
f(e1, . . . , en) (function call)
case e0 of
{p1 → e1; . . . ; pn → en} (rigid case)

fcase e0 of
{p1 → e1; . . . ; pn → en} (flexible case)

or(e1, e2) (choice)
partcall(f, e1, . . . , ek) (partial application)
apply(e1, e2) (application)
constr({x1, . . . , xn}, e) (constraint)
guarded({x1, . . . , xn}, e1, e2) (guarded expression)

Figure 4: FlatCurry expressions

leq(X,Y) = fcase X of {
zero → true;
succ(M) → fcase Y of {

zero → false;
succ(N) → leq(M,N)

}
}

Figure 5: Encoding of Example 1 in FlatCurry

case branches are constructors applied to pairwise distinct
(fresh) variables. Any inductively sequential program can be
translated into FlatCurry rules whose right-hand side con-
sists of only constructor applications, function applications
and case expressions [18]. For instance, the function leq of
Example 1 is represented in FlatCurry as shown in Figure 5.

The other options for expressions are used for the ex-
tensions of inductively sequential programs that occur in
various functional logic languages. For instance, or expres-
sions are used to represent non-deterministic choices (see
Section 4.8), rigid case expressions for residuation, i.e., func-
tions which suspend on insufficiently instantiated arguments
(see Section 4.12), (partial) applications for higher-order
functions (which can be implemented by a transformation
into first-order rules, see [34]), and guarded expressions for
conditional rules1.

Although FlatCurry was originally designed as an inter-
mediate language to compile and manipulate Curry pro-
grams, it should be clear that it can also be used for various
other declarative languages (e.g., Haskell-like lazy languages
with strict left-to-right pattern matching can be compiled
by generating appropriate case expressions). Our back end
accepts a syntactic representation of FlatCurry programs
in XML format2 so that other functional logic languages
can be compiled into this implementation-independent for-
mat. XML is becoming the format of choice for exchanging
structured information, such as external representations of
compiled programs, between different programs and non-
homogeneous systems. Our choice of this format is intended
to easily accommodate a variety of source languages and to
maximize the usability of our back end. Figure 6 shows the

1See http://www.informatik.uni-kiel.de/~curry/flat/
for more details.
2The DTD for the XML FlatCurry representation is avail-
able from http://www.informatik.uni-kiel.de/~curry/
flatcurry.dtd.

XML code for the FlatCurry representation of leq given
above.

Our compiler, which is fully implemented in Curry, reads
an XML representation and compiles it into a Java program
following the ideas described in Section 4. Recall that every
function is represented by a subclass of operation. For each
function, we define a method expand which will expand a
function call according to its rules and depending on its
arguments (Sections 4.9, 4.10).

To show the simplicity of our compiled code, we provide
an excerpt of the expand method for leq in Figure 7 which
is generated from the XML representation given above. Ac-
cording to Section 4.9, we must decide whether leq( t1, t2)
is a redex. This expression is a redex if t1 is a variable (we
must narrow) or zero (we apply the first rule). If t1 equals
succ(..) , we must do the same check for the second ar-
gument. If t1 fails, so does leq . If t1 is a function call, we
must evaluate it first. For the sake of simplicity, we show
pseudo-code, which reflects the basic structure and is very
similar to the real Java code.

To use our back end for a functional logic language, it is
only necessary to compile programs from this language to a
XML representation according to the FlatCurry DTD. For
instance, our compiler can be used as a back end for Curry
since Curry programs can be translated into this XML repre-
sentation with PAKCS [17]. Again, it is worth emphasizing
that FlatCurry can encode more than just Curry programs
or needed narrowing, because the evaluation strategy is com-
piled into the case expressions. For instance, FlatCurry is a
superset of TFL, which is used as an intermediate represen-
tation for a Toy-like language based on the CRWL paradigm
(Constructor-based conditional ReWriting Logic) [22].

The computation engine is designed to work with the read-
eval-print loop typical of many functional, logic and func-
tional logic interpreters. In our Java implementation, the
computation engine and the read-eval-print loop are threads
that interact with each other in a producer/consumer pat-
tern. When a computed expression (value plus answer) be-
comes available, the computation engine notifies the read-
eval-print loop while preserving the state of the narrowing
space. The read-eval-print loop presents the results to the
user and waits. The user may request further results or ter-
minate the computation. If the user requests a new result,
the read-eval-print loop notifies the computation engine to
further search the narrowing space. Otherwise, the narrow-
ing space is discarded.

Currently we provide a naive trace facility that is use-
ful to debug both user code and our own implementation.
Since the computations originating from a goal are truly con-
current, as is necessary to ensure operational completeness,
and since some terms are shared between computations, the
trace is not always easy to read. Computations are identified
by a unique id. We envision a tool, conceptually and struc-
turally well separated from the computation engine, that
collects the interleaved traces of all computations, separates
them, and presents each trace in a different window for each
computation. This tool may have a graphical user interface
to select which computations to see and/or interact with.

6. RELATED WORK
In this section we discuss and compare other approaches

to functional logic language implementation (see [14] for a
survey). Our approach provides an operationally complete
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<func name="leq" arity="2">
<functype>... </functype> // the type of the function
<rule> // the rule for the function

<lhs> <var>X</var> <var>Y</var> </lhs> // two arguments, enumerated
<rhs>

<case type="flex"> // evaluate by narrowing
<var>X</var> // switch on first argument
<branch>

<pattern name="zero" /> // if it matches Zero...
<comb type="ConsCall" name="true" /> // ...reduce to True

</branch>
<branch>

<pattern name="succ"> // if it matches succ(M)...
<var>M</var>

</pattern>
<case type="flex"> // ...then go on with second argument

code for matching the second argument
</case>

</branch> </case> </rhs> </rule> </func>

Figure 6: XML code for leq

expand (Computation comp) {
term = comp.getTerm(); // get the term from top of the stack
X = term.getArg(0); // get first argument
Y = term.getArg(1); // get second argument
switch on kind of X // case X of ...
case variable: // do narrowing: bind to patterns

X.bindTo(zero);
spawn new computation for leq(zero,Y);
X.bindTo(succ(M));
spawn new computation for leq(succ(M),Y);
comp.setExhausted(); // this computation is exhausted

case constructor: // argument is constructor-rooted,
switch on kind of constructor // thus do pattern matching
case zero: // apply first rule:

term.update(true); // replace term with true
case succ: // case X of succ(M) → case Y of...

recursive case for switching on Y
case failure: // the needed subterm has failed,

term.update(failure) // thus leq fails, too
case operation: // X is a function call, thus

comp.pushOnStack(X); // evaluate this call first
}

Figure 7: Simplified pseudo-code for the expand method of leq

and efficient architecture for implementing narrowing which
can potentially accommodate sophisticated concepts, e.g.,
the combination of narrowing and residuation, encapsulated
search or committed choice. As some recent narrowing-
based implementations of functional logic languages show,
most implementations that include these concepts lack com-
pleteness or are inefficient.

One common approach to implement functional logic lan-
guages is the transformation of source functional logic pro-
grams into Prolog programs. This approach is favored for
its simplicity since Prolog has most of the features of func-
tional logic languages: logical variables, unification, and
non-determinism implemented by backtracking. However,
the challenge in such an implementation is the implemen-
tation of a sophisticated evaluation strategy that exploits
the presence of functions in the source programs. Differ-
ent implementations of this kind are compared and evalu-
ated in [15] where it is demonstrated that needed narrow-
ing is efficiently implemented in a (strict) language such as
Prolog and that this implementation is superior to other
narrowing strategies. Therefore, most of the newer propos-

als to implement functional logic languages in Prolog are
based on needed narrowing [4, 8, 15, 27]. In contrast to
our implementation of narrowing, all of these efforts are op-
erationally incomplete (i.e., existing solutions might not be
found due to infinite derivation paths) since they are based
on Prolog’s depth-first search mechanism. The same draw-
back also occurs in implementations of functional logic lan-
guages based on abstract machines (e.g., [11, 26, 29, 22])
since these abstract machines use backtracking to implement
non-determinism.

An exception is the Curry2Java compiler [19] which is
based on an abstract machine implementation in Java but
uses independent threads to implement non-deterministic
choices. If these threads are fairly evaluated (which can be
ensured by specific instructions), infinite derivations in one
branch do not prevent finding solutions in other branches.
Our approach is more flexible since it does not depend on
threads, but it can control to any degree of granularity the
scheduling of steps in distinct computations. This eases the
implementation of problem-specific search strategies at the
top level, whereas Curry2Java is restricted to encapsulated
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search [20].
Our implementation is the subject of active investigation

in several directions. Thus, we are not specifically concerned
with its efficiency at this time. Rather, we are studying
architectures that easily integrate concepts and ideas that
have been proposed for functional logic programming. Ef-
ficiency is an important issue, though, and we expect that
it will be a strong point of our implementation due to the
direct translation into an imperative language without the
additional control layers of an abstract machine. While we
have attempted to select an efficient architecture, we have
not paid much attention to detailed optimization of our im-
plementation, and we do not expect top speed as long as we
compile to Java. We performed only a limited number of
benchmarks to get a feel for where we stand.

For the functional evaluation, we evaluated the naive re-
verse of a list of 1200 elements (400 only for comparing
Curry2Java). To benchmark non-determinism we evalu-
ated add x y =:= peano300 , where peano300 de-
notes the term encoding 300 in unary notation and the infix
operator =:= denotes the strict equality with unification.
This goal is solved by creating 301 parallel computations by
narrowing on the add operation.

The two fastest available implementations of needed nar-
rowing, to the best of our knowledge, are the Curry2Prolog
compiler of the PAKCS system and the Münster Curry Com-
piler (MCC) [29]. The Curry2Java back end (C2J), included
in the PAKCS system, is not as fast, but is the fastest avail-
able correct and complete implementation of needed narrow-
ing. We have also compared our approach to a Java-based
implementation of Prolog: Jinni [33] is the fastest engine in
the naive reverse benchmark among the Java-based Prolog
implementations compared in [13]. Table 1 shows execution
times, in seconds, for simple benchmarks on a PIII-900 MHz
Linux machine. These results show that our engine is cur-
rently the fastest complete implementation of narrowing. In
all likelihood, its speed is partially due to the elimination of
the overhead paid by Curry2Java for computing with an ab-
stract machine. In comparison with Jinni, we perform better
in the rev 1200 benchmark, where the number of reduction
steps is more or less the same for needed narrowing and SLD-
resolution. For the add benchmark, we evaluate the goal
add(X,Y,peano300) in Jinni. Due to the rules for strict
equality with unification, even an optimized implementation
of needed narrowing will perform at least twice as many re-
duction steps for add x y =:= peano300 as a SLD-
resolution of add(X,Y,peano300) . However, we are
still faster than Jinni in this benchmark, too. Curry2Prolog
and MCC are faster than our approach by a factor 8 for
rev and by factor 20 for add . This is to be expected.
Backtracking-based implementations are simpler and faster
because they sacrifice completeness. Additionally, Curry2-
Prolog is executed by the highly optimized SICStus Prolog
compiler, and the abstract machine of MCC is written in
C, while our implementation is executed by the JVM. We
expect that if our implementation were optimized and/or
coded in C, it would offer performance competitive with
these incomplete systems while retaining completeness.

A factor of 8-20 speedup over Java for a C implemen-
tation is reasonable and supported by the results of [19].
The authors have shown that a C++ implementation of the
Curry2Java abstract machine was more than 50 times faster
than the same implementation in Java. We do not expect a

Table 1: Execution times for simple benchmarks on
several FLP engines

Ours C2J MCC PAKCS Jinni
rev 400 0.69 2.6

rev 1200 5.5 N/A 0.69 0.68 45.9
add 300 2.1 16.2 0.12 0.09 2.5

similar improvement because we have already eliminated the
interpretation layer of the abstract machine, and because the
results of [19] were obtained with JDK 1.1 while we use JDK
1.3. The latter is more efficient. However, we are confident
that there are still considerable opportunities for improving
the efficiency of our implementation. We plan to work on
this aspect, but only after resolving the architectural issues
related to the inclusion of search and concurrency features
which are discussed in the next section.

7. FURTHER EXTENSIONS
A very interesting feature for modern functional logic lan-

guages is encapsulated search [20]. Although this feature is
not yet included in our implementation, our architecture is
ready to accommodate it.

Encapsulated search uses a search operator to explicitly
control different branches of a non-deterministic computa-
tion. It relies on a data structure to encode search goals
and their non-deterministic splitting. This structure sup-
ports different search strategies and controls failures. Ad-
ditionally, it prevents non-determinism from splitting the
global computation, which is crucial to avoid conflicts with
irreversible I/O operations. Complete encapsulated search
strategies rely on another key feature, committed choice [24].
Losely speaking, different branches of a computation are
evaluated in parallel. When one branch finds a solution,
the other branches are discarded. The combination of the
search operator and committed choice is necessary for im-
plementing complete encapsulated search strategies [31, 20].

To ensure completeness, it is necessary to distinguish be-
tween local and global computations in three aspects. Non-
deterministic steps of a goal cannot split the global compu-
tation. If a goal either fails or succeeds we must take special
actions like encoding the result in a data structure or killing
some other local computations (if the committed choice is in-
volved). The third aspect concerns variable binding. Global
variables, i.e., variables not introduced by search, cannot
be bound by search, because different local computations
can share a global variable. Different bindings of any such
variable in local computations would be inconsistent in the
global computation.

We know of only two attempts at narrowing-based im-
plementations of encapsulated search. The Münster Curry
Compiler implements the search operator, but it lacks com-
mitted choice. Thus, complete search algorithms cannot be
coded in MCC. Curry2Java provides both the search oper-
ator and committed choice. Curry2Java employs threads
for non-deterministic search, thus it faces the problem of
integrating local search into an architecture which was not
designed for explicit control. This problem has not yet been
solved and its solution is not near.

In our architecture, it should be much easier to implement
and integrate encapsulated search and committed choice be-
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cause we have explicit and direct control of computation.
Computations are designed to be nested, which eases intro-
ducing local computations. A crucial aspect of the imple-
mentation of encapsulated search is the distinction between
local and global variables. This can be solved by making
a computation log a variable as local when it is introduced
inside this computation, e.g., by evaluating a local declara-
tion of a free variable. This method was successfully used
in Curry2Java.

The implementation of committed choice should be even
easier than the search operator. While the search operator
must encode all possible branches after a non-deterministic
step in a data structure, committed choice can discard all
other possibilities if it has found one successful branch. If the
computation encounters a function call which should be eval-
uated by committed choice, a new queue of computations
(Section 4.5) is created for goals to be evaluated in paral-
lel. These local computations follow the rules for local vari-
able bindings described above. When a non-deterministic
step occurs in one of the computations, we just add new
computations to the queue. This local queue is similar to
the global one, except that when a computation succeeds,
we delete the entire local queue and continue with a single
goal. Thus, the explicit control of computation in our ar-
chitecture allows us to implement both encapsulated search
and committed choice with modest extensions.

Another advantage of our model is the potential for an
efficient complete encapsulated search strategy. The search
operator and committed choice must be combined to real-
ize a complete encapsulated search strategy, but such algo-
rithms are highly inefficient because committed choice will
repeatedly spawn many local computations which are soon
killed again. In our model, we could realize an efficient al-
gorithm with minimal effort. We just need to create a local
queue of computations in which we evaluate a search goal.
In contrast to the global queue, we need to take care of local
variable bindings, and we must return the solutions as a list
of search goals, which can be done lazily. However, these
are all just changes to the global queue. Thus, we could
provide a lazy, efficient and complete encapsulated search
algorithm which avoids the inefficiency of combining search
operators and committed choice, i.e., the repeated spawning
and killing of local computations.

8. CONCLUSION
We described the architecture of an engine for functional

logic computations. Our engine implements an efficient,
sound and complete narrowing strategy, INS, and integrates
this strategy with other features, e.g., residuation and and-
parallelism, desirable in functional logic programming. Our
implementation is operationally complete, easy to extend
(e.g., by external resources like constraint libraries) and gen-
eral enough to be used as a back end for a variety of lan-
guages. Although our work is still evolving, simple bench-
marks show that it is the fastest complete implementation
of narrowing currently available: it has strong potential for
further improvement in both performance and functionality.
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