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Abstract. We introduce a framework for assessing the effectiveness of
partial evaluators in functional logic languages. Our framework is based
on properties of the rewrite system that models a functional logic pro-
gram. Consequently, our assessment is independent of any specific lan-
guage implementation or computing environment. We define several cri-
teria for measuring the cost of a computation: number of steps, number of
function applications, and pattern matching effort. Most importantly, we
express the cost of each criterion by means of recurrence equations over
algebraic data types, which can be automatically inferred from the par-
tial evaluation process itself. In some cases, the equations can be solved
by transforming their arguments from arbitrary data types to natural
numbers. In other cases, it is possible to estimate the improvement of a
partial evaluation by analyzing the associated cost recurrence equations.

1 Introduction

Partial evaluation is a source-to-source program transformation technique for
specializing programs w.r.t. parts of their input (hence also called program spe-
cialization). This technique has been studied, among others, in the context of
functional [12, 21], logic [14, 25], and functional logic [6, 22] programming lan-
guages. A common motivation of all partial evaluation techniques is to improve
the efficiency of a program while preserving its meaning. Rather surprisingly,
relatively little attention has been paid to the development of formal methods
for reasoning about the effectiveness of this program transformation; usually,
only experimental tests on particular languages and compilers are undertaken.
Clearly, a machine-independent way of measuring the effectiveness of partial
evaluation would be useful to both users and developers of partial evaluators.

Predicting the speedup achieved by partial evaluators is generally undecid-
able. We mention below some approaches to this problem. Andersen and Go-
mard’s speedup analysis [8] predicts a relative interval of the speedup achieved
by a program specialization. Nielson’s type system [29] formally expresses when
a partial evaluator is better than another. Other interesting efforts investigate
cost analyses for logic and functional programs which may be useful for deter-
mining the effectiveness of program transformations. For instance, Debray and
Lin’s method [13] for the semiautomatic analysis of the worst-case cost of a large
class of logic programs and Sands’s theory of cost equivalence [31] for reasoning



about the computational cost of lazy functional programs. Laziness introduces a
considerable difficulty since the cost of lazy (call-by-name) computations is not
compositional [31]. Although both the above cost analyses can be used to study
the effectiveness of partial evaluation, their authors did not address this issue.

All these efforts mainly base the cost of executing a program on the number
of steps performed in a computation. However, simple experiments show that the
number of steps and the computation time are not easily correlated. Consider,
for instance, the positive supercompiler described in [35]. As noted by Sørensen
in [34, Chapter 11], the residual program obtained by positive supercompilation
—without the postunfolding phase—performs exactly the same number of steps
as the original one. This does not mean that the process is useless. Rather, all
intermediate data structures are gone, and such structures take up space and
garbage collection time in actual implementations. Furthermore, the reduction
in number of steps of a computation does not imply a proportional reduction
in its execution time. The following example illustrates this point. In this work
we consider a first-order language. However, we use a curried notation in the
examples as usual in functional languages.

Example 1. Consider the well-known operation app to concatenate lists:

app [] y → y
app (x1 : xs) y→ x1 : app xs y

and the following partial evaluation w.r.t. app x y obtained by the partial eval-
uator Indy [2]:

app2s [] y → y
app2s (x : []) y → x : y
app2s (x1 : x2 : xs) y→ x1 : x2 : (app2s xs y)

Note that no input data have been provided for the specialization. In spite of
this, Indy can still improve programs by shortening computations and removing
intermediate data structures. In particular, this residual program computes the
same function as the original one but in approximately half the number of steps.
This might suggest that the execution time of app2s (for sufficiently large inputs)
should be about one half the execution time of app. However, executions of
function app2s in several environments (e.g., in the lazy functional language
Hugs [19] and the functional logic language Curry [17]) show that speedup is
only around 10%.

In order to reason about these counterintuitive results, we introduce several
formal criteria to measure the efficiency of a functional logic computation. We
consider inductively sequential rewrite systems as programs. Inductive sequen-
tiality ensures strong desirable properties of evaluations. In particular, if a term
has a value, there is a sound, complete and efficient algorithm to find this value.
Inductive sequentiality is not a limiting condition for programming. In fact, the
first order components of many functional programs, e.g., Haskell and ML, are in-
ductively sequential. Essentially, a rewrite system is inductively sequential when



all its operations are defined by rewrite rules that, recursively, make on their
arguments a case distinction analogous to a data type (or structural) induction.

The strategy that determines what to evaluate in a term is based on this case
distinction and is called needed narrowing [10]. Needed narrowing, which extends
the usual call-by-name semantics of functional computations, has been proved
optimal for functional logic computations as well. We formally define the cost of
evaluating an expression in terms of the number of steps, the number of func-
tion applications, and the complexity of pattern-matching or unification involved
in the computation. Similar criteria are taken into account (though experimen-
tally) in traditional profiling approaches (e.g., [33]). Let us remark that our aim
is not to define a complex cost analysis for functional logic programs, but to
introduce some representative cost criteria and then investigate their variations
by the application of a particular partial evaluation method. The above criteria
seem specially well-suited to estimate the speedup achieved by the narrowing-
driven partial evaluation scheme of [6]. Nevertheless, our technique can be easily
adapted to other related partial evaluation methods, like partial deduction [25]
and positive supercompilation [35]. In particular, we use recurrence equations to
compare the cost of executing the original and residual programs. These equa-
tions can be automatically derived from the partial evaluation process itself and
are parametric w.r.t. the considered cost criteria. Unlike traditional recurrence
equations used to reason about the complexity of programs, our equations are
defined on data structures rather than on natural numbers. This complicates
the computation of their solutions, although in some cases useful statements
about the improvements achieved by partial evaluation can be made by a sim-
ple inspection of the sets of equations. In other cases, these equations can be
transformed into traditional recurrence equations and then solved by well-known
mathematical methods.

The remainder of the paper is organized as follows. Section 2 introduces
some preliminary definitions. Section 3 defines several formal criteria to mea-
sure the cost of a computation. Section 4 addresses the problem of determining
the improvement achieved by the partial evaluation process in the context of a
functional logic language and Sect. 5 illustrates its usefulness by showing some
possible applications. Section 6 discusses some related work and Sect. 7 con-
cludes. An extended version of this paper can be found in [3].

2 Preliminaries

For the sake of completeness, we recall in this section some basic notions of term
rewriting [11] and functional logic programming [16]. We consider a (many-
sorted) signature Σ partitioned into a set C of constructors and a set F of
(defined) functions or operations. We write c/n ∈ C and f/n ∈ F for n-ary
constructor and operation symbols, respectively. There is at least one sort Bool
containing the constructors True and False. The set of terms and constructor
terms with variables (e.g., x, y, z) from V are denoted by T (C∪F ,V) and T (C,V),



respectively. The set of variables occurring in a term t is denoted by Var(t). A
term is linear if it does not contain multiple occurrences of one variable.

A pattern is a term of the form f(d1, . . . , dn) where f/n ∈ F and d1, . . . , dn ∈
T (C,V). A term is operation-rooted if it has an operation symbol at the root.
A position p in a term t is represented by a sequence of natural numbers (Λ
denotes the empty sequence, i.e., the root position). t|p denotes the subterm of
t at position p, and t[s]p denotes the result of replacing the subterm t|p by the
term s. We denote a substitution σ by {x1 7→ t1, . . . , xn 7→ tn} with σ(xi) = ti
for i = 1, . . . , n (with xi 6= xj if i 6= j), and σ(x) = x for all other variables x.
The set Dom(σ) = {x ∈ V | σ(x) 6= x} is called the domain of σ. A substitution
σ is constructor, if σ(x) is a constructor term for all x. The identity substitution
is denoted by { }. A substitution θ is more general than σ, in symbols θ ≤ σ, iff
there exists a substitution γ such that γ ◦ θ = σ. A term t′ is a (constructor)
instance of t if there is a (constructor) substitution σ with t′ = σ(t).

A set of rewrite rules l→ r such that l 6∈ V, and Var(r) ⊆ Var(l) is called a
term rewriting system (TRS). Terms l and r are called the left-hand side and the
right-hand side of the rule, respectively. A TRS R is left-linear if l is linear for
all l→ r ∈ R. A TRS is constructor-based if each left-hand side l is a pattern. In
the following, a functional logic program is a left-linear constructor-based TRS.
A rewrite step is an application of a rewrite rule to a term, i.e., t→p,R s if there
exists a position p in t, a rewrite rule R = l → r and a substitution σ with
t|p = σ(l) and s = t[σ(r)]p. The instantiated left-hand side σ(l) of a reduction
rule l→ r is called a redex (reducible expression). Given a relation→, we denote
by →+ its transitive closure, and by →∗ its transitive and reflexive closure.

To evaluate terms containing variables, narrowing non-deterministically in-
stantiates these variables so that a rewrite step is possible. Formally, t ;(p,R,σ) t

′

is a narrowing step if p is a non-variable position in t and σ(t)→p,R t
′. We often

write t ;σ t′ when the position and the rule are clear from the context. We
denote by t0 ;n

σ tn a sequence of n narrowing steps t0 ;σ1 . . . ;σn tn with
σ = σn ◦· · ·◦σ1. (If n = 0 then σ = {}.) Due to the presence of free variables, an
expression may be reduced to different values after instantiating free variables
to different terms. Given a narrowing derivation t0 ;∗σ tn, we say that tn is a
computed value and σ is a computed answer for t0. To avoid unnecessary nar-
rowing computations and to provide computations with infinite data structures,
as well as a demand-driven generation of the search space, the most recent work
has advocated lazy narrowing strategies (e.g., [15, 26, 28]). In this paper we con-
sider needed narrowing [10], an evaluation strategy which is based on the idea of
evaluating only subterms that are needed, in a precise technical sense, to obtain
a result.

Needed Narrowing. Needed narrowing is an optimal evaluation strategy w.r.t.
both the length of derivations and the independence of computed solutions [10].
It extends the Huet and Lévy notion of a needed rewrite step [18] to functional
logic programming. Following [10], a narrowing step t ;(p,R,σ) t

′ is called needed
iff, for every substitution θ such that σ ≤ θ, p is the position of a needed redex



of θ(t) in the sense of [18]. A narrowing derivation is called needed iff every step
of the derivation is needed.

An efficient implementation of needed narrowing exists for inductively sequen-
tial programs. The formal definition of inductive sequentiality is rather technical.
In this paper, for the sake of completeness, we give a more intuitive account of
this concept. The complete technical details are in [9].

A rewrite system is inductively sequential when all its operations are defined
by rewrite rules that, recursively, make on their arguments a case distinction
analogous to a data type (or structural) induction. Both definitions of Example 1
show this point. In fact, operation app makes a case distinction on its first
argument. The type of this argument is list. A structural induction on list needs
to consider two cases, namely [] and a list consisting of a head and a tail.
The advantage of this disciplined approach is that in any term app x y, it is
necessary and sufficient to evaluate argument x to a head normal form in order
to fire a rule of app. Operations defined according to this principle are called
inductively sequential as well and their rules can be organized in a hierarchical
structure called a definitional tree. We show below these trees for the operations
of Example 1.

app x1 x2

������
??????

app [] x2 app (x3 : xs) x2

app2s y1 y2

�����
?????

app2s [] y2 app2s (y3 : ys ) y2

�����
?????

app2s (y3 : []) y2 app2s (y3 : (y4 : yt)) y2

The leaves of these trees are (modulo a renaming of variables) the left-hand
sides of the operations’ rewrite rules. It is easy to see that operation app2s
makes an initial case distinction on its first argument. Then, it makes a second
case distinction that leads to its three rewrite rules. The arguments’ target of a
case distinction are shown in a box and are usually called the inductive positions
of the tree. Thus, to evaluate an expression app2s y1 y2, we first evaluate y1 to
a head normal form. If the result of this evaluation is [], we apply the first rule.
If the result of this evaluation is of the form y3 : ys, we evaluate ys to a head
normal form which will eventually determine which rule, if any, to fire.

There exists a needed narrowing strategy, denoted by λ in [10, Def. 13], which
determines what to evaluate in a term based on this case distinction. Follow-
ing [10], to compute needed narrowing steps for an operation-rooted term t, we
take a definitional tree P for the root of t and compute λ(t,P). Then, for all
(p, l → r, σ) ∈ λ(t,P), we say that t ;(p,l→r,σ) t

′ is a needed narrowing step,
where t′ = σ(t[r]p). Informally speaking, given an operation-rooted term and an
associated definitional tree for the root of this term, needed narrowing applies a
rule to the entire term, if possible, or checks the subterm corresponding to an in-
ductive position of the tree: if it is a variable, it is instantiated to the constructor
of a child; if it is already a constructor, we proceed with the corresponding child;



finally, if it is a function, we evaluate it by recursively applying needed narrow-
ing. The extension of function λ to constructor-rooted terms is straightforward.
Essentially, to compute a needed narrowing step of a constructor-rooted term,
it suffices to compute a needed narrowing step of any of its maximal operation-
rooted subterms. We call λ-derivation a narrowing derivation computed by λ.

Example 2. Consider the following rules which define the less-or-equal relation
“6” and the addition on natural numbers which are represented by terms built
from 0 and Succ:

0 6 n → True 0 + n → n
(Succ m) 6 0 → False (Succ m) + n → Succ (m + n)
(Succ m) 6 (Succ n) → m 6 n

Then the function λ computes the following set for the initial term x 6 (x + x):

{(Λ, 0 6 n→ True, {x 7→ 0}), (2, (Succ m) + n→ Succ (m + n), {x 7→ Succ m})}

These steps yield the λ-derivations:

x 6 (x + x) ;{x 7→0} True

x 6 (x + x) ;{x 7→Succ m} (Succ m) 6 (Succ (m + (Succ m)))

Needed narrowing derivations can be represented by a (possibly infinite) finitely
branching tree. Formally, given an inductively sequential program R and an
operation-rooted term t, a needed narrowing tree for t in R is a tree satisfying
the following conditions:

– Each node of the tree is a term.
– The root node is t.
– Let s be a node in the tree and assume that P is a definitional tree for the

root of s. Then, for each tuple (p, l → r, σ) ∈ λ(s,P), the node has a child
σ(s[r]p).

– Nodes which are constructor terms have no children.

Each branch of the needed narrowing tree is a λ-derivation for t in R.

3 Formal Criteria for Measuring Computational Cost

The cost criteria that we introduce below are independent of the particular im-
plementation of the language. Rather, they are formulated for a rewrite system,
which we intend as a program, and are based on operations that are, in one form
or another, performed by likely implementations of rewriting and narrowing.

The first cost criterion that we consider has been widely used in the literature.
This is the number of steps, or length, of the evaluation of a term. The following
trivial definition is presented only for uniformity with the remaining costs.

Definition 1 (number of steps). We denote by S a function on rewrite rules,
called the number of steps, as follows. If R is a rewrite rule, then S(R) = 1.



The second cost criterion is the number of symbol applications that occur within
a computation. Counting applications is interesting because, in most implemen-
tations of a functional logic language, an evaluation will execute some machine
instructions that directly correspond to each symbol application. The following
definition bundles together all applications. It can be easily specialized to con-
structor or defined symbol applications only, denoted by Ac and Ad respectively.

Definition 2 (number of applications). We denote by A a function on
rewrite rules, called the number of applications, as follows. If R = l → r is
a rewrite rule, then A(R) is the number of occurrences of non-variable symbols
in r.

The above definition is appropriate for a first-order language in which function
applications are not curried. In a fully curried language, A(l→ r) would be one
less the number of symbols in r (including variables).

The third cost criterion that we consider abstracts the effort performed by
pattern matching. We assume that the number of rewrite rules in a program
does not affect the efficiency of a computation. The reason is that in a first-order
language a reference to the symbol being applied can be resolved at compile-time.
However, when a defined operation f is applied to arguments, in non-trivial cases,
one needs to inspect (at run-time) certain occurrences of certain arguments of
the application of f to determine which rewrite rule of f to fire. This cost is
determined by the pattern matching effort.

Definition 3 (pattern matching effort). We denote by P a function on
rewrite rules, called pattern matching effort, as follows. If R = l → r is a
rewrite rule, then P(R) is the number of constructor symbols in l.

We note that P gives a worst-case measure of the pattern matching effort. In
particular, if a ground expression e is evaluated using rule R, then P(R) returns
exactly the number of constructor symbols of e whose inspection is required.
However, whenever e contains free variables, the value returned by P(R) repre-
sents an upper bound.

For simplicity, we do not consider non-deterministic computations, although
our cost measures could be extended along the lines of [13]. On the other hand,
many partial evaluation methods do not change the non-determinism of compu-
tations, i.e., although some paths become shorter, the search spaces of a given
goal in the original and residual programs have essentially the same structure. In
particular, this is the case of the narrowing-driven partial evaluation method (see
discussion in Sect. 5.2). Therefore, a cost measure which quantifies the amount
of non-determinism would not be affected by our partial evaluation method.

In the remainder of this paper, we denote by C any cost criterion, i.e., C
stands for S, A or P. Furthermore, most of the developments in the following
sections are independent of the considered criteria; thus, C could also denote
more elaborated criteria, like the number of variable bindings, the “size” of the
reduced expression, etc.

The previous definitions allow us to define the cost of a derivation as the
total cost of its steps.



Definition 4 (cost of a derivation). Let R be a program and t0 a term. Let
C denote a cost criterion. We overload function C by partially defining it on
derivations as follows. If D : t0 ;(p1,R1,σ1) t1 ;(p2,R2,σ2) · · ·;(pn,Rn,σn) tn is a
derivation for t0 in R, then C(D) =

∑n
i=1 C(Ri).

For the developments in the next section, it is more convenient to reason about
the efficiency of programs when a cost measure is defined over terms rather than
entire computations. We use “computation” as a generic word for the evaluation
of a term, i.e., a narrowing derivation ending in a constructor term. In general,
different strategies applied to a same term may produce evaluations of different
lengths and/or fail to terminate. For instance, if term t contains uninstantiated
variables, there may exist distinct evaluations of t obtained by distinct instanti-
ations of t’s variables. Luckily, needed narrowing gives us some leeway. We allow
uninstantiated variables in a term t as long as these variables are not instanti-
ated during its evaluation, i.e., we have a derivation of the form t ;∗{ } d. In this
case, there is a concrete implementation of needed narrowing, i.e., that denoted
by λ in Sect. 2, in which t ;∗{ } d is the only possible derivation computed from
t (see Lemma 1 in [3]). Therefore, to be formal, we consider only λ-derivations
in the technical results of this paper. Note that this is not a practical restriction
in our context, since λ-derivations are efficient, easy to compute, and used in the
implementations of modern functional logic languages such as Curry [17] and
Toy [27]. The above property allows us to define the cost of a term as the cost
of its λ-derivation when the computed substitution is empty (since it is unique).

Definition 5 (cost of a term). Let R be a program and t a term. Let C denote
a cost criterion. We overload function C by partially defining it on terms and
programs as follows. If t ;(p1,R1,σ1) . . . ;(pk,Rk,σk) d is a λ-derivation, where d
is a constructor term and σ1 = · · · = σk = { } (i.e., σi = { }, for i = 1, 2, . . . , k),
we define C(t,R) =

∑k
i=1 C(Ri).

In the following, we often write C(t) to denote the cost of a term when the
program R is clear from the context.

We apply the previous definitions to Example 1. The next table summarizes
(with minor approximations to ease understanding) the cost of computations
with both functions when the arguments are constructor terms:

S Ac Ad P
app n n n n

app2s 0.5n n 0.5n n

Here n represents the size of the inputs to the functions, i.e., the number of
elements in the first argument of app and app2s (the second argument does
not affect the cost of computations). The first observation is that not all cost
criteria have been improved. In fact, the number of constructor applications and
the pattern matching effort remain unchanged. To obtain a “global” value of the
improvement achieved by a partial evaluation, one might assume an equal unit
cost for all criteria. In this way, the total cost of a computation using app is 4n.
Likewise, the cost of a computation using app2s is 3n. The speedup is only 25%.



In general, one should determine the appropriate weight of each cost criterion
for a specific language environment. For instance, if we increase the unit cost
of Ac and decrease that of S—a more realistic choice in our environment—the
improvement of app2s over app estimated by our criteria closely explains the
lower speedup measured experimentally (10%).

4 Measuring the Effectiveness of a Partial Evaluation

In this section, we are concerned with the problem of determining the improve-
ment achieved by a partial evaluation in the context of a functional logic lan-
guage.

4.1 Narrowing-driven Partial Evaluation

We briefly recall the partial evaluation scheme of [6] which is based on needed
narrowing. An intrinsic feature of this approach is the use of the same oper-
ational mechanism—needed narrowing—for both execution and partial evalua-
tion. Informally speaking, a partial evaluation for a term s in a program R is
computed by constructing a finite (possibly incomplete) needed narrowing tree
for this term, and then extracting the resultants associated to the root-to-leaf
derivations of this tree. Resultants are defined as follows:

Definition 6 (resultant). Let R be a program and s be a term. Given a needed
narrowing derivation s ;+

σ t, its associated resultant is the rewrite rule σ(s)→ t.

The potential value of resultants is that they compute in a single step a non-null
derivation of the original program.

Example 3. Consider the function app of Example 1 and the following needed
narrowing derivations:

app (app xs ys) zs ;{xs 7→[]} app ys zs

app (app xs ys) zs ;{xs 7→x′:x′s} app (x′ : app x′s ys) zs
;{ } x′ : app (app x′s ys) zs

Then, the associated resultants are:

app (app [] ys) zs → app ys zs
app (app (x′ : x′s) ys) zs → x′ : app (app x′s ys) zs

We note that, whenever the specialized call s is not a linear pattern, the left-hand
sides of resultants may not be linear patterns either and hence resultants may not
be legal program rules (as the above example shows). To overcome this problem,
we introduce a post-processing of renaming which also eliminates redundant
structures from residual rules. Informally, the renaming transformation proceeds
as follows. First, an independent renaming ρ for a set of terms S is constructed,
which consists of a mapping from terms to terms such that for all s ∈ S, we



have ρ(s) = f(x1, . . . , xn), where x1, . . . , xn are the distinct variables in s in the
order of their first occurrence and f is a fresh function symbol. We also let ρ(S)
denote the set S′ = {ρ(s) | s ∈ S}. While the independent renaming suffices to
rename the left-hand sides of resultants (since they are constructor instances of
the specialized calls), right-hand sides are renamed by means of the auxiliary
function renρ, which recursively replaces each call in the expression by a call to
the corresponding renamed function (according to ρ).

Given an independent renaming ρ for a set of terms, the auxiliary function
renρ is formally defined as follows.

Definition 7. Let S be a set of terms, t a term, and ρ an independent renaming
of S. The partial function renρ(S, t) is defined inductively as follows:

renρ(S, t) =


t if t ∈ V
c(t′1, . . . , t

′
n) if t = c(t1, . . . , tn), c ∈ C, n ≥ 0, and

t′i = renρ(S, ti), i = 1, . . . , n
θ′(ρ(s)) if ∃θ,∃s ∈ S such that t = θ(s) and

θ′ = {x 7→ renρ(S, θ(x)) | x ∈ Dom(θ)}

The above mapping is non-deterministic. An operation-rooted term can be pos-
sibly renamed by different symbols obtained using different sequences of terms
in S (according to the third case). The mapping can be made deterministic by
some simple heuristics (as it is done in the Indy system [2]).

Example 4. Consider the set of terms:

S = {app (app xs ys) zs, app xs ys}
A possible independent renaming ρ for S is the mapping:

{app (app xs ys) zs 7→ dapp xs ys zs, app xs ys 7→ app1s xs ys}
By using this independent renaming, we can rename arbitrary expressions by
means of function renρ. Consider, for instance:

renρ(app [] (x : xs)) = app1s [] (x : xs)
renρ(app (app [] ys) (z : zs)) = dapp [] ys (z : zs)
renρ(app (app [] ys) (app zs [])) = dapp [] ys (app1s zs [])

Observe that the renaming of the term app (app [] ys) (z : zs) could be
app1s (app1s [] ys) (z : zs) as well.

Following [25], in this work we adopt the convention that any derivation is po-
tentially incomplete in the sense that at any point we are allowed to simply
not select any redex and terminate the derivation; a branch thus can be failed,
incomplete, successful, or infinite. A failing derivation is a needed narrowing
derivation ending in an expression that is neither a constructor term nor can
be further narrowed. Given a needed narrowing tree N for a term t in program
R, a partial (or incomplete) needed narrowing tree N ′ for t in R is obtained by
considering only the narrowing derivations from t down to some terms t1, . . . , tn
such that t1, . . . , tn appear in N and each non-failing branch of N contains
exactly one of them. Partial evaluation can be formally defined as follows.



{}

{xs 7→ x′ : x′s}{xs 7→ []}{xs 7→ x′ : x′s}{xs 7→ []} @
@@R

�
��	

?

@
@@R

�
��	

x′ : (app x′s ys)ys

x′ : (app (app x′s ys) zs)

app (x′ : (app x′s ys)) zsapp ys zs

app xs ysapp (app xs ys) zs

Fig. 1. Needed narrowing trees for “app (app xs ys) zs” and “app xs ys”

Definition 8 (partial evaluation). Let R be a program, S = {s1, . . . , sn} a
finite set of operation-rooted terms, and ρ an independent renaming of S. Let
N1, . . . ,Nn be finite (possibly incomplete) needed narrowing trees for si in R,
i = 1, . . . , n. A partial evaluation of S in R (under ρ) is obtained by constructing
a renamed resultant, σ(ρ(s)) → renρ(t), for each non-failing needed narrowing
derivation s ;+

σ t in N1, . . . ,Nn.

We note that [6] requires, additionally, that no constructor-rooted term is evalu-
ated at partial evaluation time. This restriction is necessary in order to preserve
the correctness of the partial evaluation transformation in the context of lazy
functional logic languages (see [6] for details). We now illustrate this definition
with an example.

Example 5. Consider again the function app together with the set of calls:

S = {app (app xs ys) zs, app xs ys}

Given the (incomplete) needed narrowing trees of Figure 1, we produce the
following resultants:

app (app [] ys) zs → app ys zs
app (app (x : xs) ys) zs → x : app (app xs ys) zs
app [] ys → ys
app (x : xs) ys → x : app xs ys

Now, if we consider the independent renaming ρ for S of Example 4:

{app (app xs ys) zs 7→ dapp xs ys zs, app xs ys 7→ app1s xs ys}

we compute the following partial evaluation of R w.r.t. S (under ρ):

dapp [] ys zs → app1s ys zs
dapp (x : xs) ys zs → x : dapp xs ys zs
app1s [] ys → ys
app1s (x : xs) ys → x : app1s xs ys

We will not discuss in details this transformation since it is not essential for the
forthcoming sections, where we mainly deal with the notion of resultant. Never-
theless, a full description of the narrowing-driven approach to partial evaluation,
as well as a comparison to related partial evaluation techniques, can be found in
[5, 6].



4.2 Automatic Generation of Recurrence Equations

In this section we propose the use of recurrence equations to analyze how a cost
criterion is affected by the partial evaluation process. Although we will illustrate
our proposal over the cost criteria introduced in the previous section, our de-
velopments are parametric w.r.t. the considered cost criteria. Our approach is
inspired by the standard use of recurrence equations to analyze the complex-
ity of algorithms in terms of their inputs (see, e.g., [1] for imperative, [31] for
functional, and [13] for logic programs).

Definition 9 (recurrence equation). Let R be a program and s be a term.
Given a needed narrowing derivation s ;+

σ t, its associated recurrence equation
is: C(σ(s)) = C(t) + k, where k = C(s ;+

σ t).

However, we are not interested in arbitrary recurrence equations, or sets of equa-
tions, since in general they would not be useful. Rather, we present a technique
for deriving sets of recurrence equations tightly associated with the partial eval-
uation process. These equations, specifically the form in which we present them,
are informative about the effectiveness of partial evaluation even in the absence
of an explicit solution of the equations.

Definition 10. Let R be a program, S a finite set of operation-rooted terms,
and ρ an independent renaming for S. Let R′ be a partial evaluation of R w.r.t.
S (under ρ) computed from the finite (possibly incomplete) needed narrowing
trees N1, . . . ,Nn. We produce a pair of equations:

C(σ(s)) = C(t) + k / C(σ(ρ(s))) = C(renρ(t)) + k′

for each non-failing needed narrowing derivation s ;+
σ t in N1, . . . ,Nn. Con-

stants k and k′ denote the observable cost of the considered derivation in the
original and residual programs, respectively, i.e., k = C(s ;+

σ t) and k′ =
C(ρ(s) ;σ renρ(t)).

Informally, for each needed narrowing derivation used to construct the partial
evaluation, we generate a pair of recurrence equations representing the computa-
tional cost of executing goals in the original and residual programs, respectively.
We use the notation equation1 / equation2 to emphasize that they represent a
kind of ratio between the cost of the original and residual programs, as we will
discuss later in Sect. 5.2. We note that there is no risk of ambiguity in using
the same symbol, C, for the (cost) equations associated to both the original and
residual programs, since the signatures of R and R′ are disjoint by definition of
partial evaluation. Observe also that if C = S, then k ≥ 1 and k′ = 1, i.e., the
application of each resultant corresponds to a sequence of one or more rules in
the original program.

Example 6. Consider the operation app of Example 1 and the needed narrowing
derivation:



s t︷ ︸︸ ︷
app (app x y) z ;{x 7→x′:xs} app (x′ : app xs y) z ;{ }

︷ ︸︸ ︷
x′ : app (app xs y) z

Then, we produce the associated resultant:

dapp (x′ : xs) y z︸ ︷︷ ︸ → x′ : dapp xs y z︸ ︷︷ ︸
σ(ρ(s)) renρ(t)

with σ = {x 7→ x′ : xs} and ρ = {app (app x y) z 7→ dapp x y z}. According to
Def. 10, we produce the following equations for the cost criteria of Sect. 3:

S(σ(s)) = S(t) + 2 / S(σ(ρ(s))) = S(renρ(t)) + 1
A(σ(s)) = A(t) + 4 / A(σ(ρ(s))) = A(renρ(t)) + 2
P(σ(s)) = P(t) + 2 / P(σ(ρ(s))) = P(renρ(t)) + 1

which represent the cost of performing the above narrowing derivation in the
original / residual program. Note that some useful conclusions about the im-
provement achieved by this residual rule can be easily inferred from the equa-
tions. For instance, we can see that all the cost criteria have been halved.

The following result establishes the local correctness of the equations generated
according to Def. 9, i.e., each single equation is correct w.r.t. the definition of
the different cost measures.

Theorem 1 (local correctness). Let R be an inductively sequential program
and u a term such that C(u) = n in R. If there exists an equation C(s) = C(t)+k
(associated to a λ-derivation in R) with u = θ(s), then C(θ(t)) = n− k.

In particular, the above result applies to the sets of equations constructed ac-
cording to Def. 10. However, reasoning about recurrence equations of the above
kind is not easy. The problem comes from the laziness of the computation model,
since interesting cost criteria are not compositional for non-strict semantics [31].
In particular, the cost of evaluating an expression of the form f(e) will depend
on how much function f needs argument e. In eager (call-by-value) languages,
the cost of f(e) can be obtained by first computing the cost of evaluating e to
some normal form d and, then, adding the cost of evaluating f(d). Trivially, this
procedure can be used to compute an upper-bound for f(e) under a lazy seman-
tics. Nevertheless, we have identified a class of recurrence equations for which
we can state a stronger result.

Definition 11 (closed set of recurrence equations). Let R be a program
and S = {s1, . . . , sn} a finite set of operation-rooted terms. Let N1, . . . ,Nn be
finite (possibly incomplete) needed narrowing trees for si in R, i = 1, . . . , n. Let
E be the set of recurrence equations associated to the narrowing derivations in
N1, . . . ,Nn. We say that E is S-closed iff for each equation in E of the form:

C(s) = C(t) + k

t is either a constructor term or a constructor instance of some term in S.



The relevance of closed recurrence equations stems from their use to compute
the cost of a term:

Theorem 2 (cost computation). Let R be an inductively sequential program
and S = {s1, . . . , sk} a finite set of operation-rooted terms. Let N1, . . . ,Nk be
finite (possibly incomplete) needed narrowing trees (using λ-derivations) for si
in R, i = 1, . . . , k. Let E be a set of S-closed recurrence equations associated to
the λ-derivations in N1, . . . ,Nk. If t is a constructor instance of some term in
S and C(t) = n, then there is a rewrite sequence C(t)→∗ n using the (oriented)
equations in E and the definition of “+”.

Roughly speaking, this result states that, by considering the set of recurrence
equations as a rewrite system (implicitly oriented from left to right) and per-
forming additions as usual, we have all the necessary information for computing
the associated cost of a term (whenever the cost of this term is defined, i.e., it
is narrowable to a constructor term with the empty substitution). Therefore, if
the cost of term t is C(t) = n in program R, then there exists a rewrite sequence
which computes this cost: C(t)→∗ n in E.

This result shows that, under appropriate conditions, a finite set E of recur-
rence equations captures the cost of an infinite set of derivations or terms. For
example, E could be used to mechanically compute the cost of a term according
to the considered cost criteria. Observe that the rewrite strategy for E is irrel-
evant, since in E the only defined functions are C and + (any function defined
in the original and residual programs plays now the role of a constructor), and
+ is strict in its both arguments.

Theorem 2 becomes useful when the sets of recurrence equations associated
to a concrete partial evaluation are closed. Indeed, the characterization of closed
recurrence equations is related to the “closedness” condition employed in some
partial evaluation methods. In particular, given a partial evaluation R′ of R
w.r.t. S (under ρ), we compute a set of recurrence equations E = ER ∪ER′ (ac-
cording to Def. 10), where ER (resp. ER′) is the subset of recurrence equations
associated to program R (resp. R′). Then, Theorem 2 can be applied whenever
ER is S-closed (and, thus, ER′ is ρ(S)-closed). Note that this is always ensured
if one considers the perfect (“α-identical”) closedness test of [35] or the basic
notion of closedness of [5] during partial evaluation. However, this property is
not guaranteed when stronger notions of closedness are considered during par-
tial evaluation (e.g., the recursive closedness of [5]) or when some partitioning
techniques are used (as in conjunctive partial deduction [23]).

According to Def. 11, the equations of Example 6 are not closed due to calls
like S(x : app (app xs y) z). However, this is not a problem. We can simplify
constructor-rooted calls using the following (straightforward) properties:

C(x) = 0, for all x ∈ V (1)
C(t) = C(t1) + . . .+ C(tn), if t = c(t1, . . . , tn), c ∈ C, n ≥ 0 (2)

This amounts to say that the cost of reducing constructor constants and variables
is zero. Furthermore, the cost to evaluate a constructor-rooted term is the total



cost to evaluate all its arguments. In the following, we assume that recurrence
equations are possibly simplified using the above properties.

5 Usefulness of Recurrence Equations

The previous section presents a formal approach for assessing the effectiveness of
partial evaluation. Here, we illustrate its usefulness by showing several possible
applications of our recurrence equations.

5.1 Recurrence Equations over Natural Numbers

Our recurrence equations provide a formal characterization of the computational
cost of executing a program w.r.t. a class of goals (those which are constructor
instances of the left-hand sides). Therefore, as a first approach to analyze the
improvement achieved by a concrete partial evaluation, one can solve the recur-
rence equations associated to both the original and partially evaluated programs
and determine the speedup. In general, it is hard to find explicit solutions of these
equations. Nevertheless, we can use a size function that maps the arguments of
an expression to natural numbers. In some cases, using this function one can
transform a cost C over terms into a cost T over natural numbers. Intuitively,
for each recurrence equation

C(σ(s)) = C(t) + k

we define an associated equation

Ts(n1, . . . , ni) = Tt(m1, . . . ,mj) + k

where n1, . . . , ni is a sequence of natural numbers representing the sizes of ar-
guments σ(x1), . . . , σ(xi), with x1, . . . , xi the distinct variables of s. Similarly,
m1, . . . ,mj denote the sizes of the different variables in t. Note that the subscript
s of Ts is only a device to uniquely identify the recurrence equations associated
to term s.

Example 7. Consider the following recurrence equations defining S:

S(σ(app (app x y) z)) = S(app y z) + 1 with σ = {x 7→ []}
S(σ(app (app x y) z)) = S(app (app xs y) z) + 2 with σ = {x 7→ x′ : xs}
S(σ(app x y)) = 1 with σ = {x 7→ []}
S(σ(app x y)) = S(app xs y) + 1 with σ = {x 7→ x′ : xs}

We can transform them into the following standard recurrence equations over
natural numbers:

T1(0, n2, n3) = T2(n2, n3) + 1
T1(n1, n2, n3) = T1(n1 − 1, n2, n3) + 2 n1 > 0
T2(0, n3) = 1
T2(n2, n3) = T2(n2 − 1, n3) + 1 n2 > 0



where n1, n2 and n3 denote the length of the corresponding lists σ(x), σ(y) and
σ(z), respectively. Here, T1 stands for Tapp (app (x y) z) and T2 for Tapp x y. The
explicit solutions of these equations are the functions:

T1(n1, n2, n3) = 2 n1 + n2 + 2
T2(n2, n3) = n2 + 1

Generalizing and formalizing a useful notion of size does not seem to ease the
understanding or manipulation of recurrence equations because one must care-
fully distinguish different occurrences of a same constructor. In practice, the
occurrences to be counted in sizing a constructor term depend on specific com-
putations. For example, if x is a list of lists, only the “top-level” occurrences
of the constructors of list x affect to the length of the evaluation of app x y.
The number of occurrences of constructors in an element of x is irrelevant. How-
ever, these additional occurrences should be counted in sizing an argument of
operation flatten defined below:

flatten [] → []
flatten ([] : y) → flatten y
flatten ((x1 : xs) : y)→ x1 : flatten (xs : y)

Furthermore, a solution of arbitrary recurrence equations does not always exist.
In particular, non-linear recurrence equations, which might arise in some cases,
do not always have a mathematical explicit solution (i.e., a solution in terms of
some size-measure of the arguments).

Nevertheless, in the following we present some alternative approaches. Ba-
sically, we are interested in computing the improvement achieved by partial
evaluation. Therefore, it may suffice to compute a speedup interval from the
corresponding sets of equations, rather than their exact solutions.

5.2 Bounds for the Effectiveness of Partial Evaluation

In this section, we are concerned with the estimation of the speedup (or slow-
down) produced by partial evaluation from the associated recurrence equations.

Let us denote by |s,P| the execution time of evaluating a term s in the pro-
gram P. Consider a program R, a set of terms S, and an independent renaming
ρ for S. Let RS be a partial evaluation of R w.r.t. S (under ρ). Then, for a given
term t, the speedup achieved by partial evaluation is:

|t,R|
|renρ(t),RS |

Following [8], we say that partial evaluation accomplishes linear speedup on R
if for all S there exists a constant k such that for all term t

k ≤ |t,R|
|renρ(t),RS |

Let, for each S, kS be the least upper bound of the possible values for k. We call
kS the speedup on R for S. Jones [20] posed as an open question the possibility



of accomplishing superlinear speedups; equivalently: “does there exist a set S
for which kS is not defined?”.

It is well-known that, in general, partial evaluation cannot accomplish super-
linear speedups; intuitively, the assumption that partial evaluation terminates
can be used to place a bound on kS (see, e.g., [8]). Only a constant speedup
is usually achieved, i.e., the complexity of the original and partially evaluated
programs differs by a constant factor (or, equivalently, the worst-case complexity
—“big O” notation— is the same); see, for instance, [7, 8, 21] for traditional par-
tial evaluation and [34] for positive supercompilation. This is also true in partial
deduction if the same execution model is also used for performing computa-
tions during partial evaluation. Of course, if one uses a different computational
mechanism at partial evaluation time, superlinear speedup becomes possible. For
instance, one can use call-by-name evaluation at partial evaluation time when
specializing call-by-value functional languages, or a refined selection rule when
specializing Prolog programs (see, e.g., the discussion in [7]).

In our case, where we use the same mechanism both for execution and for
partial evaluation, it is obvious from Def. 10 that the recurrence equations as-
sociated to the original and residual programs have exactly the same structure,
i.e., they are identical except for the renaming of terms and the associated costs.
Hence, it is straightforward to conclude that narrowing-driven partial evaluation
cannot achieve superlinear speedups, as well.

An important observation is that the overall speedup of a program is deter-
mined by the speedups of loops, since sufficiently long runs will consume most
of the execution time inside loops. In our method, loops are represented by
recurrence equations. Since the recurrence equations associated to the original
and residual programs have the same structure, as justified in the above para-
graph, they constitute by themselves a useful aid to the user for determining
the speedup (or slowdown) associated to each loop. Moreover, this information
is inexpensive to obtain since the recurrence equations can be generated from
the same partial derivations used to produce residual rules.

In principle, we can easily modify existing partial evaluators for functional
logic programs [2, 4] to provide rules decorated with the associated cost improve-
ment. Each resultant rule can be augmented with a pair of integers, (k, k′), for
each cost criterion. This pair describes a cost variation (according to Def. 10) of
the resultant rule in the original and in the residual program.

For instance, given the partial derivation of Example 6, we produce the (dec-
orated) residual rule:

dapp (x′ : xs) y z → x′ : dapp xs y z /∗ {(2, 1), (4, 2), (2, 1)} ∗/

From this information, we immediately see that all cost criteria have been im-
proved and, moreover, we can quantify this improvement.

However, as residual programs grow larger, it becomes more difficult to esti-
mate the effectiveness of a particular partial evaluation from the decorated rules.
In this case, it would be valuable to design an automatic speedup analysis tool
to determine (at least in some cases) the improvement achieved by the whole



program w.r.t. each cost criterion. For instance, we could define a simple speedup
analysis along the lines of [8]. For this purpose, it suffices to consider a speedup
interval 〈l, u〉 where l and u are, respectively, the smallest and largest ratios k′/k
among all the computed recurrence equations.

6 Related Work

A considerable effort has been devoted to reason about the complexity of im-
perative programs (see, e.g., [1]). However, relatively little attention has been
paid to the development of methods for reasoning about the computational cost
of declarative programs. For logic programs, [13] introduces a method for the
(semi-)automatic analysis of the worst-case cost of a large class of logic pro-
grams, including nondeterminism and the generation of multiple solutions via
backtracking. Regarding eager (call-by-value) functional programs, [24] describes
a general approach for time-bound analysis of programs. Essentially, it is based
on the construction of time-bound functions which mimic the original functions
but compute the associated cost of evaluations. The techniques of [24] cannot
be easily adapted to lazy (call-by-name) functional languages since cost criteria
are not usually compositional. A similar approach can be found in [30], where
a step-counting version of a functional program is produced automatically. This
version, when called with the same arguments as the original program, returns
the computation time for the original program. In a second phase, a time bound
function (or worst-case complexity) is expressed as an abstract interpretation
of the step-counting version. Rosendahl’s work [30] is defined for (first-order)
call-by-value functional languages, although it contains some hints about how
to adapt the method to different languages. We note that, in contrast to [24]
and [30], our (cost) recurrence equations are tightly associated to the partial
evaluation process and, thus, they allow us to assess more easily the effective-
ness achieved by the partial evaluation transformation. On the other hand, [31]
develops a theory of cost equivalence to reason about the cost of lazy functional
programs. Essentially, [31] introduces a set of time rules extracted from a suit-
able operational semantics, together with some equivalence laws. The aim of
this calculus is to reveal enough of the “algorithmic structure” of operationally
opaque lazy functional programs to permit the use of more traditional techniques
developed in the context of imperative programs.

None of the above references apply the introduced analyses to predict the
improvement achieved by partial evaluation techniques. Indeed, we found very
little work directed to the formal study of the cost variation due to partial evalu-
ation techniques. For instance, [29] introduces a type system to formally express
when a partial evaluator is better than another, i.e., when a residual program
is more efficient than another. The aim of [7] is on the definition of a general
framework to study the effects of several unfolding-based transformations over
logic programs. The framework is applied to partial evaluation, but the consid-
ered measures are very simple (e.g., unification is not taken into account). A
well-known technique appears in [8] and [21, Chapter 6]. They introduce a sim-



ple speedup analysis which predicts a relative interval of the speedup achieved
by a partial evaluation. Finally, [34, Chapter 11] presents a theoretical study of
the efficiency of residual programs by positive supercompilation, a partial evalu-
ation technique closely related to narrowing-driven partial evaluation. It proves
that the number of steps is not improved by positive supercompilation alone (a
post-unfolding phase is necessary). This would be also true in our context if re-
sultants were constructed only from one-step derivations. However, as discussed
in [34], this does not mean that the process is useless, since intermediate data
structures are frequently eliminated.

All the cited references study the effectiveness of partial evaluation by tak-
ing into account only the number of steps in evaluations. Although this is an
important measure, we think that other criteria should also be considered (as in
traditional experimental profiling approaches [33]). The discussion in [34] (see
above) as well as situations like that in Example 1 justify this position.

7 Conclusions and Future Work

To the best of our knowledge, this is the first attempt to formally measure the
effectiveness of partial evaluation with cost criteria different from the number of
evaluation steps. Our characterization of cost enables us to estimate the effective-
ness of a partial evaluation in a precise framework. We also provide an automatic
method to infer some recurrence equations which help us to reason about the
improvement achieved. The combination of these contributions helps us to rec-
oncile theoretical results and experimental measures. Although the introduced
notions and techniques are specialized to narrowing-driven partial evaluation,
they could be adapted to other related partial evaluation methods (e.g., positive
supercompilation [35] or partial deduction [25]).

There are several possible directions for further research. On the theoret-
ical side, we plan to study several properties of partial evaluation within the
formal framework presented so far. Two well-known facts motivate our inter-
est: (1) partial evaluation techniques cannot, in general, increase the number of
steps required to perform a particular computation (under a call-by-name eval-
uation model, see [32]); and (2) partial evaluation sometimes degrades program
efficiency. By experimenting with a preliminary implementation of the analysis
outlined in the present paper, we discovered that some cost criteria can be ac-
tually degraded (producing a slowdown in the residual program). The formal
study of the conditions under which an improvement is guaranteed for each cost
criteria is the subject of ongoing research. On the practical side, we plan to de-
velop an analytical tool for estimating the improvements achieved by residual
programs.
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