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Abstract. This paper describes a high-level implementation of the concurrent
constraint functional logic language Curry. The implementation, directed by the
lazy pattern matching strategy of Curry, is obtained by transforming Curry pro-
grams into Prolog programs. Contrary to previous transformations of functional
logic programs into Prolog, our implementation includes new mechanisms for
both efficiently performing concurrent evaluation steps and sharing common sub-
terms. The practical results show that our implementation is superior to previ-
ously proposed similar implementations of functional logic languages in Prolog
and is competitive w.r.t. lower-level implementations of Curry in other target lan-
guages.
An noteworthy advantage of our implementation is the ability to immediately
employ in Curry existing constraint solvers for logic programming. In this way,
we obtain with a relatively modest effort the implementation of a declarative lan-
guage combining lazy evaluation, concurrency and constraint solving for a variety
of constraint systems.

1 Introduction

The multi-paradigm language Curry [12, 18] seamlessly combines features from func-
tional programming (nested expressions, lazy evaluation, higher-order functions), logic
programming (logical variables, partial data structures, built-in search), and concurrent
programming (concurrent evaluation of expressions with synchronization on logical
variables). Moreover, the language provides both the most important operational prin-
ciples developed in the area of integrated functional logic languages: “residuation” and
“narrowing” (see [10] for a survey on functional logic programming).

Curry’s operational semantics (first described in [12]) combines lazy reduction of
expressions with a possibly non-deterministic binding of free variables occurring in
expressions. To provide the full power of logic programming, (equational) constraints
can be used in the conditions of function definitions. Basic constraints can be combined
into complex constraint expressions by a concurrent conjunction operator that evaluates
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constraints concurrently. Thus, purely functional programming, purely logic program-
ming, and concurrent (logic) programming are obtained as particular restrictions of this
model [12].

In this paper, we propose a high-level implementation of this computation model in
Prolog. This approach avoids the complex implementation of an abstract machine (e.g.,
[16]) and is able to reuse existing constraint solvers available in Prolog systems. In
the next section, we review the basic computation model of Curry. The transformation
scheme for compiling Curry programs into Prolog programs is presented in Section 3.
Section 4 contains the results of our implementation. Section 5 discusses related work
and contains our conclusions.

2 The Computation Model of Curry

This section outlines the computation model of Curry. A formal definition can be found
in [12, 18].

The basic computational domain of Curry is, similarly to functional or logic lan-
guages, a set ofdata termsconstructed from constants and data constructors. These are
introduced by data type declarations such as:1

data Bool = True | False

data List a = [] | a : List a

True andFalse are the Boolean constants.[] (empty list) and: (non-empty list) are
the constructors for polymorphic lists (a is a type variable ranging over all types and
the typeList a is usually written as[a] for conformity with Haskell). Adata term
is a well-formed expression containing variables, constants and data constructors, e.g.,
True:[] or [x,y] (the latter stands forx:(y:[]) ).

Functionsare operations on data terms whose meaning is specified by (conditional)
rules of the general form “l | c = r where vs free ”. l has the formf t1 . . . tn,
wheref is a function,t1, . . . , tn are data terms and each variable occurs only once. The
conditionc is a constraint.r is a well-formedexpressionthat may also contain function
calls.vs is the list offree variablesthat occur inc andr, but not inl. The condition and
thewhere part can be omitted ifc andvs are empty, respectively. Aconstraintis any
expression of the built-in typeConstraint . Primitive constraints are equations of the
form e1 =:= e2. A conditional rule is applied only if its condition is satisfiable. ACurry
programis a set of data type declarations and rules.

Example 1.Together with the above data type declarations, the following rules define
operations to concatenate lists and to find the last element of a list:

conc [] ys = ys

conc (x:xs) ys = x : conc xs ys

last xs | conc ys [x] =:= xs = x where x,ys free

If “ conc ys [x] =:= xs ” is solvable, thenx is the last element of listxs . 2

1 Curry has a Haskell-like syntax [25], i.e., (type) variables and function names start with low-
ercase letters and the names of type and data constructors start with an uppercase letter. More-
over, the application off to e is denoted by juxtaposition (“f e”).

172



Functional programming:In functional languages, the interest is in computingvaluesof
expressions, where a value does not contain function symbols (i.e., it is a data term) and
should be equivalent (w.r.t. the program rules) to the initial expression. The value can
be computed by replacing instances of rules’ left sides with corresponding instances
of right sides. For instance, we compute the value of “conc [1] [2] ” by repeatedly
applying the rules for concatenation to this expression:

conc [1] [2] → 1:(conc [] [2]) → [1,2]

Curry is based on a lazy (outermost) strategy, i.e., the selected function call in each
reduction step is outermost among all reducible function calls. This strategy supports
computations with infinite data structures and a modular programming style with sep-
aration of control aspects. Moreover, it yields optimal computations [5] and a demand-
driven search method [15] for the logic part of a program which will be discussed next.

Logic programming:In logic languages, an expression (or constraint) may contain free
variables. A logic programming system should compute solutions, i.e., find values for
these variables such that the expression (or constraint) is reducible to some value (or
satisfiable). Fortunately, this requires only a minor extension of the lazy reduction strat-
egy. The extension deals with non-ground expressions and variable instantiation: if the
value of a free variable is demanded by the left-hand sides of some program rules in
order to continue the computation (i.e., no program rule is applicable if the variable
remains unbound), the variable is bound to all the demanded values. For each value, a
separate computation is performed. For instance, if the functionf is defined by the rules

f 0 = 2

f 1 = 3

(the integer numbers are considered as an infinite set of constants), then the expression
“ f x ”, with x a free variable, is evaluated to2 by bindingx to 0, or it is evaluated to3
by bindingx to 1. Thus, a single computation step may yield a single new expression
(deterministic step) or a disjunction of new expressions together with the correspond-
ing bindings (non-deterministic step). For inductively sequential programs [3] (these
are, roughly speaking, function definitions with one demanded argument), this strategy
is calledneeded narrowing[5]. Needed narrowing computes the shortest successful
derivations (if common subterms are shared) and minimal sets of solutions. Moreover,
it is fully deterministic for expressions that do not contain free variables.

Constraints:In functional logic programs, it is necessary to solve equations between
expressions containing defined functions (see Example 1). In general, anequation
or equational constrainte1=:= e2 is satisfied if both sidese1 and e2 are reducible
to the same value (data term). As a consequence, if both sides are undefined (non-
terminating), then the equality does not hold.2 Operationally, an equational constraint
e1=:= e2 is solved by evaluatinge1 ande2 to unifiable data terms, where the lazy evalu-
ation of the expressions is interleaved with the binding of variables to constructor terms
[21]. Thus, an equational constrainte1=:= e2 without occurrences of defined functions
has the same meaning (unification) as in Prolog. Curry’s basic kernel only provides

2 This notion of equality, known asstrict equality[9, 22], is the only reasonable notion of equal-
ity in the presence of non-terminating functions.
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equational constraints. Constraint solvers for other constraint structures can be concep-
tually integrated without difficulties. The practical realization of this integration is one
of the goals of this work.

Concurrent computations:To support flexible computation rules and avoid an uncon-
trolled instantiation of free argument variables, Curry gives the option tosuspend a
function callif a demanded argument is not instantiated. Such functions are calledrigid
in contrast toflexiblefunctions—those that instantiate their arguments when the instan-
tiation is necessary to continue the evaluation of a call. As a default easy to change,
Curry’s constraints (i.e., functions with result typeConstraint ) are flexible whereas
non-constraint functions are rigid. Thus, purely logic programs (where predicates corre-
spond to constraints) behave as in Prolog, and purely functional programs are executed
as in lazy functional languages, e.g., Haskell.

To continue a computation in the presence of suspended function calls, constraints
are combined with theconcurrent conjunctionoperator&. The constraintc1 &c2 is eval-
uated by solvingc1 andc2 concurrently.

A design principle of Curry is the clear separation of sequential and concurrent
activities. Sequential computations, which form the basic units of a program, are ex-
pressed as usual functional (logic) programs and are composed into concurrent compu-
tation units via concurrent conjunctions of constraints. This separation supports the use
of efficient and optimal evaluation strategies for the sequential parts. Similar techniques
for the concurrent parts are not available. This is in contrast to other more fine-grained
concurrent computation models like AKL [19], CCP [27], or Oz [28].

Monadic I/O:To support real applications, the monadic I/O concept of Haskell [29] has
been adapted to Curry to perform I/O in a declarative manner. In the monadic approach
to I/O, an interactive program is considered as a function computing a sequence of ac-
tions which are applied to the outside world. Anactionhas type “IO α”, which means
that it returns a result of typeα whenever it is applied to a particular state of the world.
For instance,getChar , of type “IO Char ”, is an action whose execution, i.e., applica-
tion to a world, reads a character from the standard input. Actions can be composed only
sequentially in a program and their composition is executed whenever the main program
is executed. For instance, the actiongetChar can be composed with the actionputChar

(which has typeChar -> IO () and writes a character to the terminal) by the sequen-
tial composition operator»= (which has typeIO α -> ( α -> IO β) -> IO β) .
Thus, “getChar »= putChar ” is a composed action which prints the next character
of the input stream on the screen. The second composition operator,», is like »=, but
ignores the result of the first action. Furthermore,done is the “empty” action which
does nothing (see [29] for more details). For instance, a function which takes a string
(list of characters) and produces an action that prints the string to the terminal followed
by a new line is defined as follows:

putStrLn [] = putChar ’\n’

putStrLn (c:cs) = putChar c » putStrLn cs

In the next section, we will describe a transformation scheme to implement this com-
putation model in Prolog.
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3 A Transformation Scheme for Curry Programs

As mentioned above, the evaluation of nested expressions is based on a lazy strategy.
The exact strategy is specified via definitional trees [3], a data structure for the efficient
selection of the outermost reducible expressions. Direct transformations of definitional
trees into Prolog (without an implementation of concurrency features) have been pro-
posed in [2, 4, 11, 21]. Definitional trees deal with arbitrarily large patterns and use the
notion of “position” (i.e., a sequence of positive integers) to specify the subterm where
the next evaluation step must be performed. We avoid this complication and obtain a
simpler transformation by first compiling definitional trees into case expressions as de-
scribed, e.g., in [14]. Thus, each function is defined by exactly one rule in which the
right-hand side contains case expressions to specify the pattern matching of actual ar-
guments. For instance, the functionconc in Example 1 is transformed into:

conc xs ys = case xs of [] -> ys

(z:zs) -> z : conc zs ys

A case expression is evaluated by reducing its first argument to ahead normal form,
i.e., a term which has no defined function symbol at the top, and matching this reduced
term with one of the patterns of the case expression. Case expressions are used for both
rigid and flexible functions. Operationally,case expressions are used for rigid functions
only, whereasflexcase expressions are used for flexible functions. The difference is
that acase expression suspends if the head normal form is a free variable, whereas
a flexcase expression (don’t know non-deterministically) instantiates the variable to
the different constructors in the subsequent patterns.

To implement functions with overlapping left-hand sides (where there is no single
argument on which a case distinction can be made), there is also adisjunctive expres-
sion “e1 or e2” meaning that both alternatives are don’t know non-deterministically
evaluated.3 For instance, the function

0 * x = 0

x * 0 = 0

is transformed into the single rule

x * y = or (flexcase x of 0 -> 0)

(flexcase y of 0 -> 0)

under the assumption that “* ” is a flexible operation.
Transformation schemes for programs where all the functions are flexible have been

proposed in [2, 4, 11, 21]. These proposals are easily adaptable to our representation
usingcase andor expressions. The challenge of the implementation of Curry is the
development of a transformation scheme that provides both the suspension of function
calls and the concurrent evaluation of constraints (which will be discussed later).

3.1 Implementing Concurrent Evaluations

Most of the current Prolog systems support coroutining and the delaying of literals [23]
if some arguments are not sufficiently instantiated. One could use these features to pro-

3 In the implementation described in this paper, don’t know non-determinism is implemented
via backtracking as in Prolog.
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vide the suspension, when required, of calls to rigid functions. However, in conditional
rules it is not sufficient to delay the literals corresponding to suspended function calls.
One has to wait until the condition has been completely proved to avoid introducing un-
necessary computations or infinite loops. The following example helps in understanding
this problem.

Example 2.Consider the function definitions

f x y | g x =:= y = h y

g [] = []

h [] = []

h (z:zs) = h zs

whereg is rigid andh is flexible. To evaluate the expression “f x y ” (wherex andy

are free variables), the condition “g x =:= y ” must be proved. Sinceg is rigid, this
evaluation suspends and the right-hand side is not evaluated. However, if we only delay
the evaluation of the condition and proceed with the right-hand side, we run into an
infinite loop by applying the last rule forever. This loop is avoided ifx is eventually
instantiated by another thread of the entire computation. 2

To explain how we solve this problem we distinguish between sequential and concurrent
computations. A sequential computation is a sequence of calls to predicates. When a call
is activated, it may return for two reasons: either the call’s computation has completed
or the call’s computation has been suspended or delayed. In a sequential computation,
we want to execute a call only if the previous call has completed. Thus, we add an input
argument and an output argument to each predicate. Each argument is a variable that is
either uninstantiated or bound to a constant—by convention the symboleval that stand
for “fully evaluated”. We use these arguments as follows. In a sequential computation,
the call to a predicate is executed if and only if its input argument is instantiated toeval .
Likewise, a computation has completed if and only if its output argument is instantiated
to eval . As one would expect, we chain the output argument of a call to the input
argument of the next call to ensure the sequentiality of a computation.

The activation or delay of a call is easily and efficiently controlled byblock dec-
larations.4 For instance, theblock declaration “:- block f(?,?,?,-,?) ” specifies
that a call tof is delayed if the fourth argument is a free variable. According to the
scheme just described, we obtain the following clauses for the rules defining the func-
tions f andg above:5

:- block f(?,?,?,-,?).

f(X,Y,Result,Ein,Eout) :- eq(g(X),Y,Ein,E1), h(Y,Result,E1,Eout).

:- block g(?,?,-,?).

g(X,Result,Ein,Eout) :- hnf(X,HX,Ein,E1), g_1(HX,Result,E1,Eout).

4 An alternative toblock is freeze which leads to a simpler transformation scheme. However,
our experiments indicate thatfreeze is a more expensive operation (at least in Sicstus-Prolog
Version 3#5). Usingfreeze , the resulting Prolog programs were approximately six times
slower than using the scheme presented in this paper.

5 As usual in the transformation of functions into predicates, we transformn-ary functions into
n+ 1-ary predicates where the additional argument contains the result of the function call.
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:- block g_1(-,?,?,?), g_1(?,?,-,?).

g_1([],[],E,E).

The predicatehnf computes the head normal form of its first argument. If argumentHX

of g is bound to the head normal form ofX, we can match this head normal form against
the empty list with the rule forg_1 .

We useblock declarations to control the rigidity or flexibility of functions, as well.
Sinceg is a rigid function, we add the block declarationg_1(-,?,?,?) to avoid the
instantiation of free variables. A computation is initiated by setting argumentEin to a
constant, i.e., expression(f x y) is evaluated by goalf(X,Y,Result,eval,Eout) .
If Eout is bound toeval , the computation has completed andResult contains the
computed result (head normal form).

Based on this scheme, the concurrent conjunction operator& is straightforwardly
implemented by the following clauses (the constantsuccess denotes the result of a
successful constraint evaluation):

&(A,B,success,Ein,Eout) :- hnf(A,HA,Ein,E1), hnf(B,HB,Ein,E2),

waitconj(HA,HB,E1,E2,Eout).

?- block waitconj(?,?,-,?,?), waitconj(?,?,?,-,?).

waitconj(success,success,_,E,E).

As one can see, predicatewaitconj waits for the solution of both constraints.
The elements of our approach that most contribute to this simple transformation of

Curry programs into Prolog programs are the implementation of concurrency and the
use of bothcase andor expressions. Each function is transformed into a correspond-
ing predicate to compute the head normal form of a call to this function. As shown
above, this predicate contains additional arguments for storing the head normal form
and controlling the suspension of function calls. Case expressions are implemented by
evaluating the case argument to head normal form. We use an auxiliary predicate to
match the different cases. The difference betweenflexcase andcase is only in the
block declaration for the case argument. “or ” expressions are implemented by alterna-
tive clauses and all other expressions are implemented by calls to predicatehnf , which
computes the head normal form of its first argument. Thus, functionconc in Example 1
is transformed into the following Prolog clauses:

:- block conc(?,?,?,-,?).

conc(A,B,R,Ein,Eout) :- hnf(A,HA,Ein,E1), conc_1(HA,B,R,E1,Eout).

:- block conc_1(-,?,?,?,?), conc_1(?,?,?,-,?).

conc_1([] ,Ys,R,Ein,Eout) :- hnf(Ys ,R,Ein,Eout).

conc_1([Z|Zs],Ys,R,Ein,Eout) :- hnf([Z|conc(Zs,Ys)],R,Ein,Eout).

Shouldconc be a flexible function, the block declarationconc_1(-,?,?,?,?) would
be omitted, but the rest of the code would be unchanged. The definition ofhnf is basi-
cally a case distinction on the different top-level symbols that can occur in an expression
and a call to the corresponding function if there is a defined function at the top (compare
[11, 21]).

Although this code is quite efficient due to the first argument indexing of Prolog im-
plementations, it can be optimized by partially evaluating the calls tohnf , as discussed
in [4, 11]. Further optimizations could be done if it is known at compile time that the
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evaluation of expressions will not cause any suspension (e.g., when all arguments are
ground at run time). In this case, the additional two arguments in each predicate and
the block declarations can be omitted and we obtain the same scheme as proposed in
[11]. This requires static analysis techniques for Curry which is an interesting topic for
further research.

3.2 Implementing Sharing

Every serious implementation of a lazy language must implement the sharing of com-
mon subterms. For instance, consider the rule

double x = x + x

and the expression “double (1+2) ”. If the two occurrences of the argumentx in the
rule’s right-hand side are not shared, the expression1+2 is evaluated twice. Thus, shar-
ing the different occurrences of a same variable avoids unnecessary computations and is
the prerequisite for optimal evaluation strategies [5]. In low level implementations, shar-
ing is usually obtained by graph structures and destructive assignment of nodes [26].
Since a destructive assignment is not available in Prolog, we resort to Prolog’s sharing
of logic variables. This idea has been applied, e.g., in [8, 11, 20] where the predicates
implementing functions are extended by a free variable that, after the evaluation of the
function call, is instantiated to the computed head normal form. Although this avoids the
multiple evaluation of expressions, it introduce a considerable overhead when no com-
mon subterms occur at run time—in some cases more than 50%, as reported in [11].
Therefore, we have developed a new technique that causes no overhead in all practical
experiments we performed. As seen in the example above, sharing is only necessary
if terms are duplicated by a variable having multiple occurrences in a condition and/or
right-hand side. Thus, we share these occurrences by a specialshare structure contain-
ing the computed result of this variable. For instance, the rule ofdouble is translated
into

double(X,R,E0,E1) :- hnf(share(X,EX,RX)+share(X,EX,RX),R,E0,E1).

In this way, each occurrence of a left-hand side variableX with multiple occurrences
in the right-hand side is replaced byshare(X,EX,RX) , whereRX contains the result
computed by evaluatingX. EX is bound to some constant ifX has been evaluated.EX

is necessary because expressions can also evaluate to variables in a functional logic
language. Then, the definition ofhnf is extended by the rule:

hnf(share(X,EX,RX),RX,E0,E1) :- !,

(nonvar(EX) -> E1=E0

; hnf(X,HX,E0,E1), EX=eval, propagate-

Share(HX,RX)).

where propagateShare(HX,RX) puts share structures into the arguments ofHX

(yielding RX) if HX is bound to a structure and the arguments are not already shared.
This implementation scheme has the advantage that the Prolog code for rules with-

out multiple variable occurrences remains unchanged and consequently avoids the over-
head for such rules (in contrast to [8, 11, 20]). The following table shows the speedup
(i.e., the ratio of runtime without sharing over runtime with sharing), the number of

178



reduction steps without (RS1) and with sharing (RS2), and the number of shared vari-
ables (SV) in the right-hand side of rules of programs we benchmarked. It is worth to
notice that the speedup for the first two goals reported in [11], which uses a different
technique, is 0.64 (i.e., a slowdown) and 3.12. These values show the superiority of our
technique.

Example: Speedup RS1 RS2 # SV
10000≤10000+10000 =:= True 1.0 20002 20002 0

double(double(one 100000)) =:= x 4.03 400015 100009 1
take 25 fibs 6650.0 196846 177 3

take 50 primes 15.8 298070 9867 2
quicksort (quicksort [...]) 8.75 61834 3202 2

mergesort [...] 91.5 303679 1057 14

Program analysis techniques are more promising with our scheme than with [8, 11,
20]. For instance, noshare structures must be introduced for argument variables that
definitely do not contain function calls at run time, e.g., arguments that are always
uninstantiated or bound to constructor terms.

3.3 Constraints

Equational constraints, denotede1=:= e2, are solved by lazily evaluating each side to
unifiable data terms. In our translation, we adopt the implementation of this mechanism
in Prolog presented in [21]. Basically, equational constraints are solved by a predicate,
eq, which computes the head normal form of its arguments and performs a variable
binding if one of the arguments is a variable.

:- block eq(?,?,-,?).

eq(A,B,Ein,Eout) :- hnf(A,HA,Ein,E1), hnf(B,HB,E1,E2),

eq_hnf(HA,HB,E2,Eout).

:- block eq_hnf(?,?,-,?).

eq_hnf(A,B,Ein,Eout) :- var(A), !, bind(A,B,Ein,Eout).

eq_hnf(A,B,Ein,Eout) :- var(B), !, bind(B,A,Ein,Eout).

eq_hnf( c(X 1,...,X n), c(Y 1,...,Y n),Ein,Eout) :- !,

hnf((X 1=:=Y 1)&...&(X n=:=Y n),_,Ein,Eout). % ∀n-ary constr. c

bind(X,Y,E,E) :- var(Y), !, X=Y.

bind(X, c(Y 1,...,Y n),Ein,Eout) :- !, % ∀n-ary constructors c

occurs_not(X,Y 1),..., occurs_not(X,Y n), X= c(X 1,...,X n),

hnf(Y 1,HY1,Ein,E 1), bind(X 1,HY1,E 1,E 2),

...

hnf(Y n,HYn,E 2n−2,E 2n−1), bind(X n,HYn,E 2n−1,Eout).

Due to the lazy semantics of the language, the binding is performed incrementally.
We use an auxiliary predicate,bind , which performs an occur check followed by an
incremental binding of the goal variable and the binding of the arguments.
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Similarly, the evaluation of an expressione to its normal form, which is the in-
tended meaning ofe, is implemented by a predicate,nf , that repeatedly evaluates all
e’s subexpressions to head normal form.

Apart from the additional arguments for controlling suspensions, this scheme is
identical to the scheme proposed in [21]. Unfortunately, this scheme generally causes
a significant overhead when one side of the equation is a variable and the other side
evaluates to a large data term. In this case, the incremental instantiation of the vari-
able is unnecessary and causes the overhead, since it creates a new data structure and
performs an occur check. We avoid this overhead by evaluating to normal form, if pos-
sible, the term to which the variable must be bound. To this aim, we replacebind with
bind_trynf in the clauses ofeq_hnf together with the following new clause:

bind_trynf(X,T,Ein,Eout) :- nf(T,NT,Ein,E1),

(nonvar(E1) -> occurs_not(X,NT), X=NT, Eout=E1

; bind(X,T,Ein,Eout)).

If the evaluation to normal form does not suspend, the variableX is bound to the normal
form byX=NT, otherwise the usual predicate for incremental binding is called. Although
this new scheme might cause an overhead due to potential re-evaluations, this situation
did not occur in all our experiments. In some practical benchmarks, we have measured
a speedup up to a factor of 2.

The compilation of Curry programs into Prolog greatly simplifies the integration
of constraint solvers for other constraint structures, if the underlying Prolog system
offers solvers for these structures. For instance, Sicstus-Prolog includes a solver for an
arithmetic constraint over reals, which is denoted by enclosing the constraint between
curly brackets. E.g., goal{3.5=1.7+X} binds X to 1.8 . We make these constraints
available in Curry by translating them into the corresponding constraints of Sicstus-
Prolog. For instance, the inequational constrainte1<e2 is translated as follows. First,e1

ande2, which might contain user-defined functions or might be variables, are evaluated
to their (head) normal forms, saye′1 ande′2. Then, the goal{ e′1<e′2} is called. With this
technique, all constraint solvers available in Sicstus-Prolog become available in Curry.

3.4 Further Features

Curry supports standard higher-order constructs such as lambda abstractions and partial
applications. In Prolog, the higher-order features of Curry are implemented according
to Warren’s original proposal [30] to translate higher-order constructs into first-order
logic programming. A lambda abstraction is eliminated by transforming it into a top-
level definition of a new function. Consequently, the fundamental higher-order construct
is a binary function,apply , which applies its first argument, a function, to its second
argument, the function’s intended argument. For eachn-ary function or constructorf ,
we introducen− 1 constructors with the same name. This enables us to implement the
application function with the following Prolog clauses:

apply(f(X 1,...,X k),X,f(X 1,...,X k,X),E,E). % 0 ≤ k < n− 1
apply(f(X 1,...,X n−1),X,H,E0,E) :- hnf(f(X 1,...,X n−1,X),H,E0,E).

Note that predicateapply should be called only for partial applications or applications
where it is known at compile time that the first argument is not a defined function or
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a constructor. In other words, all first-order calls are directly translated without using
apply as shown in the previous sections. This implementation ofapply has the advan-
tage that the unique matching clause is found in constant time due to the first argument
indexing of Prolog systems. Although the number ofapply clauses could be high for
large applications, and there are alternative schemes that avoid this problem (e.g., [24]),
we have found that this scheme causes no problems for programs with several hundred
functions.

Monadic I/O is easily implemented by introducing a special constructor (denoted by
“$io ”) to hold the result of an I/O action. For instance,getChar is implemented as a
procedure which reads a character,c, from standard input and returns the term “$io c”
whenever it is evaluated. With this approach, both sequential composition operators»=

and» for actions are defined by:

( $io x) »= fa = fa x

( $io _) » b = b

Thus, the first action is evaluated to head normal form before the second ac-
tion is applied. This simple implementation has, however, a pitfall. The result of
an I/O action should not be shared, otherwise I/O actions will not be executed
as intended. For instance, the expressions “putChar ’X’ » putChar ’X’ ” and
“ let a = putChar ’X’ in a » a ” are equivalent but would produce different re-
sults with sharing. Luckily, the intended behavior can be obtained by a slight change of
the definition ofhnf so that terms headed by $io are not shared.

The primitives of Curry to encapsulate search and define new search strategies [17]
cannot be directly implemented in Prolog due to its fixed backtracking strategy. How-
ever, one can implement some standard depth-first search strategies of Curry via Pro-
log’s findall andbagof primitives.

4 Experimental Results

We have developed a compiler from Curry programs into Prolog programs (Sicstus-
Prolog Version 3#5) based on the principles described in this paper. The practical results
are quite encouraging. For instance, the execution of the classic “naive reverse” bench-
mark is executed at the speed of approximately 660,000 rule applications per second
on a Linux-PC (Pentium II, 400 Mhz) with Sicstus-3 (without native code). Note that
Curry’s execution with a lazy strategy is costlier than Prolog’s execution. Although the
development of the compiler is relatively simple, due to the transformation schemes dis-
cussed in the paper, our implementation is competitive w.r.t. other high-level and low-
level implementations of Curry and similar functional logic languages. We have com-
pared our implementation to a few other implementations of declarative multi-paradigm
languages available to us. The following table shows the results of benchmarks for var-
ious features of the language.
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Program Prolog Toy Java-1Java-2UPV-Curry

rev180 50 110 1550 450 43300
twice120 30 60 760 190 40100
qqsort20 20 20 230 45 72000
primes50 80 90 810 190 >2000000
lastrev120 70 160 2300 820 59700
horse 5 10 50 15 200
account 10 n.a. 450 670 2050
chords 220 n.a. 4670 1490 n.a.

Average speedup:1.77 23.39 13.55 1150.1

All benchmarks are executed on a Sun Ultra-2. The execution times are measured in
milliseconds. The column “Prolog” contains the results of the implementation pre-
sented in this paper. “Toy” [7] is an implementation of a narrowing-based functional
logic language (without concurrency) which, like ours, compiles into Prolog. This im-
plementation is based on the ideas described in [21]. “Java-1” is the compiler from
Curry into Java described in [16]. It uses JDK 1.1.3 to execute the compiled programs.
“Java-2” differs from the former by using JDK 1.2. This system contains a Just-in-Time
compiler. Finally, UPV-Curry [1] is an implementation of Curry based on an interpreter
written in Prolog that employs an incremental narrowing algorithm.

Most of the programs, which are small, test various features of Curry. “rev180”
reverses a list of 180 elements with the naive reverse function. “twice120” executes
the call “twice (rev l) ”, where twice is defined by “twice xs = conc xs xs ”
and l is a list of 120 elements. “qqsort20” calls quicksort (defined with higher-order
functions) twice on a list of 20 elements. “primes50” computes the infinite list of prime
numbers and extracts the first 50 elements. “lastrev120” computes the last elementx

of a list by solving the equation “conc xs [x] =:= rev [...] ”. “horse” is a simple
puzzle that needs some search. “account” is a simulation of a bank account that uses
the concurrency features of Curry. “chords”, the largest of our benchmarks, is a musical
application [15] that uses encapsulated search, laziness, and monadic I/O.

The comparison with Toy shows that our implementation of the concurrency fea-
tures does not cause a significant overhead compared to a pure-narrowing-based lan-
guage. Furthermore, the “account” example, which heavily uses concurrent threads,
demonstrates that our implementation is competitive with an implementation based on
Java threads. Although the table indicates that our implementation is superior to other
available systems, implementations compiling to C or machine languages may be more
efficient. However, the development effort of these lower level implementations is much
higher.

5 Related Work and Conclusions

The idea of implementing functional logic programs by transforming them into logic
programs is not new. An evaluation of different implementations is presented in [11],
where it is demonstrated that functional logic programs based on needed narrowing are
superior to other narrowing-based approaches. There are several proposals of compila-
tion of needed narrowing into Prolog [4, 11, 21]. All these approaches lack concurrent
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evaluations. Moreover, the implementation of sharing, similar in all these approaches,
is less efficient than in our proposal, as can be verified in the comparison table (see
columns “Prolog” and “Toy”).

Naish [24] has proposed NUE-Prolog, an integration of functions into Prolog pro-
grams obtained by transforming function definitions into Prolog clauses with additional
“when” declarations.when declarations, which are similar in scope to theblock decla-
rations that we propose, suspend the function calls until the arguments are sufficiently
instantiated. The effect of this suspension is that all functions are rigid—flexible func-
tions are not supported. Functions intended to be flexible must be encoded as predicates
by flattening. This approach has the drawback that optimal evaluation strategies [5] can-
not be employed for the logic programming part of a program. Strict and lazy functions
can be freely mixed, which makes the meaning of programs harder to understand (e.g.,
the meaning of equality in the presence of infinite data structures). NUE-Prolog uses a
form of concurrency for suspending function calls, as we do. But it is more restrictive
in that there is no possibility to wait for the complete evaluation of an expression. This
leads to the undesired behavior discussed in Example 2.

Apart from the efficiency and simplicity of our transformation scheme of Curry
into Prolog programs, the use of Prolog as a target language has further advantages.
A high-level implementation more easily accomodates the inclusion of additional fea-
tures. For instance, the implementation of a standard program tracer w.r.t. Byrd’s box
model [6] requires only the addition of four clauses to each program and two predicate
calls for each implemented function. The most important advantage is the reuse of exist-
ing constraint solvers available in Prolog, as shown in Section 3.3. Thus, with a limited
effort, we obtain a usable implementation of a declarative language that combines con-
straint solving over various constraint domains, concurrent evaluation and search facil-
ities from logic programming with higher-order functions and laziness from functional
programming. The combination of laziness and search is attractive because it offers a
modular implementation of demand-driven search strategies, as shown in [15].

Since the compilation time of our implementation is reasonable,6 this Prolog-based
implementation supports our current main development system for Curry programs.7

This system has been used to develop large distributed applications with sophisticated
graphical user interfaces and Web-based information servers that run for weeks without
interruption (see [13] for more details). By taking advantage of both the features of our
system and already developed code, we can make available on the Internet constraint
programming applications in minutes.
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TOY. Technical Report SIP 97/57, Universidad Complutense de Madrid, 1997.

8. P.H. Cheong and L. Fribourg. Implementation of Narrowing: The Prolog-Based Approach.
In K.R. Apt, J.W. de Bakker, and J.J.M.M. Rutten, editors,Logic programming languages:
constraints, functions, and objects, pp. 1–20. MIT Press, 1993.

9. E. Giovannetti, G. Levi, C. Moiso, and C. Palamidessi. Kernel LEAF: A Logic plus Func-
tional Language.Journal of Computer and System Sciences, Vol. 42, No. 2, pp. 139–185,
1991.

10. M. Hanus. The Integration of Functions into Logic Programming: From Theory to Practice.
Journal of Logic Programming, Vol. 19&20, pp. 583–628, 1994.

11. M. Hanus. Efficient Translation of Lazy Functional Logic Programs into Prolog. InProc.
Fifth International Workshop on Logic Program Synthesis and Transformation, pp. 252–266.
Springer LNCS 1048, 1995.

12. M. Hanus. A Unified Computation Model for Functional and Logic Programming. InProc.
of the 24th ACM Symposium on Principles of Programming Languages, pp. 80–93, 1997.

13. M. Hanus. Distributed Programming in a Multi-Paradigm Declarative Language. InProc.
of the International Conference on Principles and Practice of Declarative Programming
(PPDP’99), pp. 376–395. Springer LNCS 1702, 1999.

14. M. Hanus and C. Prehofer. Higher-Order Narrowing with Definitional Trees.Journal of
Functional Programming, Vol. 9, No. 1, pp. 33–75, 1999.
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16. M. Hanus and R. Sadre. An Abstract Machine for Curry and its Concurrent Implementation
in Java.Journal of Functional and Logic Programming, Vol. 1999, No. 6, 1999.

17. M. Hanus and F. Steiner. Controlling Search in Declarative Programs. InPrinciples of
Declarative Programming (Proc. Joint International Symposium PLILP/ALP’98), pp. 374–
390. Springer LNCS 1490, 1998.

18. M. Hanus (ed.). Curry: An Integrated Functional Logic Language (Vers. 0.6). Available at
http://www-i2.informatik.rwth-aachen.de/˜hanus/curry , 1999.

19. S. Janson and S. Haridi. Programming Paradigms of the Andorra Kernel Language. InProc.
1991 Int. Logic Programming Symposium, pp. 167–183. MIT Press, 1991.
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