
14th International Conference on Logic Programming (ICLP’94)

Leuven, Belgium, July 1997, MIT Press, pages 138–152.

Parallel Evaluation Strategies
for Functional Logic Languages

Sergio Antoy
Portland State University, Portland, OR 97207, U.S.A.
antoy@cs.pdx.edu

Rachid Echahed
IMAG-LSR, CNRS, BP 53, F-38041 Grenoble, France
echahed@imag.fr

Michael Hanus
RWTH Aachen, Informatik II, D-52056 Aachen, Germany
hanus@informatik.rwth-aachen.de

Abstract
We introduce novel, sound, complete, and locally optimal evaluation strate-
gies for functional logic programming languages. Our strategies combine, in
a non-trivial way, two landmark techniques in this area: the computation
of unifiers performed by needed narrowing in inductively sequential rewrite
systems and the simultaneous reduction of a necessary set of redexes per-
formed by rewriting in weakly orthogonal, constructor-based rewrite systems.
First, we define a sequential strategy similar in scope to other narrowing
strategies used in modern lazy functional logic languages. Then, based on
the sequential strategy, we define a parallel narrowing strategy that has sev-
eral noteworthy characteristics: it is the first complete narrowing strategy
which evaluates ground expressions in a fully deterministic, optimal way; it
computes shortest derivations and minimal sets of solutions on inductively
sequential rewrite systems; and when combined with term simplification, it
subsumes and improves all recently developed optimizations of narrowing for
overlapping rewrite rules.

1 Introduction

The interest in integrating functional and logic programming has grown over
the last decade, since the languages resulting from this integration are ex-
pected to have advantages of both paradigms. Most proposals with a sound
and complete operational semantics for the integration of functional and logic
programming languages (see [10] for a recent survey) are based on narrowing.
Narrowing solves equations by computing unifiers with respect to an equa-
tional theory. Informally, narrowing unifies a term with the left-hand side of
a rewrite rule and fires the rule on the instantiated term.

Example 1 Consider the following rewrite rules defining the addition for
natural numbers, which are represented by terms built with 0 and s:

0 +X → X R1

s(X) + Y → s(X + Y) R2

To narrow the equation Z+s(0) ≈ s(s(0)), rule R2 is applied by instantiating
Z to s(X). To narrow the resulting equation, s(X + s(0)) ≈ s(s(0)), R1 is

applied by instantiating X to 0. The resulting equation, s(s(0)) ≈ s(s(0)), is
trivially true. Thus, {Z 7→ s(0)} is the equation’s solution.

A brute-force approach to finding all the solutions of an equation would at-
tempt to unify each rule with each non-variable subterm of the given equa-
tion. The resulting search space would be huge even for small programs.
Thus, many narrowing strategies for limiting the size of the search space have
been proposed [10]. Recently, an optimal strategy for inductively sequential
rewrite systems (e.g., the rewrite system in Example 1) has been discovered by
extending to narrowing landmark results in term rewriting [2]. In this paper,
we investigate new evaluation strategies for a more general class of programs,
namely those defined by weakly orthogonal, constructor-based systems.

Example 2 Consider the following definition of Boolean disjunction known
as parallel-or.

X ∨ true → true R1

true ∨ X → true R2

false ∨ false → false R3

(1)

A significant difference of this system w.r.t. the previous one is the overlap-
ping of the first two rules. As a consequence, a term of the form t1 ∨ t2 may
be narrowed to normal form by narrowing either t1 or t2, although we do not
know of any criterion to make this choice without look-ahead.

To place our results in a context, we briefly review relevant results about
rewriting strategies. O’Donnell has shown [19] that the parallel outermost
strategy is normalizing for almost orthogonal TRSs, hence for weakly orthog-
onal, constructor-based TRSs. In general, some reductions performed by this
strategy could be avoided. Huet and Lévy have shown [11] that for the class of
strongly sequential TRSs there is an effective strategy that performs only un-
avoidable reductions. Sekar and Ramakrishnan [21] have refined O’Donnell’s
result in a different direction. Within the class of the weakly orthogonal,
constructor-based TRSs, they have shown that it is possible to minimize the
set of redexes that must be reduced in parallel in a term to compute its nor-
mal form. The resulting strategy, similar to Huet and Lévy’s, does not take
into account the right hand sides of the TRS’s rules, and it is optimal among
the strategies with this limitation.

To date, only one narrowing strategy generalizes a rewriting strategy.
Huet and Lévy’s approach has been extended to narrowing for inductively-
sequential TRSs with comparable properties. The resulting strategy, called
needed [2], performs only unavoidable steps and turns out to be optimal also
with respect to the computed unifiers. However, narrowing strategies for
weakly orthogonal TRSs depart radically from O’Donnell’s and Sekar and
Ramakrishnan’s approaches in that they are sequential. This departure has
a major impact on the operational meaning of completeness of a strategy.

If a ground term t has a normal form, then both O’Donnell’s and Sekar
and Ramakrishnan’s strategies compute the normal form of t by means of
deterministic, parallel1 steps. Narrowing t is equivalent to rewriting it, since

1In this context, parallel means that several, possibly different redexes are simultaneously
reduced in a single step.

139

we are assuming that t is ground. All the existing narrowing strategies that
are known to be ground complete narrow t to its normal form by means
of possibly don’t-know non-deterministic, sequential steps. This notion of
completeness is somewhat reductive in the sense that the implementations of
these strategies don’t know how to compute the normal form of t without a
severe penalty in efficiency. However, this need not be the case for all ground
and for some non-ground terms.

The subject of this paper is a parallel strategy for narrowing. Our strat-
egy is sound and complete and can be implemented relatively efficiently by
unification. It always computes the normal form of a ground term, if there
exists one, without non-determinism and as efficiently as possible under a set
of reasonable assumptions. Our strategy narrows a necessary set of positions,
which generally contains fewer than all the outermost narrowable positions of
a term. Our parallel strategy falls back to the needed narrowing strategy [2]
on the inductively sequential portions of a TRS, and consequently is optimal
on these portions, and falls back to Sekar and Ramakrishnan’s strategy on the
ground terms, and consequently is optimal (in a weaker sense) on the ground
portions of a computation, too. Note that our parallel narrowing strategy is
not intended as a technique to implement functional logic languages on par-
allel architectures, since the parallelism is too fine-grained. The parallelism
is mainly used to avoid some redundant non-deterministic choices of simpler
narrowing strategies.

The paper is organized as follows. Some preliminary definitions and no-
tations are listed in the next section. Section 3 defines the weakly needed
rewriting strategy which is a parallel rewriting strategy designed for the class
of weakly orthogonal, constructor-based TRSs. In Section 4, we present a se-
quential narrowing strategy which is a natural extension of needed narrowing
to overlapping TRSs. We define the parallel narrowing strategy and an impor-
tant improvement in Sections 5 and 6 and discuss its optimality in Section 7.
Comparison with related work is given in Section 8. Due to lack of space,
some detailed definitions and all proofs are omitted from this paper. A full
version containing all the details can be found in [3].

2 Preliminaries

We recall some key notions and notations about rewriting. We are consistent
with the conventions of [5, 13].

Terms are constructed w.r.t. a given many-sorted signature Σ. The set of
variables occurring in a term t is denoted by Var(t). A term t is called ground
if Var(t) = ∅. In practice, most functional logic programs are constructor-
based, i.e., symbols, called constructors, that construct data terms are distin-
guished from those, called defined functions or operations, that operate on
data terms (see, for instance, the functional logic languages ALF [8], BABEL
[18], K-LEAF [7], LPG [4]). Hence, we assume that R is a constructor-
based term rewriting system consisting of rewrite rules l → r, where l is a
pattern, i.e., the root of l is an operation symbol and the arguments of l do
not contain any operation symbol. A term f(t1, . . . , tn) (n ≥ 0) is called an
operation-rooted term if f is an operation.

Substitutions and unifiers are defined as usual [5], where we writemgu(s, t)
for the most general unifier of s and t. We write σ ≡V θ iff the substitutions

140

σ and θ are renamed variants on the set V . We write t ≤ t′ (respectively,
σ ≤V σ′) iff there is a substitution τ such that t′ = τ(t) (respectively, σ′(x) =
τ(σ(x)) for all variables x ∈ V).

An occurrence or position p is a sequence of positive integers identifying a
subterm in a term. t|p denotes the subterm of t at position p, and the result
of replacing t|p with s in t is denoted by t[s]p. We write p ≤ q to denote that
the position p is a prefix of q.

A reduction step is an application of a rewrite rule l→ r to the redex t|p,

i.e., t →p, l→r s if s = t[σ(r)]p for some substitution σ with t|p = σ(l).
∗
→

denotes the transitive and reflexive closure of →. A term t is reducible to a
term s if t

∗
→ s. A term t is called irreducible or in normal form if there is no

term s with t → s. A term rewriting system R is called terminating if there
are no infinite rewrite derivations w.r.t. R.

Rewriting is computing the value of a functional expression, i.e., its normal
form obtained by rewriting. Functional logic programs compute with partial
information, i.e., a functional expression may contain logic variables. The goal
is to compute values for these variables such that the expression is evaluable
to a particular normal form, e.g., a constructor term [4, 7, 18]. This is done
by narrowing. A term t is narrowable to a term s if there exist a non-variable
position p in t (i.e., t|p is not a variable), a variant l → r of a rewrite rule
in R with Var(t) ∩ Var(l → r) = ∅ and a unifier σ of t|p and l such that
s = σ(t[r]p). In this case we write t ;p, l→r,σ s, where p and l → r are
sometimes omitted. If σ is a most general unifier of t|p and l, the narrowing
step is called most general. Since the instantiation of the variables in the rule
l→ r by σ is not relevant for the computed result of a narrowing derivation,
we will omit this part of σ.

In most papers, narrowing is intended as most general narrowing [10].
Most general narrowing has the advantage that most general unifiers are
uniquely computable, whereas there exist many independent unifiers. How-
ever, as shown in [2], most general unifiers must be dropped to obtain an
optimal narrowing strategy. This paper follows the same approach.

Narrowing is intended to solve goals, where a goal is a Boolean expression
that should be reduced to the constant true. Thus, a substitution σ is a
solution for a goal G iff σ(G) is reducible to true. This is general enough to
cover the equation solving capabilities of current functional logic languages
with a lazy operational semantics, like BABEL [18] or K-LEAF [7], since the
strict equality2 ≈ can be defined as a binary operation by a set of orthogonal
rewrite rules (see [2, 7, 18] for more details about strict equality). An impor-
tant consequence of restricting narrowing to goals is the fact that during the
successful rewriting of a goal the topmost symbol is always an operation or
the constant true. This property will be used to simplify the presentation of
our results. Note that the evaluation of an arbitrary term t to a constructor
normal form can be obtained by solving the goal t ≈ X.

To ensure the confluence of the rewrite relation, we also require weak
orthogonality. A term rewriting system R is weakly orthogonal if for each
rule l → r ∈ R the left-hand side l does not contain multiple occurrences
of a variable (left-linearity) and for each pair of rules l → r, l′ → r′ ∈ R,

2The strict equality t ≈ t′ holds if t and t′ are reducible to the same ground constructor
term. Note that normal forms may not exist in general due to non-terminating rewrite rules.

141

non-variable subterm l|p of l, and mgu σ for l|p and l′, the terms σ(l[r′]p) and
σ(r) are identical. R is almost orthogonal if it is weakly orthogonal and for
each pair of rules l → r, l′ → r′ ∈ R, the only possible non-variable subterm
of l that may unify with l′ is l itself. Since we consider in the following only
Constructor-based, Almost orthogonal, Term rewriting systems, we write
CAT for this class.

It is easy to see that for constructor-based systems almost and weak or-
thogonality are the same concept, since the left-hand sides of the rules are
patterns. The notion of descendant, well-known for orthogonal systems [11], is
extended to almost orthogonal systems without difficulties. Here we provide

an intuitive definition as proposed in [14]. Let t
∗
→ t′ be a reduction sequence

and s a subterm of t. The descendants of s in t′ are computed as follows:

Underline the root of s and perform the reduction sequence t
∗
→ t′. Then,

every subterm of t′ with an underlined root is a descendant of s. A position
u of a term t is called needed iff in every reduction sequence of t to a normal
form a descendant of t|u is rewritten at its root.

Example 3 Consider the rewrite rule R3 = double(X)→ X+X. The follow-
ing reduction of double(0+0) shows, by means of underlining, the descendants
of 0 + 0.

double(0 + 0)→Λ,R3
(0 + 0) + (0 + 0)

The set of descendants of position 1 by the above reduction is {1, 2}.

3 Weakly Needed Rewriting

For inductively sequential systems there exists a narrowing strategy [2] that
performs only steps that are needed for solving goals. This strategy is a gen-
eralization to narrowing of the sequential rewriting strategy presented in [1].
This sequential strategy is also the basis of a parallel rewriting strategy for
weakly orthogonal, constructor-based rewrite systems, referred to as weakly
needed rewriting and sketched first in [1], that computes the same reduction
sequences of [21], although the overall approach is different. In this section,
we reformulate the weakly needed rewriting strategy and show one important
property of this generalization. We begin with some technical definitions.

A definitional tree is a hierarchical structure containing the rules of a
defined operation of a rewrite system. The symbols rule, branch, and or
occurring in the next definition, are uninterpreted functions used to classify
the nodes of the tree. A definitional tree can be seen as a partially ordered
set of patterns with some additional constraints.

Definition 1 T is a generalized definitional tree, or gdt, with pattern π iff
the depth of T is finite, π is a pattern, and one of the following cases holds:

T = rule(l→ r), where l→ r is a variant of a rule of R with π = l.

T = branch(π, o, T1, . . . , Tk), where o is an occurrence of a variable in π,
c1, . . . , ck are different constructors of the sort of π|o, for some k > 0,
and, for all j in {1, . . . , k}, Tj is a gdt with pattern π[cj(X1, . . . , Xn)]o,
where n is the arity of cj and X1, . . . , Xn are new variables.

T = or(T1, . . . , Tk), where k > 1 and each Tj is a gdt with pattern π.

142

X1 ∨ X2

X1 ∨ X2

true ∨ X2

true

false ∨ X2

X1 ∨ X2

X1 ∨ true

true

X1 ∨ false

false ∨ false false ∨ false

false false

Figure 1: Pictorial representation of a parallel definitional tree of the operation
parallel-or defined in display (1). The branch variables in the patterns of branch
nodes are underlined. Or-ed branches are joined by an arc.

In the remainder of the paper, we will use the notation pattern(T) to denote
the pattern argument of a gdt T .

Let R be a rewrite system. T is a gdt of an operation f iff T is a gdt such
that pattern(T) = f(X1, . . . , Xn), where n is the arity of f and X1, . . . , Xn

are new distinct variables, and for every rule l→ r of R with l = f(t1, . . . , tn)
there exists a leaf rule(l′ → r′) of T such that l is a variant of l′.

A generalized definitional tree T is called parallel definitional tree, abbre-
viated pdt , iff in every node or(T1, . . . , Tk) every Tj has a branch node at the
top, where these branch nodes contain pairwise different positions.

A definitional tree is a generalized definitional tree without or-nodes.3

Figure 1 pictorially represents the parallel definitional tree of the rules of the
parallel-or shown in Example 2. It is easy to see that a generalized definitional
tree exists for each operation. A parallel definitional tree may not exist if the
rewrite system contains useless rules, i.e., rules that are instances of another
rule. By eliminating all the useless rules from a rewrite system R, every
operation of the resulting system has a parallel definitional tree which can be
effectively constructed [1, Th. 19]. Moreover, the rewrite relation and the set
of solutions is not changed by this elimination. From now on, we assume that
every rewrite system that we are dealing with has no useless rules.

A parallel definitional tree may be decomposed into a set of sequen-
tial components each of which is a (sequential) definitional tree. If T =
rule(l → r), then T itself is the only sequential component of T . If
T = branch(π, o, T1, . . . , Tk), then branch(π, o, T ′

1 , . . . , T
′
k) is a sequential

component of T for all sequential components T ′
j of Tj , j = 1, . . . , k. If

T = or(T1, . . . , Tk), then, for all sequential components T ′ of Tj , T
′ is a

sequential component of T .
Below, we recall the definition of needed rewriting. Needed rewriting

is a strategy for inductively sequential systems, i.e., rewrite systems where
each function has a definitional tree. Loosely speaking, the rewriting (and
narrowing) strategies presented in this paper are obtained by breaking up

3This corresponds to the definition given in [2] except that we ignore the exempt nodes.

143

X1 ∨ X2

true ∨ X2

true

false ∨ X2

X1 ∨ X2

X1 ∨ true

true

X1 ∨ false

false ∨ false false ∨ false

false false

Figure 2: Pictorial representation of the sequential components of the parallel defi-
nitional tree of the operation parallel-or defined in display (1). Each component is a
sequential definitional tree and is obtained by taking one distinct subtree of the or
node at the root in Fig. 1.

a CAT into its inductively sequential components, applying needed rewriting
(or narrowing) to each component, and combining together the results of each
application.

The needed rewriting strategy is implemented by a function, ϕ, that takes
two arguments, an operation-rooted term, t, and a definitional tree, T , of the
root of t. Throughout an interleaved descent down both t and T , ϕ computes,
whenever possible, a position p and a rule R such that t must be reduced at
p, using rule R, to compute its constructor normal form.

Definition 2 The partial function ϕ takes two arguments, an operation-
rooted term t and a definitional tree T such that pattern(T) ≤ t. If ϕ(t, T)
is defined, it yields a pair, (p,R), where p is a position of t and R is a rewrite
rule applicable to t at p. The function ϕ is defined recursively as follows

ϕ(t, T) =

(Λ, R) if T = rule(R);

ϕ(t, Ti) if T = branch(π, o, T1, . . . , Tk) and
pattern(Ti) ≤ t, for some i;

(o · p,R) if T = branch(π, o, T1, . . . , Tk), t|o is operation-
rooted, T ′ is a definitional tree of the root of
t|o, and ϕ(t|o, T

′) = (p,R).

In order to extend the strategy ϕ to CATs, we apply ϕ to all the sequential
components of a pdt and select the disjoint outermost positions from all com-
puted positions. This strategy is denoted by ϕ̄. The weakly needed rewriting
strategy reduces all redexes at positions computed by ϕ̄ in parallel.

Example 4 Consider the rewrite system of Example 2 and the term t =
(true∨(true∨true))∨(X∨(false∨false). The weakly needed rewrite derivation
computed by ϕ̄ is

t→(1,R2),(2·2,R3) true ∨ (X ∨ false)→(Λ,R2) true

The following theorem shows that first, unless we perform at least one re-
duction step computed by ϕ̄ we cannot obtain the normal form and second,
that if we perform all the steps computed by ϕ̄ we do obtain the normal form
(whenever it is a constructor term) of a goal.

144

Theorem 1 Let R be a CAT, and G a goal which is reducible to ‘true’.
1. Every strategy normalizing G must reduce a descendant of G at some po-
sition computed by ϕ̄.
2. A strategy S that reduces the descendants of the redexes computed in G by
ϕ̄ is normalizing.

Thus, ϕ̄ computes a necessary set of redexes in the sense of [21], although
the way in which the set is computed, i.e. by means of ϕ, is quite different.
We define in the next section a generalization of ϕ, λ, that simultaneously
computes both a redex and a unifier. This allows us to generalize to narrowing
the results of [21] on rewriting.

4 Weakly Needed Narrowing

In this section we study our first narrowing strategy for CATs. This strategy
is sequential and could be seen as a natural extension to overlapping TRSs
of needed narrowing [2]. In order to define the narrowing steps, we use the
sequential components of a parallel definitional tree. Loosely speaking, we
apply the needed narrowing strategy λ (defined in [2] and recalled below)
to all the sequential components of a pdt and combine the results together.
Since λ computes optimal narrowing derivations for inductively sequential
programs, our strategy is a conservative extension of an optimal strategy.

Definition 3 The function λ takes two arguments, an operation-rooted term
t and a definitional tree T such that pattern(T) and t unify. The function λ
yields a set of triples of the form (p,R, σ), where p is a position of t, R is a
rewrite rule, l → r, of R and σ is a unifier of l and t|p. Thus, let t be a term
and T a definitional tree in the domain of λ. The function λ is defined to
yield least sets of triples satisfying the following conditions.

λ(t, T) ⊇

{(Λ, l→ r,mgu(t, l))} if T = rule(l→ r);

λ(t, Ti) if T = branch(π, o, T1, . . . , Tk),
t and pattern(Ti) unify, for some i;

{(o · p,R, σ ◦ τ)} if T = branch(π, o, T1, . . . , Tk),
t|o is operation-rooted, τ = mgu(t, π),
T ′ is a definitional tree of the root of
τ(t|o), and (p,R, σ) ∈ λ(τ(t|o), T

′).

If (p, l → r, σ) ∈ λ(t, T), then t ;p, l→r,σ σ(t[r]p) is a narrowing step. As
in proof procedures for logic programming, we have to apply variants of the
rewrite rules with fresh variables at each narrowing step, i.e., the definitional
trees always contain new variables if they are used in a narrowing step.

Definition 4 The function λ̄ takes two arguments, an operation-rooted term
t and a pdt T such that pattern(T) and t unify. Then, λ̄ is defined by

λ̄(t, T) = {(p,R, σ) ∈ λ(t, T ′) | T ′ is a sequential component of T }

We call weakly needed any narrowing step t ;p,R,σ t′ with (p,R, σ) ∈ λ̄(t, T).

Weakly needed narrowing is almost identical to the demand driven narrowing
strategy proposed in [16]. However, soundness and completeness results are
not provided in [16].

145

Example 5 Consider Example 2 with the additional rule R4 = f(a)→ true
and the term t = f(X) ∨ f(X). Let T denote the parallel definitional tree
of “∨” pictorially represented in Fig. 1. The sequential components of T are
pictorially represented in Fig. 2. According to Definition 4, λ̄(t, T) is

{(1,R4, {X 7→ a}), (2,R4, {X 7→ a})}

which specifies the following narrowing steps:

t ;1,R4,{X 7→a} true ∨ f(a)
t ;2,R4,{X 7→a} f(a) ∨ true

Theorem 2 (Soundness of weakly needed narrowing) Let R be a CAT and
G a goal. If G ;σ1 · · · ;σn true is a narrowing derivation computed by λ̄,
then σn ◦ · · · ◦ σ1 is a solution for G.

The completeness of weakly needed narrowing is stated w.r.t. constructor
substitutions as solutions of goals, i.e., substitutions mapping variables into
constructor terms. This is not a limitation in practice, since more general
solutions would contain unevaluated or undefined expressions. This is not
a limitation with respect to related work, since most general narrowing is
known to be complete only for irreducible solutions [12], and lazy narrowing
is complete only for constructor substitutions [7, 18].

Theorem 3 (Completeness of weakly needed narrowing) Let R be a CAT.
Let σ be a constructor substitution that is a solution of a goal G and V be
a finite set of variables containing Var(G). Then λ̄ computes a narrowing
derivation G ;σ1 · · ·;σn true such that σn ◦ · · · ◦ σ1 ≤V σ.

If we consider again the term t in Example 5, we can observe that, to narrow
t to true, the strategy λ̄ computes four distinct derivations with the same
substitution {X 7→ a}. In order to avoid such redundant computations, we
propose a parallel narrowing strategy in the next section.

5 Parallel Narrowing

Classic narrowing may be defined in two steps as follows: t narrows to t′

iff there exists a substitution σ such that the term σ(t) rewrites to t′ using
some rewrite rule l → r. From this informal definition, narrowing differs
from rewriting only by the instantiation step. Now, if we generalize this idea
to parallel rewriting, i.e., if we replace the rewriting step, in the narrowing
relation, by a parallel rewriting step, we obtain a new relation that we call
parallel narrowing. The definition below formalizes the idea that we just
sketched and defines a parallel narrowing step as an instantiation followed by
a parallel rewriting step.

Definition 5 Let R be a term rewriting system and S a parallel rewriting

strategy. t
S
;; σ t′ is a parallel narrowing step (w.r.t. S) iff σ(t)

S
→ t′. A

parallel narrowing strategyNS is a function from terms to sets of substitutions,
NS : T (Σ,X)→ 2Sub . A substitution σ is in NS(t) only if there exists a term

t′ such that t
S
;; σ t′. We denote the parallel narrowing relation w.r.t. a

strategy NS by
NS
;; .

146

Throughout this section, parallel narrowing is defined upon the paral-

lel rewriting strategy ϕ̄. Below we define the parallel narrowing strategy ¯̄λ.

There are two main differences w.r.t. weakly needed narrowing: ¯̄λ may disre-
gard some unifiers computed by weakly needed narrowing which contribute to
redundant derivations, and at every narrowing step a necessary set of redexes
of the instantiated term is reduced in parallel.

Definition 6 Let R be a CAT, t an operation-rooted term, T a parallel

definitional tree of the root of t. We define the parallel narrowing strategy ¯̄λ
as follows.4

¯̄λ(t, T) = {σ|Var(t) | ∃ (p,R, σ) ∈ λ̄(t, T), ∀ (q,R′, θ) ∈ λ̄(t, T),
(θ ≤Var(t) σ and θ 6≡Var(t) id⇒ σ ≡Var(t) θ) and
(θ ≡Var(t) id and q ≤ p⇒ σ ≡Var(t) id)} / ≡

Intuitively, a substitution σ belongs to ¯̄λ(t, T) iff σ is either the identity or
a minimal substitution (w.r.t. ≤) among the non-identity substitutions com-
puted by λ̄(t, T). Furthermore, whenever two triples (p,R, id) and (q,R′, θ)
belong to λ̄(t, T) with p being a prefix of q (p ≤ q), the substitution θ is not

considered by the strategy ¯̄λ.

Example 6 Consider the following rewrite rules:

X ∗ 0 → 0 R1

0 ∗ X → 0 R2

f(s(s(X))) → 0 R3

g(X) → g(s(X)) R4

and the term t = g(X) ∗ (f(Y) ∗ (0 ∗ f(s(Y)))). One can easily verify that

λ̄(t, T) = {(1,R4, id), (2·1,R3, {Y 7→ s(s(Y1))}), (2·2,R2, id),
(2·2·2,R3, {Y 7→ s(Y2)})}

¯̄λ(t, T) = {id}

(for some pdt T). The unifier {Y 7→ s(s(Y1))} is discarded since it is an
instance of {Y 7→ s(Y2)}. The unifier {Y 7→ s(Y2)} is discarded since the redex

created by its application is non-outermost. Thus the strategy ¯̄λ rewrites the
term t in parallel at positions 1 and 2·2.

Theorem 4
¯̄λ
;; is sound and complete in the sense of Theorems 2 and 3.

6 Parallel Narrowing with Simplification

The strategy ¯̄λ improves weakly needed narrowing, but it may still perform
some redundant computations, as shown in the following example.

4The set notation {σ|Var(t) | · · ·} / ≡ means that this set must not contain two substitu-
tions σ1, σ2 with σ1 ≡Var(t) σ2.

147

Example 7 Consider the rules of Example 6. Let t = f(s(Y)) ∗ f(s(s(Y))).

Then, for an appropriate pdt T , ¯̄λ(t, T) = {id, {Y 7→ s(Y2)}}. If we develop
the search space of t, we will compute twice the result 0 with the substitution
id and the redundant substitution {Y 7→ s(Y2)}. However, if we simplify t
to f(s(Y)) ∗ 0 by applying a rewrite step with rule R3 (note that all rules
except R4 are terminating) before applying a parallel narrowing step, we will
compute only once the result 0 with the identity substitution.

In this section we define a new parallel narrowing strategy which combines

the strategy ¯̄λ with a kind of term simplification. The resulting strategy is

complete and avoids some useless computations performed by ¯̄λ. In order

to support flexible simplification strategies, we combine ¯̄λ with a simplifying
rewriting strategy which is a mapping S from terms to terms such that

1. ∀ t ∈ T (Σ,X),S(t) = t′ ⇒ t
∗
→ t′ (i.e., S is compatible with rewriting)

2. S is recursive (i.e., S is computable).

For instance, mapping a term to itself, or its reduct, or one of its descen-
dants obtained using terminating rules are all plausible simplifying rewriting
strategies. The following definition introduces a new parallel narrowing strat-

egy that combines ¯̄λ and a simplifying rewriting strategy. We denote by
¯̄λ(t) the substitution set ¯̄λ(t, T) if t is operation-rooted and T is a parallel
definitional tree of the root of t, or the empty set if t is not operation-rooted.

Definition 7 Let R be a CAT, S a simplifying rewriting strategy, and t
an operation-rooted term. We call parallel narrowing with simplification the

binary relation ¯̄λS over terms defined as follows: t
¯̄λS
;; σ t′ iff either

• σ ∈ ¯̄λ(S(t)) and S(t)
¯̄λ
;; σ t′, or

• ¯̄λ(S(t)) = ∅, t′ = S(t), t′ 6= t, and σ = id.

Thus, parallel narrowing with simplification deterministically simplifies a term
before applying a narrowing step. It may happen that no narrowing step is
applicable after simplification since the term may be reduced to normal form,
which is the reason for the second case in the definition.

Theorem 5 Let S be a simplifying rewriting strategy. The parallel narrowing

with simplification strategy ¯̄λS is sound and complete in the sense of Theo-
rems 2 and 3.

If we use a parallel rewriting strategy similar to ϕ̄ to compute simplifica-
tion steps, then the simplification steps can also be considered as narrowing
steps where the applied substitution is the identity. Therefore, one might
suppose that the commitment to the identity substitution in the definition of
¯̄λ (whenever possible) has the same effect as simplification. Unfortunately,
such a commitment destroys the completeness of parallel narrowing, as can
be seen by developing the search space for the term g(X) ∗ f(Y) w.r.t. the
rules in Example 6.

148

7 Optimality

In this section we discuss two optimality results of our narrowing strategies.
Inductively sequential systems are a subclass of CATs. An inductively sequen-
tial operation f has a parallel definitional tree T with exactly one sequen-
tial component, i.e., T itself is a (sequential) definitional tree. Both weakly
needed narrowing and parallel narrowing behave as needed narrowing when
they operate on such a tree.

Theorem 6 Let R be a CAT, t an operation-rooted term whose defined oper-
ations are all inductively sequential. Then, for appropriate definitional trees
for the operations in t, the narrowing steps of t computed by both weakly
needed narrowing and parallel narrowing are the same as the narrowing steps
of t computed by needed narrowing.

We now turn our attention to the behavior of parallel narrowing on ground
goals.

Theorem 7 The parallel narrowing strategy is (deterministically) normaliz-
ing on ground goals.

The above results show that parallel narrowing is a conservative extension of
two optimal strategies, needed narrowing on inductively sequential systems
and rewriting necessary sets on ground terms.

The strong optimality results of needed narrowing cannot be expected to
hold for both weakly needed and parallel narrowing. In particular, we recall
that rewriting and/or narrowing needed positions is not always possible in
almost orthogonal TRSs, since such positions generally do not exist [21]. Fur-
thermore, computing only independent unifiers seems unlikely, too, without
look-ahead, as the next example shows.

Example 8 Consider the parallel-or of Example 2 together with the rules

f(0, X) → X h(0) → true

and the goal f(X,h(Y)) ∨ f(Y, h(X)). Parallel narrowing computes two
derivations of this goal beginning with different unifiers, eventually to dis-
cover that they yield the same substitution.

8 Related Work

In this section we compare our parallel narrowing strategy with other narrow-
ing strategies proposed for CATs. There are also many narrowing strategies
for other rewrite systems than CATs, like innermost, outermost, or basic nar-
rowing (see [10]). However, all these strategies require the termination of the
rewrite relation which is an undecidable property and immediately excludes
typical functional programming techniques like infinite data structures. To
ensure confluence in the presence of non-terminating rules, weak orthogonality
and constructor-based rewrite rules are natural requirements. For this class
of rewrite systems, lazy narrowing has been proposed (see, e.g., [7, 18, 20]).
Similarly to lazy evaluation in functional languages, lazy narrowing evaluates

149

an inner term only when its value is demanded to narrow an outer term. In
contrast to functional languages, a naive version of lazy narrowing may eval-
uate the same argument several times due to the non-deterministic choice of
a function’s rewrite rules. Therefore, several methods have been proposed
aiming at evaluating arguments commonly demanded by all rules before the
non-deterministic choice (e.g., [2, 16]). Needed narrowing [2] is the only strat-
egy that has been shown to be optimal w.r.t. the length of derivations and the
number of computed solutions. Needed narrowing is defined for inductively
sequential systems, and we have shown in Theorem 6 that parallel narrowing
is a conservative extension of this optimal strategy.

In case of overlapping rules, the situation is more difficult since an argu-
ment may be demanded by some rule but not demanded by another rule for
the same function. This has the unfortunate effect that naive lazy narrowing
is often inefficient for such rules [9]. There are different proposals to improve
naive lazy narrowing in this case. For instance, Loogen and Winkler [17]
propose the dynamic cut which ignores subsequent alternative rules for nar-
rowing if a rule is applicable without binding of goal variables. The effect of
the dynamic cut is subsumed by our strategy since parallel narrowing prefers
deterministic reductions at the root:

Proposition 1 Let R be a CAT, t an operation-rooted term and l → r ∈ R

a rule with σ(l) = t for some substitution σ. Then t
¯̄λ
;; id σ(r) is the only

parallel narrowing step starting at t.

This proposition also shows another advantage of our parallel narrowing strat-
egy in comparison to the dynamic cut: parallel narrowing is independent of
the order of rewrite rules. Since the dynamic cut only discards alternative
rules after the current rule, it has no effect if the application of previous rules
instantiates variables. This disadvantage is omitted in [9] where the com-
bination of lazy narrowing with possible reduction steps between narrowing
steps is proposed. In order to ensure the completeness of this lazy narrow-
ing with simplification strategy, a terminating subset of all rewrite rules is
used for reduction. Parallel narrowing does not subsume lazy narrowing with
simplification, as can be seen in Example 7. However, simplification with
a terminating set of rewrite rules is a simplifying rewrite strategy. There-
fore, parallel narrowing with simplification has the same advantage as lazy
narrowing with simplification.

Parallel narrowing is not intended as a strategy to implement functional
logic languages on parallel architectures due to its fine-grained parallelism.
This is in contrast to the AND-parallel narrowing implementation presented
in [15] where independent subterms are evaluated in parallel. However, due
to the fact that parallel narrowing reduces the number of non-deterministic
choices in narrowing steps (compared to classic narrowing), parallel narrowing
is useful to avoid redundant computations in OR-parallel implementations of
narrowing.

The following table summarizes the characteristics of the major narrowing
strategies for weakly orthogonal constructor-based rewrite systems. “Ground
deterministic” means that a strategy performs only deterministic computa-
tions steps for all programs and all ground goals. “Normalizing” is satisfied
if a strategy computes the normal form of a (non-ground) goal G satisfying

150

G
∗
→ true in a fully deterministic way. In this case, a sequential implementa-

tion of this strategy always computes the normal form whenever it exists.

Strategy Ground
deterministic: Normalizing: Optimality properties:

simple lazy [18, 20] no no
weakly needed [16] no no
dynamic cut [17] no no
lazy narrowing with
simplification [9]

terminating
TRS

terminating
TRS

parallel narrowing yes no
parallel narrowing
with simplification yes terminating

TRS

inductively sequential TRSs:
shortest derivations (sharing)
minimal number of solutions

Parallel narrowing (with simplification) is deterministic on ground terms
by Theorem 7. However, parallel narrowing without simplification is not
normalizing as shown in Example 7. The optimality of parallel narrowing
follows from the optimality results for needed narrowing [2] by Theorem 6.

This table shows that parallel narrowing is not only a further narrowing
strategy with some optimizations, but it is the only strategy which subsumes
the advantages of known lazy narrowing strategies together with clearly de-
fined optimality results. Due to its fully deterministic behavior on functional
programs (ground terms) and its ability to compute solutions to non-ground
goals, it is the first sound and complete strategy which combines the evalua-
tion mechanisms of functional and logic programs in a seamless way.

9 Conclusions

We have presented a new narrowing strategy for weakly orthogonal, construc-
tor-based rewrite systems. Since this class includes non-terminating systems,
it adequately models the functional component of modern, integrated func-
tional logic languages. The main idea of our narrowing strategy is the parallel
evaluation of necessary sets of redexes. This leads to a generalization of Sekar
and Ramakrishnan’s work on rewriting to narrowing. Parallel narrowing is
a conservative extension of an optimal narrowing strategy, needed narrowing
[2], to weakly orthogonal rewrite systems. Furthermore, parallel narrowing is
the only known narrowing strategy for possibly non-terminating and overlap-
ping TRSs which evaluates ground terms in a fully deterministic way. It can
be implemented relatively efficiently, since narrowing steps are computed by
local computations based on unification.5 These features seem to make this
strategy the best available choice for the implementation of functional logic
programming languages.

Acknowledgements. Sergio Antoy was supported in part by the National Science
Foundation under grant CCR-9406751. Rachid Echahed was supported in part by
the French Centre National de la Recherche Scientifique (GDR Programmation du
CNRS) and by Portland State University. Michael Hanus was supported in part
by the German Ministry for Research and Technology (BMFT) under grant ITS
9103 and by the ESPRIT Basic Research Working Group 6028 (Construction of
Computational Logics).

5An implementation of parallel narrowing based on the compilation into Prolog is de-
scribed in [6].

151

References

[1] S. Antoy. Definitional trees. In Proc. of the 4th Intl. Conf. on Algebraic and
Logic Programming, pages 143–157. Springer LNCS 632, 1992.

[2] S. Antoy, R. Echahed, and M. Hanus. A needed narrowing strategy. In Proc. 21st
ACM Symp. on Principles of Programming Languages, pages 268–279, 1994.

[3] S. Antoy, R. Echahed, and M. Hanus. Parallel Evaluation Strategies for Func-
tional Logic Languages Portland State University, 1996. Available via URL
ftp://ftp.cs.pdx.edu/pub/faculty/antoy/Parallel-Evaluation-Strategies.ps.Z

[4] D. Bert and R. Echahed. Design and implementation of a generic, logic and
functional programming language. In ESOP-86, pages 119–132. Springer LNCS
213, 1986.

[5] N. Dershowitz and J. Jouannaud. Rewrite systems. In J. van Leeuwen, editor,
Handbook of Theoretical Computer Science B: Formal Methods and Semantics,
chapter 6, pages 243–320. North Holland, Amsterdam, 1990.

[6] D. Genius. Sequential implementation of parallel narrowing. In Proc. JICSLP’96
Workshop on Multi-Paradigm Logic Programming, pages 95–104. TU Berlin,
Technical Report No. 96-28, 1996.

[7] E. Giovannetti, G. Levi, C. Moiso, and C. Palamidessi. Kernel LEAF: a logic
plus functional language. Journal of Computer and System Sciences, 42:139–
185, 1991.

[8] M. Hanus. Compiling logic programs with equality. In Proc. of the 2nd Intl.
Workshop on Programming Language Implementation and Logic Programming,
pages 387–401. Springer LNCS 456, 1990.

[9] M. Hanus. Combining lazy narrowing and simplification. In Proc. of the 6th
Intl. Symp. on Programming Language Implementation and Logic Programming,
pages 370–384. Springer LNCS 844, 1994.

[10] M. Hanus. The integration of functions into logic programming: From theory
to practice. Journal of Logic Programming, 19&20:583–628, 1994.

[11] G. Huet and J.-J. Lévy. Computations in orthogonal term rewriting systems.
In J.-L. Lassez and G. Plotkin, editors, Computational logic: essays in honour
of Alan Robinson. MIT Press, 1991.

[12] J.-M. Hullot. Canonical forms and unification. In Proc. 5th Conference on
Automated Deduction, pages 318–334. Springer LNCS 87, 1980.

[13] J. W. Klop. Term Rewriting Systems. In S. Abramsky, D. Gabbay, and
T. Maibaum, editors, Handbook of Logic in Computer Science, Vol. II, pages
1–112. Oxford University Press, 1992.

[14] J. W. Klop and A. Middeldorp. Sequentiality in orthogonal term rewriting
systems. Journal of Symbolic Computation, pages 161–195, 1991.

[15] H. Kuchen, J.J. Moreno-Navarro, and M.V. Hermenegildo. Independent and-
parallel implementation of narrowing. In Proc. of the 4th Intl. Symp. on
Programming Language Implementation and Logic Programming, pages 24–38.
Springer LNCS 631, 1992.

[16] R. Loogen, F. Lopez Fraguas, and M. Rodŕıguez Artalejo. A demand driven
computation strategy for lazy narrowing. In Proc. of the 5th Intl. Symp. on
Programming Language Implementation and Logic Programming, pages 184–
200. Springer LNCS 714, 1993.

[17] R. Loogen and S. Winkler. Dynamic detection of determinism in functional logic
languages. Theoretical Computer Science 142, pages 59–87, 1995.

[18] J. J. Moreno-Navarro and M. Rodŕıguez-Artalejo. Logic programming with
functions and predicates: The language BABEL. Journal of Logic Programming,
12:191–223, 1992.

[19] M. J. O’Donnell. Computing in Systems Described by Equations. Springer LNCS
58, 1977.

[20] U. S. Reddy. Narrowing as the operational semantics of functional languages. In
Proc. IEEE Intl. Symp. on Logic Programming, pages 138–151, Boston, 1985.

[21] R. C. Sekar and I. V. Ramakrishnan. Programming in equational logic: Beyond
strong sequentiality. Information and Computation, 104(1):78–109, May 1993.

152

