
A Virtual Machine
for Functional Logic Computations?

Sergio Antoy1, Michael Hanus2, Jimeng Liu1, and Andrew Tolmach1

1 Portland State University, Computer Science Dept.
P.O. Box 751, Portland, OR 97207, U.S.A.
{antoy,jimeng,apt}@cs.pdx.edu

2 Christian-Albrechts-Universität Kiel, Institut für Informatik
Olshausenstr. 40, D-24098 Kiel, Germany.

mh@informatik.uni-kiel.de

Grelck et al. (Eds.): IFL 2004, LNCS 3474, pp. 108-125, 2005
c© Springer-Verlag Berlin Heindelberg 2005

Abstract. We describe the architecture of a virtual machine for executing func-
tional logic programming languages. A distinguishing feature of our machine is
that it preserves the operational completeness of non-deterministic programs by
concurrently executing a pool of independent computations. Each computation
executes only root-needed sequential narrowing steps. We describe the machine’s
architecture and instruction set, and show how to compile overlapping inductively
sequential programs to sequences of machine instructions. The machine has been
implemented in Java and in Standard ML.

1 Introduction

Functional logic programming aims at integrating the characteristic features of func-
tional and logic programming into a single paradigm. In the last decade, the theory of
functional logic computations has made substantial progress. Significant milestones in-
clude a model that integrates narrowing and residuation [13], narrowing strategies for
several classes of programs suitable for functional logic languages [5], a functional-like
model for non-deterministic computations [3], and well-defined semantics for program-
ming languages of this kind [1, 11].

These results have been influential in the design and implementations of functional
logic programming languages, e.g., Curry [18] and T OY [19]. Most existing imple-
mentations of these languages are based on a translation of source code to Prolog code
(e.g., [7]), which can be executed by existing standard Prolog engines. This approach
simplifies the task of implementing functional logic language features: e.g., source lan-
guage variables can be implemented by Prolog variables and narrowing can be simu-
lated by resolution. But some problems arise; most notably, the depth-first evaluation
strategy of the Prolog system causes the loss of the operational completeness of func-
tional logic computations and inhibits the implementation of advanced search strategies
[17].
? This work was supported in part by the National Science Foundation under grants CCR-

0110496 and CCR-0218224 and by the German Research Council (DFG) under grants Ha
2457/1-2 and Ha 2457/5-1.

This paper describes a fundamentally different approach to the implementation of
a functional logic language, namely a virtual machine for functional logic computa-
tions. Section 2 sketches the key features of functional logic languages. Section 3 de-
scribes the architecture of the virtual machine. In particular, we describe how functional
logic features influence several key decisions, e.g., non-determinism and the desire for
operational completeness suggest an architecture that executes a pool of independent
computations concurrently. We describe the kind of steps executed by each computa-
tion in the pool. By choosing a specific class of source programs, we can arrange that
the machine only needs to execute root-needed steps sequentially, a characteristic that
promotes both simplicity and efficiency. We describe the registers of the machine, the
information they contain, and how the machine instructions control the flow of infor-
mation between these registers. Finally, we sketch how a program can be compiled into
machine instructions. Examples are provided throughout the discussion. Section 4 de-
scribes on-going efforts at implementing the virtual machine in both Java and Standard
ML. The Java implementation, which is the more highly developed, is mainly intended
as a compiler/interpreter for Curry, but it could be used to interpret compiled functional
logic programs coded in other languages. Section 5 contains the conclusion and a brief
discussion of related work.

2 Functional Logic Computations

Functional logic computations generalize functional computations by adding three spe-
cific features: non-determinism, narrowing and residuation (see [12] for a survey). Our
machine is not designed for a specific programming language. The examples in this pa-
per are in Curry, but the details of the source language are largely irrelevant. Our only
assumption is that source programs can be converted to a particular variety of first-order
term rewriting systems. The requirements on these rewriting systems are described in
more detail below.

2.1 Functional Logic Features

Non-determinism is the feature that allows an expression to have multiple distinct val-
ues. Non-determinism broadens the class of programs that can be coded using func-
tional composition [3]. For example, a program that solves a cryptarithm must assign
digits to each letters. This can be expressed as “let s = digit in...” where digit

is defined by the rules

digit = 0

digit = 1

...

digit = 9

(1)

The rules of digit are not mutually exclusive, i.e., the expression digit has 10 dis-
tinct values. The value eventually chosen for a given letter is constrained, according
to a cryptarithm, by some other part of the program. All the rewrite rules of function
digit have the same left-hand side. (In Sections 3.6 and 3.7, we will consider these 10

109

rules as a single rule where the right-hand side is non-deterministically chosen among
10 possibilities. A justification of this viewpoint and the opportunity to exploit it for an
efficient evaluation strategy are in [3].)

Narrowing is the glue between functional and logic computations. The execution of
a functional logic program may lead to the evaluation of an expression containing an
uninstantiated variable. Narrowing “guesses” a value for the variable when this is nec-
essary to keep the computation going. For example, the function that returns the last
element of a list can be coded as follows (“++” is the list concatenation function):

last l | l =:= x++[e] = e where x,e free (2)

The evaluation of last [1,2,3] prompts the evaluation of [1,2,3] =:= x++[e], the
rule’s condition (e1 =:= e2 denotes the equality constraint that is satisfied if e1 and e2

are evaluable to unifiable data terms). The variables x and e are uninstantiated. Nar-
rowing finds values for these variables that satisfy the condition; this is all it takes to
compute the last element of the input list.

Residuation is an alternative mechanism for handling evaluation of an expression con-
taining an uninstantiated variable. In this case, the evaluation suspends, and control is
transferred to the evaluation of another expression in hopes that the latter will instantiate
the variable so that the former can resume execution. (Evidently this only makes sense
when more than one subexpression is available to be evaluated, e.g., the conjuncts of
a “parallel and” operation.) The decision of whether to narrow or residuate is specified
by the programmer on a per-function basis. Generally, primitive arithmetic operations
and I/O functions residuate, since it seems impractical to guess values in these cases,
whereas most other functions narrow.

2.2 Overlapping Inductively Sequential Rewrite Systems

Our abstract machine is intended to evaluate programs that can be expressed as overlap-
ping inductively sequential term rewriting systems [3]. Roughly speaking, this means
that pattern matching can be represented by (nested) case expressions with multiple
right-hand sides for a single pattern. More precisely, every function of an overlapping
inductively sequential system can be represented by a particular variety of definitional
tree [2, 3], which we specify in Section 3.7.

It is shown in [4] that every functional logic program defined by constructor-based
rewrite rules, including programs in the functional logic languages Curry and T OY ,
can be transformed into an overlapping inductively sequential system. This class prop-
erly includes the first-order programs of the functional languages ML and Haskell.
Higher-order features, i.e., applications of a functional expression to an argument, can
be represented as an application of a specific first-order function apply (where partial
applications are considered as data terms)—a standard technique to extend first-order
languages with higher-order features [23]. (Additional preliminary compiler transfor-
mations, e.g., name resolution, lambda lifting, etc., are typically needed to turn source
programs into rewrite system form; we do not discuss these further here.)

110

3 Virtual Machine

In this section we describe how the features of functional logic computations, in par-
ticular non-determinism and narrowing, shape the architecture of our virtual machine.
We only sketch the machine’s support for residuation; full details of this are beyond the
scope of this paper.

3.1 Pool of Computations

A fundamental aspect of functional logic computations is non-determinism—both in
its ordinary form, as in example (1), and through narrowing, as in example (2). The
execution of a non-deterministic step involves one of several choices in the replacement
of a redex—or, to use a more appropriate term in our environment, a narrex. (In the
remainder of the paper, we use “narrowing” to refer to either narrowing or rewriting,
which is a special case of narrowing.) For example, in the cryptarithm solver mentioned
earlier, the evaluation of digit leads to 10 possible replacements.

One of our main goals is to ensure the operational completeness of computations.
For instance, consider the following function to reverse the elements in a list:

rev (x:xs) = rev xs ++ [x]

rev [] = []
(3)

A complete computation mechanism will be able to compute a solution to the equation
rev l =:= [1,2], namely {l=[2,1]}. A conventional backtracking policy that tries
each clause of rev in order will loop forever on the first clause, and hence is not com-
plete. The simplest policy to ensure completeness is to execute any non-deterministic
choice fairly, independently of the other choices. In our virtual machine, this is achieved
by concurrently computing the outcome of each replacement. In our machine, a compu-
tation is explicitly represented by a data structure, which holds the term being evaluated,
a substitution, and a state indicator with values such as active, complete, or residuating.

The machine maintains a pool of computations. Initially, there is only one active
computation in the pool, containing the initial base term. Computations change state
depending on events or conditions resulting from the execution of machine instructions.
For example, when a computation makes a non-deterministic step, the computation is
abandoned; new computations, one for each possible step, are created, added to the
pool, and become active. When a computation obtains a normal form or a head normal
form (we have a different kind of computation for each task), the computation state is
set to complete.

The core of the machine is an engine to perform head normal form computations,
by executing sequences of machine instructions. There is one such sequence associated
with each function of the source program, which we call the code of the function. The
purpose of a function’s code is to perform a narrowing step of an application of the
function to a set of arguments, or to create the conditions that lead to a narrowing
step (details are given in Section 3.3). The instructions operate on an internal context
consisting of several registers and stacks (described in Section 3.5). The instruction
sequence is always statically bounded in length, and contains no loops. For the simplest
functions, it is just a few instructions long. For more complicated functions, the number

111

of instructions goes up to a few dozen, but seldom more than that. When the virtual
machine completes the execution of a function’s code, most of the context information
become irrelevant.

To manage the pool of computations fairly, the machine must share the proces-
sor among active computations so that they make some “progress” toward a result
over time. We considered several strategies to ensure fair sharing. For example, a fixed
amount of time could be allocated to each computation. If a computation C ends be-
fore the expiration of its time, a different computation is executed. Otherwise, C is
interrupted. When all the other computations existing in the pool at the time of the in-
terruption of C have received their fair share of time, the execution of C resumes. A
similar strategy would be to allocate a fixed number of virtual machine instructions.

A drawback of the above strategies is that when a computation is interrupted, the
instruction execution context must be saved, and subsequently restored when the com-
putation resumes. In order to minimize the overhead of switching contexts, we have
adopted a simpler strategy that never interrupts instruction sequences. This remains fair
because the length of each instruction sequence is bounded. When the machine selects
a computation from the pool, it executes the entire code of some function for that com-
putation, and then returns the computation to the pool. It then repeats this process fairly
for every other computation of the pool.

3.2 Terms and Computations

In the model for functional logic programming described in [13], a computation is
the process of evaluating an expression by narrowing. The expression is a term of the
rewrite system modeling the program. A term t is a variable v or a symbol s of fixed
arity n > 0 applied to m terms t1, . . . , tm, m ≤ n, written as s(t1, . . . , tm). Symbols
are partitioned into data constructors c and functions or operations f . A data term is
a term without defined functions, a pattern is a function applied to data terms, and a
head normal form is a term without a defined function at the root, i.e., a variable or
a constructor-rooted term. In examples, we often write terms using infix notation for
symbols. A position pos in a term is represented by a sequence of positive integers
representing subterm choices, beginning at the root. For example, the position of x in
f(y,b(x,z)) is the sequence 2·1. We write t|pos for the subterm at position pos in t.

Evaluating a term results in both a computed value, as in functional programming,
and a computed answer, as in logic programming. The computed value is a data term,
and the computed answer is a substitution, possibly the identity, from some free vari-
ables of the term being evaluated to data terms. In Example (2), the evaluation of
[1,2,3] =:= x++[e] returns the computed value Success, a predefined constant for
constraints, and the computed answer {x 7→ [1,2], e 7→ 3}.

Thus, the state of a computation includes both a term and a substitution. Initially,
the computation data structure for a term t holds t itself and the identity substitution.
As narrowing steps are executed, both the term and the substitution fields of the com-
putation structure are updated. A computation is complete when the machine cannot
perform a step in the term being evaluated.

The machine supports three kinds of computations. Normal form computations
attempt to narrow terms all the way to data terms. The virtual machine is intended to

112

be used within a host program that provides the read-eval-print loop typical of many
functional and logic interpreters. The host program provides the initial base term for
the machine to evaluate to normal form, and waits for the computed values and answers
to be returned (if the program narrows variables or executes non-deterministic steps,
multiple value/answer results are possible).

Head normal form computations try to evaluate terms to constructor-rooted terms
or variables. Executing these computations is the core activity of the machine, during
which the definitions of functions are applied. Since normal form computations can be
modeled by head normal form computations using auxiliary operations (see, e.g., [15]),
we concentrate on head normal form computations in this paper; they are described in
more detail in Section 3.3.

Parallel-and computations handle the evaluation of a conjunction of two terms.
Residuation is only meaningful in the presence of these computations. Each conjunct is
evaluated by a different computation. For each conjunction, the computation of one and
only one of the two conjuncts is active at any one time (implementing an interleaving
semantics for concurrency [13]). If the computation of the first conjunct residuates, the
computation of the second one becomes active. The second computation may “unblock”
the first one, thus becoming waiting itself, or may residuate as well. In this case, the en-
tire computation blocks. If all the parallel-and computations derived from a given base
term are blocked, the base term computation flounders. Since we are omitting details
of residuation support in this paper, we ignore parallel-and computations in subsequent
sections.

The computations in the machine’s pool are conceptually independent of each other.
In our implementation, the evaluation of some subterms common to two independent
computations may be shared, but this is only for the sake of efficiency. Thus, we de-
scribe the execution of a computation disregarding the fact that other computations
may be present in the pool.

3.3 Head Normal Form Computations

The execution of a head normal form computation attempts to rewrite an operation-
rooted term into a constructor-rooted term or variable. The evaluation strategy executed
by our machine is root-needed reduction [21] with the addition of narrowing and non-
deterministic steps. Simply put, the strategy repeatedly attempts to apply rewrite rules
at the top of an operation-rooted term until a constructor-rooted term or variable is
obtained.

The implementation of this strategy for a given function depends only on the forms
of the left-hand sides of that function’s defining rules. In fact, the definitional trees that
our system uses to represent programs already implicitly encode the strategy. The next
needed step in the evaluation of a term f(t1, . . . , tn) can be obtained by comparing
the symbols at certain positions in the arguments of f with corresponding symbols in
f ’s definitional tree. A sequence of comparisons determines which rule to apply, or
which subterm to evaluate. To implement these tree-based operations, we compile the
definitional tree for each function f to a code sequence of virtual machine instructions,
as described in Section 3.7. The instructions themselves are described in Section 3.6.

113

The code for a function effectively chooses which rule to apply to a term. But it is
also possible that no rule can be applied at the top of an operation-rooted term. This can
occur for one of only two reasons: (1) an operation-rooted argument of a function appli-
cation must be evaluated to a head normal form before any rule can be applied, or (2) the
function is incompletely defined. An example of each condition follows. Consider the
definitions of the usual functions that compute the head of a list and the concatenation
of lists, denoted by the infix operator “++”.

head (x:_) = x

[] ++ y = y

(x:xs) ++ y = x : xs ++ y

(4)

The term t = head (u ++ v), for any u and v, is an example of the first condition.
To evaluate t, it is necessary to evaluate (u ++ v) which is a recursive instance of the
original problem, i.e., to evaluate an operation-rooted term to a head normal form.

The term t = head [] is an example of the second condition. In a deterministic lan-
guage, where the execution of a program consists of a single computation, this condition
is usually treated as an error. In a non-deterministic language, where the execution of
a program may consist of several independent computations, this condition is often be-
nign. The machine uses a distinguished symbol, which we denote by fail, to replace
terms that have no value. Since for every computation of the pool the machine executes
exclusively needed steps, the reduction of any subterm to fail implies that the entire
computation should fail.

3.4 Data Representation

We now describe the virtual machine more formally. The terms manipulated by the
machine are represented by acyclic directed graphs stored in heaps. This graph-based
representation of terms is necessary to capture the intended sharing semantics of the
language, and also allows us to express important optimizations when manipulating
and replacing subterms. Formally, a heap is a finite map Γ : H → P + V , where
H is an abstract set of handles (e.g., heap addresses), P is a set of pairs of the form
〈s, (h1, . . . , hn)〉, where s is a program symbol of arity m > 0, n 6 m, and h1, . . . , hn

are handles, and V is a set of program variables v. (We distinguish elements of P from
those of V by always writing the former using pair notation.) The term represented by
handle h in heap Γ is given by

trmΓ (h) =

{

s(trmΓ (h1), . . . , trmΓ (hn)) if Γ (h) = 〈s, (h1, . . . , hn)〉
v if Γ (h) = v

We make extensive use of finite maps in what follows, so we fix some general notation
for these here. If M is a finite map, then M [u := v] is the result of extending or updating
M with a mapping from u to v. We write ∅ for an empty map, and [u := v] as shorthand
for the singleton map ∅[u := v]. We write Dom(M) for the domain of M .

The storage areas of the machine (described in Section 3.5) hold handles for terms;
more loosely, we sometimes just say they hold terms and we extend some standard term

114

rewriting notations to handles. For example, if h is handle and p = p1 · p2 · · · pn is a
position, then we define

h|p1···pn
= hp1

|p2···pn
where Γ (h) = 〈 , (h1, . . . , hn)〉

It follows immediately that trmΓ (h|p) = trmΓ (h)|p. We also define the set of subhan-
dles of a handle in the obvious way:

shsΓ (h) =

{

{h} ∪ shsΓ (h1) ∪ . . . ∪ shsΓ (hn) if Γ (h) = 〈s, (h1, . . . , hn)〉
{h} if Γ (h) = v

For any handle h, the terms represented by the handles in shsΓ (h) are just the subterms
of trmΓ (h).

Substitutions σ are finite maps from handles to handles, where the handles of the
domain typically (but not necessarily) represent variables. Substitutions are never ap-
plied destructively to change a term in-place, since different computations might need
to apply different substitutions to a same term. Instead, they are applied to handles rep-
resenting terms by making a clone (deep copy) of the term. More precisely, we define a
“clone with substitution” operator as follows:

cloneσ(Γ0, h) =

(Γ0, σ(h)) if h ∈ Dom(σ)
(Γ0, h) if shsΓ (h) ∩ Dom(σ) = ∅
(Γ ′, h′) otherwise, where

Γ0(h) = 〈s, (h1, . . . , hn)〉
(Γi, h

′

i) = cloneσ(Γi−1, hi) (1 ≤ i ≤ n)
Γ ′ = Γn[h′ := 〈s, (h′

1, . . . , h
′

n)〉] (h′ 6∈ Dom(Γn))

This clone operator is quite efficient since it copies (only) the spines of the term above
any substituted variables; any parts of the source term remaining unaffected by the sub-
stitution are shared by the result term. For cloning to have the expected substitution se-
mantics on the represented terms, it is important that no variable appears more than once
in the heap; i.e., if trmΓ (h1) = v and trmΓ (h2) = v, then h1 = h2. We call heaps hav-
ing this property well-formed, and we take care to start the machine with a well-formed
heap and maintain the well-formedness invariant during execution. Suppose Γ is well-
formed, trmΓ (h) = t and trmΓ (j) = u for some terms t and u, and trmΓ (k) = v
for some variable v. If (Γ ′, h′) = clone[k:=j](Γ, h), then trmΓ ′(h′) = t[u/v], i.e., the
usual term substitution of u for v in t.

3.5 Storage Areas

As discussed in the previous sections, our machine fairly executes a pool of indepen-
dent computations. The context of each computation includes a heap and four separate
storage areas, a generic name for stacks and registers.

Suppose that t is the term to evaluate in a head normal form computation. We recall
that initially t is operation-rooted; the computation completes successfully when t is
evaluated to a constructor-rooted term or variable. The computation begins by execut-
ing the code associated with the function at the root of t. In the course of executing

115

this code, it may become necessary to recursively evaluate operation-rooted subterms
of t. The pre-narrex stack keeps track of these recursive computations. It is a stack
containing handles hn, . . . , h2, h1 of a heap Γ , with hn the top, having the following
properties.

1. At the beginning of the computation, n = 1 and trmΓ (h1) = t.
2. Every term represented by a handle in the stack, with the possible exception of hn,

the top of the stack, is operation-rooted and it is not a narrex.
3. For all i > 1, hi is a subhandle of hi−1 with the property that trmΓ (hi) must be

evaluated to a head normal form before trmΓ (hi−1) can be evaluated to a head
normal form.

The top of the pre-narrex stack contains the term handle currently being evaluated.
Referring to example (4), if head (u ++ v) is on the pre-narrex stack, then u ++ v will
be pushed on the stack, too, because the former cannot be evaluated to a head normal
form unless the latter is evaluated to a head normal form. The machine allocates a
separate pre-narrex stack to each head normal form computation.

The other three storage areas are local to the execution of a single function code
sequence.

Current register. This is a simple register containing a term handle. Many of the
machine’s instructions implicitly reference this register. For example, to apply a
rewrite rule of the function “++” defined in (4) to the term u ++ v, one must check
whether the term u is rooted by [] or “:” or some function symbol. The BRANCH
instruction that performs the test expects to find the term to be tested in the current
register.

Pre-term stack. This is a stack for constructing narrex replacements. These are always
term handles instantiating a right-hand side of a rule. The arguments of a symbol
application are first pushed on the stack in reverse order. The MAKETERM instruc-
tion, which is parameterized by the symbol being applied, replaces these arguments
with the application term. For example, the term [1,2]++[3,4], which is a nar-
rex, is replaced by 1:([2]++[3,4]) which is constructed as follows. First, the
handles for the terms [3,4] and [2] are pushed on the pre-term stack. Executing
“MAKETERM ++” replaces them with a handle to the new term [2]++[3,4]. Then,
the handle for the term 1 is pushed on the stack as well and executing “MAKETERM
:” replaces the two topmost elements with a handle for 1:([2]++[3,4]).

Free variable registers. The rewrite rules that define the functions of the program can
contain free (extra) variables. Several occurrences of a same free variable may be
needed to construct the narrex replacement. Therefore, when a free variable is cre-
ated, its handle is stored in a register (using instruction STOREVAR) to be retrieved
later (using instruction MAKEVAR) if it occurs again. For example, consider the
following rule that tells whether a string of odd length is a palindrome:

palind s = s =:= x ++ (y : reverse x) where x,y free (5)

The construction of an instance of the right-side of this rule begins with pushing
x, for the right-most occurrence of the right-hand side, on the pre-term stack. Later

116

on, another occurrence of x is to be pushed on the stack. Thus, a handle to x must
be kept around so that it can be retrieved later and pushed again. The machine
maintains the set of free variables as a finite map from variable index numbers
(which are parameters to the STOREVAR and MAKEVAR instructions) to variable
handles.

The content of these local storage areas can be discarded at the end of the execution of
the function code. Since computations are never interrupted in the middle of an instruc-
tion sequence, there need only be one instance of these areas, which can be shared by
all computations.

3.6 Machine Instructions

The virtual machine evaluates terms by executing sequences of instructions. Each in-
struction acts on the heap and the current computation to produces a (possibly) altered
heap and zero or more new or changed computations. Thus, the behavior of a computa-
tion C in the current heap Γ will be specified as a transition Γ,C =⇒ Γ ′, {C1, . . . , Cn}
(n ≥ 0) where Γ ′ is a modified heap and C1, . . . , Cn are the new or changed compu-
tations. Some instructions move information between the various storage areas. Others
build or take apart terms. Building a term extends the heap; some other operations up-
date it. Figure 1 gives transition rules for the instructions.

The machine begins a head normal form evaluation with a single active computa-
tion, containing a single term handle on the pre-narrex stack, and a well-formed heap.
(The information in all the other storage areas is irrelevant.) The machine then repeats
the following cycle. A computation is chosen (fairly) for execution from the active com-
putation pool. If the top of the pre-narrex stack represents an operation-rooted term, the
machine retrieves the code for the operation and begins to execute it. If the top of the
pre-narrex stack represents a constructor-rooted term or a variable, the stack is simply
popped; in this case an appropriate handle in the heap will already have been updated
with that term. If the pre-narrex stack is empty, the computation is completed and is
removed from the pool of active computations; the computed value can be read from
the heap by the host program.

The code for a function is a sequence of instructions I . (In fact, because BRANCH
instructions may contain multiple sub-sequences of instructions, the code really forms
a tree.) The LOAD and BRANCH instructions deal with fetching and testing (handles
of) existing terms. LOAD p extracts the subhandle at position p from the handle on top
of the pre-narrex stack and puts it in the current register. BRANCH I0, . . . , In tests and
dispatches on the form of the term represented by the handle in the current register.
If the head of this term is a function symbol, the term is pushed on the pre-narrex
stack to be eventually narrowed to a head normal form. If it is the special constant
fail, the current computation is abandoned (see below). If it is a logic variable, control
is dispatched to the instruction sub-sequence I0, which ordinarily arranges to narrow
or residuate. Otherwise, the term must be rooted by some constructor c from some
datatype t; control is dispatched to instruction sequence Ij , where j is the index of c in
the canonical ordering of constructors for t. Note that BRANCH can only occur at the
end of an instruction sequence.

117

Γ, ([], h:N, , ,) =⇒ Γ, {(code(f), h:N, , [], ∅)}
(Γ (h) = 〈f, 〉)

Γ, ([], h:N, , ,) =⇒ Γ, {([], N, , [], [])}
(Γ (h) = 〈c, 〉 or Γ (h) = v)

Γ, ([], [], , ,) =⇒ Γ, ∅

Γ, (LOAD p1 · · · pn : I, [tm, . . . , t1], , T, F) =⇒ Γ, {(I, [tm, . . . , t1], tm|p1···pn
, T, F)}

Γ, (BRANCH . . . : [], N, h, ,) =⇒ Γ, {([], h:N, , [], ∅)} (Γ (h) = 〈f, 〉)
Γ, (BRANCH . . . : [], , h, ,) =⇒ Γ, ∅ (Γ (h) = 〈fail, ()〉)

Γ, (BRANCH I0, . . . : [], N, h, T, F) =⇒ Γ, {(I0, N, h, T, F)} (Γ (h) = v)
Γ, (BRANCH I0, . . . , In : [], N, h, T, F) =⇒ Γ, {(Ij , N, h, T, F)}

(Γ (h) = 〈c, 〉, c j-th constructor)
Γ, (PUSH : I, N, R, T, F) =⇒ Γ, {(I, N, R, R:T, F)}

Γ, (POP : I, N, , t:ts, F) =⇒ Γ, {(I, N, t, ts, F)}

Γ, (MAKEANON : I, N, R, T, F) =⇒ Γ [h := v], {(I, N, R, h:T, F)}
(h 6∈ Dom(Γ), v fresh)

Γ, (STOREVAR n : I, N, R, T, F) =⇒ Γ [h := v], {(I, N, R, T, F [n := h])}
(h 6∈ Dom(Γ), v fresh)

Γ, (MAKEVAR n : I, N, R, T, F) =⇒ Γ, {(I, N, R, F (n):T, F)}

Γ, (MAKETERM s : I, N, R, [tm, . . . , t1], F) =⇒
Γ [h := s(tm, . . . , tm−n+1)], {(I, N, R, [h, tm−n, . . . , t1], F)}

(h 6∈ Dom(Γ), arity(s) = n 6 m)
Γ, (REPLACE : [], h:N, R, [],) =⇒ Γ [h := R], {([], h:N, , [], ∅)}

Γ0, (NARROW : [], [tm, . . . , t1], h, [c1, . . . , ck],) =⇒ Γk, {([], [hi], , [], ∅) | 1 ≤ i ≤ k}
where σi = [h := ci] and (Γi, hi) = cloneσi

(Γi−1, t1) (1 ≤ i ≤ k)
Γ0, (CHOICE : [], [tm, . . . , t1], , [c1, . . . , ck],) =⇒ Γk, {([], [hi], , [], ∅) | 1 ≤ i ≤ k}

where σi = [tm := ci] and (Γi, hi) = cloneσi
(Γi−1, t1) (1 ≤ i ≤ k)

Fig. 1. Machine instruction set. Instructions map a heap and an active computation to a re-
vised heap and a set of result computations. Computations are described by tuples of the form
(I, N, R, T, F), where I is an instruction sequence, N is the pre-narrex stack, R is the current
register, T is the pre-term stack, and F is the free variable map. code(f) denotes the sequence
of virtual machine instructions associated to function f as described in Section 3.7. Standard
Haskell-style list notation is used for stacks and sequences. An underscore () denotes a field
whose contents don’t matter.

118

A number of instructions manipulate the pre-term stack. PUSH and POP move han-
dles between the current register and the stack. MAKEANON creates a fresh, indepen-
dent free variable in the heap and pushes its handle. MAKEVAR pushes the handle of
a (potentially) shared free variable (previously created by STOREVAR) from the shared
free-variable map. MAKETERM s constructs a new term representation in the heap with
root symbol s and the top arity(s) elements of the stack as arguments, and pushes its
handle in place of the arguments. Finally, REPLACE updates the handle on the top of
pre-narrex stack to have the same contents as the handle in the current register.

The remaining instructions, which only appear at the end of an instruction sequence,
place multiple, non-deterministic alternative computations into the active pool. NAR-
ROW executes a narrowing step. When this instruction is executed, the current register
holds the handle for a variable v and and the pre-term stack holds handles for the in-
stantiations c1, . . . , ck, k > 0, of this variable. For each instantiation ci, the root term
of the computation t1 is cloned under the substitution [h := ci]. The computation ex-
ecuting the non-deterministic step is abandoned and a new computation corresponding
to each clone is added to the pool. Note that each new computation starts from the root
term and an empty pre-narrex stack; this stack gets rebuilt independently in each com-
putation. CHOICE is similar, except that it executes a non-deterministic reduction step.
When this instruction is executed, the top of the pre-narrex stack holds a narrex tm and
the pre-term stack holds the replacements c1, . . . , ck, k > 1, of this narrex. For each
replacement ci, the root term of the computation t1 is cloned under the substitution
[tm := ci].

There is one further instruction, RESIDUATE, which moves a computation from the
active pool to a waiting pool pending the instantiation of a logic variable. A precise
description of this instruction and of the remainder of the residuation mechanism are
beyond the scope of this paper.

In addition to these instructions, some activities of the machine are performed by
built-in functions. Generally, these are library functions that could not be defined by
ordinary rewrite rules. An example of a built-in function is apply, which takes two terms
as arguments and applies the first to the second. For correctly-typed programs, the first
argument of apply evaluates to a term of the form f(x1, . . . , xn) where the arity of f
is greater than n, i.e., f is a partial application. The function apply performs a simple
manipulation of the representation of terms. It would be easy to replace the built-in
function apply with a machine instruction. However, built-in functions are preferable to
machine instructions because they keep the machine simpler and they are loaded only
when needed.

Figure 2 shows the code for the list concatenation function “++” defined in (4). This
code is executed when the top of the pre-narrex stack contains a term of the form u++v.

3.7 Compilation

Every function of an overlapping inductively sequential program has a definitional
tree [2, 3], which is a hierarchical representation of the rewrite rules of a function that
has become the standard device for the implementation of narrowing computations. We
compile each definitional tree into a sequence of virtual machine instructions. Because

119

1 LOAD 1 load u in the current register
2 BRANCH

[u is an uninstantiated variable
3 MAKETERM [] pre-term stack contains []
4 MAKEANON push _
5 MAKEANON push _
6 MAKETERM : pre-term stack contains [] and _:_
7 NARROW

]

[u is []
8 LOAD 2 load v

9 REPLACE
]

[u is u0:us

10 LOAD 2 load v

11 PUSH
12 LOAD 1·2 load us

13 PUSH
14 MAKETERM ++ pre-term stack contains us++v

15 LOAD 1·1 load u0

16 PUSH
17 MAKETERM : pre-term stack contains u0:us++v

18 POP
19 REPLACE

]

Fig. 2. Compilation of the definition of the function “++”. This code is executed to evaluate a
term of the form u++v. The instruction numbers at the left and the comments at the right are not
part of the code itself.

a definitional tree is a high-level abstraction for the definition of a sound, complete and
theoretically efficient narrowing strategy [6], mapping this strategy into virtual machine
instructions increases our confidence in both the correctness and the efficiency of the
execution. The notation for the variant of definitional trees we use is summarized in
Figure 3.

A trees consist of internal Branch nodes, which encode choices between left-hand-
side patterns of rewrite rules, and leaf Rule nodes, which correspond to the right-hand
sides of rewrite rules. Branch nodes contain a pattern p to match, a position pos within
the term to be matched, a flag flex? indicating whether or not the branch is flexible or
rigid, i.e., whether to narrow or residuate if the corresponding position of a term being

(definitional tree) T = Branch(p, pos, flex?, [T 1, . . . , Tn])
| Rule(p, [r1, . . . , rn])

(right-hand side) r = ([v1, . . . , vn], t)

Fig. 3. Notation for definitional trees.

120

processed is a variable. In the node Rule(p,rs), rs is a list of non-deterministic alternative
right-hand sides for the rule. Each right-hand side (vs, t) consists of a term t and a list
of free variables vs that appear in t but not in p.

As examples, the definitional tree for the function (++) defined in (4) is:

Branch(x++y,1,True, [Rule([]++y, [([], y)]),
Rule((x:xs)++y, [([], x:(xs++y))])],

the tree for palind (5) is:

Rule(palind s, [([x, y], s =:= x++(y:reverse x))]),

and the tree for digit (1) is:

Rule(digit, [([], 0), ([], 1), . . . , ([], 9)]),

where, for readability, we write terms and patterns using infix notation.
Figure 4 gives an algorithm for compiling definitional trees to sequences of abstract

machine instructions. For simplicity, we assume all definitional trees are canonical, in
the sense that every Branch node corresponding to a position of type τ has a child for
each data constructor of τ , and the children are in the canonical order for data construc-
tors. (In reality, the compiler would use auxiliary type information to determine the full
set of possible children, and generate code to produce fail for the missing ones.) We
assume the existence of a function posOf v p that returns the position (if any) of vari-
able v in pattern p (assuming v appears at most once in p). Various optimizations on the
resulting code are possible; for example, the sequence of instructions [PUSH,POP] can
be omitted, as illustrated by the code in Figure 2, or the instructions STOREVAR n and
MAKEVAR n can be replaced by a single MAKEANON instruction for free variables
that occur only once in the right-hand side.

Some practical adjustments to the pseudo-code of Figure 4 are necessary to ac-
commodate built-in types, such as integers and characters. There are a few additional
machine instructions, e.g., MAKEINT and MAKECHAR, for this purpose.

4 Implementation

We have two prototype implementations of the virtual machine described in this paper.
One implementation, in Java, is currently our main development avenue. A second im-
plementation, in Standard ML, is being used mostly as a proof of concept. Since the
code is not optimized because it is still evolving, we do not present a detailed bench-
mark suite here. Nevertheless, the initial performance results appear to be promising.
A computationally intensive test computes Fibonacci numbers with an intentionally
inefficient program. This test shows that the machine executes approximately 0.5 mil-
lion reductions (i.e., function calls) per second on a 2.0 Ghz Linux-PC (with AMD
Athlon XP 2600). On the same benchmark, the PAKCS [14] implementation of Curry,
which compiles Curry programs into Prolog using the scheme in [7], runs about twice as
fast. PAKCS is one of the most efficient Curry implementations, apart from MCC [20],
which produces native code. However, neither of these implementations is operationally
complete. For example, neither produces a solution to example (3).

121

compileTree (Branch(p, pos, flex?, [T 1, . . . , Tn])) =

[LOAD pos,
BRANCH [handleVariable,

compileTree T1,

...,

compileTree Tn]]

where handleVariable =

if flex? then
buildChoice1 ++ · · · ++ buildChoicen ++ [NARROW]

where buildChoicei = [MAKEANON1,. . .,MAKEANONni
,

MAKETERM ci]

where ci(d1, . . . , dni
) = (patternOf Ti) |pos

else [RESIDUATE]

compileTree (Rule(p, [rhs1, . . . , rhsn]) =

if n = 1 then
(compileRhs rhs1) ++ [POP,REPLACE]

else (compileRhs rhs1) ++ ... ++ (compileRhs rhsn) ++ [CHOICE]
where compileRhs ([v1, . . . , vn], t) =

[STOREVAR 1,...,STOREVAR n] ++ (compileTerm t)

where compileTerm (v) = if ∃j with v = vj then
[MAKEVAR j]

else [LOAD (posOf v p),PUSH]
compileTerm (s(t1, . . . , tn)) =

(compileTerm tn) ++ · · · ++ (compileTerm t1) ++

[MAKETERM s]

Fig. 4. Pseudo-code for compilation of definitional trees to sequences of virtual machine instruc-
tions. Standard Haskell-style notation is used for lists.

We have used Java and ML due to their built-in support for automatic memory man-
agement and appropriate programming abstractions which simplified the development
of our prototypes. The same approach has been taken in [16], which describes an ab-
stract machine for Curry and its implementation in Java. On the negative side, the use
of Java limits the speed of the execution—the Java implementation in [16] is more than
an order of magnitude slower than PAKCS [7]. On the positive side, our machine can
be also implemented in C/C++ from which we can expect a considerable efficiency im-
provement.3 A possible strategy is to integrate a C-based execution engine into the Java
support framework.

Non-deterministic computations are executed independently. However, because of
the use of term handles, a common deterministic term of two independent computations
is evaluated only once. For example, consider the term digit + t, where digit is
defined in (1). A distinct computation is executed for each replacement of digit, but t

3 [16] compares the speed of the same virtual machine for Curry coded in Java vs. in C/C++. The
latter is more than one order of magnitude faster compared to a Java implementation with a
Just-In-Time compiler.

122

is evaluated only once for all these computations. In situations of this kind, our machine
is faster than PAKCS.

In our implementations, a narrex is replaced in place (with a destructive update)
whenever possible. Non-deterministic steps prevent replacement in place, since several
replacements should update a single term. Currently, the machine constructs not only
the replacement of a narrex, but also the spine of the entire term in which the narrex
occurs. This is unnecessarily inefficient and we plan to improve the situation in the
future together with other optimizations of the machine architecture and code.

Our virtual machine is intended for the execution of functional logic programs in
a variety of source languages. Our immediate choice of source language is Curry [18].
For this application, we have a complete compiler (written in Curry) into our virtual
machine but several other non-trivial software components, such as a command line
parser, a loader, a debugger and a run-time library, are necessary as well. The virtual
machine has good built-in capabilities for tracing and debugging. A specific problem
of an operationally complete implementation of non-deterministic computations is that
steps of different computations are interleaved. Presenting steps in the order in which
they are executed produces traces which are hard to read. An external debugger with
a suitable interface for non-deterministic computations is described in [9]. Finally, we
have implemented a handful of modules for built-in types, such as the integers, that
cannot be compiled from source programs.

To conclude, we have a solid, though preliminary, implementation of the virtual
machine. Several key software components of an interactive development environment
need further work. The Java implementation of the machine is available for download
from http://redstar.cs.pdx.edu/~antoy/flp/vm. The distribution also links a
tutorial description of the machine including an animation of the behavior of the in-
structions.

5 Conclusion and Related Work

We have described the architecture of a virtual machine for the execution of functional
logic computations. The machine’s design is based on solid theoretical results. In par-
ticular, the machine is intended for overlapping inductively sequential programs and
computes only root-needed steps (modulo non-deterministic choices). Larger classes
of programs, up to those modeled by the whole class of constructor-based conditional
rewrite systems, can be executed after initial transformation.

A small set of machine instructions performs pattern matching and narrex replace-
ment, two key activities of the machine. Both narrowing and non-deterministic steps are
executed by a single instruction since the machine is specifically designed for functional
logic computations. The machine is also designed to execute several computations con-
currently to ensure the operational completeness. Implementations of the machine in
Java and ML are complete and fairly efficient, through not yet optimized.

The implementation of functional logic languages is an active area of research. A
common approach is the translation of functional logic source programs into Prolog
programs, where Prolog has the role of a portable, specialized machine language, e.g.,
[7]. Another approach relies on an abstract machine. The machine presented here is

123

only one of several alternatives the authors have considered. In [8], Antoy, Hanus, et
al. describe a virtual machine with many similarities to that described in this paper, but
a major difference. Functions are compiled into Java objects rather than sequences of
virtual machine instruction as in the example of Figure 2, i.e., the target language is
Java rather than an instruction set of a virtual machine. In [16] Hanus and Sadre pre-
sented also a virtual machine for compiling Curry programs that exploits Java threads
to implement the concurrent features of Curry and ensures the operational complete-
ness of non-deterministic computations. To manage the bindings of logical variables
caused by different non-deterministic computations, they used bindings tables that are
partially shared between computations. The resulting architecture is more complex than
the machine presented in this paper and has fewer possibilities for optimization, e.g., the
sharing of deterministic evaluations between non-deterministic computations discussed
in Section 4. Thus, this implementation is no longer supported.

In [22], Tolmach, Antoy, and Nita describe a definitional interpreter for Curry-like
languages based on the semantics of Albert, et al. [1]. The primary contrast with the
present work is in the treatment of the heap. Rather than conceiving of the system as a
graph rewriting engine that generates modified copies of the source term as it runs, [22]
treats the program as fixed, read-only code that operates on multiple variant versions of
the heap. A direct performance comparison between these two approaches remains to
be made.

Among related work by others, Chakravarty and Lock [10] proposed a virtual ma-
chine for functional logic languages that combines implementation techniques from
functional and logic programming in an orthogonal way. To implement logic language
features, they used traditional logic programming implementation techniques based on
backtracking so that the operational completeness is not ensured. The same is true for
the virtual machine used in the Curry implementation MCC [20]. Due to the native
code compilation used in MCC, the implementation is quite efficient but not opera-
tional complete due to the use of a backtracking strategy.

A minimal comparison of efficiency was addressed earlier. However, our effort is
mainly characterized by the simplicity of both the instruction set and the storage areas
and by the rigorous theoretical results on which the machine is founded.

Acknowledgments

Pravin Damle made extensive contributions to the implementation. Marius Nita and the
anonymous reviewers gave helpful suggestions on the presentation of the paper.

References

1. E. Albert, M. Hanus, F. Huch, J. Oliver, and G. Vidal. Operational semantics for declarative
multi-paradigm languages. Journal of Symbolic Computation (to appear), 2005.

2. S. Antoy. Definitional trees. In Proc. 3rd International Conference on Algebraic and Logic
Programming (ALP’92), pages 143–157. Springer LNCS 632, 1992.

3. S. Antoy. Optimal non-deterministic functional logic computations. In Proc. Int. Conf. on
Algebraic and Logic Programming (ALP’97), pages 16–30. Springer LNCS 1298, 1997.

124

4. S. Antoy. Constructor-based conditional narrowing. In Proc. of the 3rd International Confer-
ence on Principles and Practice of Declarative Programming (PPDP’01), pages 199–206,
Florence, Italy, Sept. 2001. ACM.

5. S. Antoy. Evaluation strategies for functional logic programming. Journal of Symbolic
Computation, 2005. To appear.

6. S. Antoy, R. Echahed, and M. Hanus. A needed narrowing strategy. Journal of the ACM,
47(4):776–822, 2000.

7. S. Antoy and M. Hanus. Compiling multi-paradigm declarative programs into Prolog. In
Proc. of the 3rd International Workshop on Frontiers of Combining Systems (FroCoS 2000),
pages 171–185, Nancy, France, March 2000. Springer LNCS 1794.

8. S. Antoy, M. Hanus, B. Massey, and F. Steiner. An implementation of narrowing strategies.
In Proc. of the 3rd International ACM SIGPLAN Conference on Principles and Practice of
Declarative Programming (PPDP 2001), pages 207–217. ACM Press, 2001.

9. S. Antoy and S. Johnson. TeaBag: A functional logic language debugger. In Proc. 13th
International Workshop on Functional and (Constraint) Logic Programming (WFLP 2004),
pages 4–18, Aachen (Germany), 2004. Technical Report AIB-2004-05, RWTH Aachen.

10. M.M.T. Chakravarty and H.C.R. Lock. Towards the uniform implementation of declarative
languages. Computer Languages, 23(2-4):121–160, 1997.

11. J. C. González Moreno, F. J. López Fraguas, M. T. Hortalá González, and M. Rodrı́guez
Artalejo. An approach to declarative programming based on a rewriting logic. The Journal
of Logic Programming, 40:47–87, 1999.

12. M. Hanus. The integration of functions into logic programming: From theory to practice.
Journal of Logic Programming, 19&20:583–628, 1994.

13. M. Hanus. A unified computation model for functional and logic programming. In Proc.
24st ACM Symposium on Principles of Programming Languages (POPL’97), pages 80–93,
1997.

14. M. Hanus, S. Antoy, M. Engelke, K. Höppner, J. Koj, P. Niederau, R. Sadre, and F. Steiner.
PAKCS: The Portland Aachen Kiel Curry System. Available at http://www.informatik.
uni-kiel.de/~pakcs/, 2004.

15. M. Hanus and C. Prehofer. Higher-order narrowing with definitional trees. Journal of Func-
tional Programming, 9(1):33–75, 1999.

16. M. Hanus and R. Sadre. An abstract machine for Curry and its concurrent implementation
in Java. Journal of Functional and Logic Programming, 1999(6), 1999.

17. M. Hanus and F. Steiner. Controlling search in declarative programs. In Principles of Declar-
ative Programming (Proc. Joint International Symposium PLILP/ALP’98), pages 374–390.
Springer LNCS 1490, 1998.

18. M. Hanus (ed.). Curry: An integrated functional logic language (vers. 0.8). Available at
http://www.informatik.uni-kiel.de/~curry, 2003.

19. F. López-Fraguas and J. Sánchez-Hernández. TOY: A Multiparadigm Declarative System.
In Proc. of RTA’99, pages 244–247. Springer LNCS 1631, 1999.

20. W. Lux and H. Kuchen. An efficient abstract machine for Curry. In K. Beiersdörfer, G. En-
gels, and W. Schäfer, editors, Informatik ’99 — Annual meeting of the German Computer
Science Society (GI), pages 390–399. Springer Verlag, 1999.

21. A. Middeldorp. Call by need computations to root-stable form. In Proc. 24th ACM Sympo-
sium on Principles of Programming Languages, pages 94–105, Paris, 1997.

22. A. Tolmach, S. Antoy, and M. Nita. Implementing functional logic languages using multiple
threads and stores. In Proc. of the Ninth International Conference on Functional Program-
ming (ICFP 2004), pages 90–102, Snowbird, Utah, USA, Sept. 2004. ACM Press.

23. D.H.D. Warren. Higher-order extensions to PROLOG: are they needed? In Machine Intelli-
gence 10, pages 441–454, 1982.

125

