
4th Fuji International Symposium on Functional and Logic Programming (FLOPS’99),
Tsukuba, Japan, Nov. 1999, Springer LNCS Vol. 1722, pages 335-350.

Typed Higher-order Narrowing
without Higher-order Strategies

Sergio Antoy and Andrew Tolmach

Portland State University

Abstract. We describe a new approach to higher-order narrowing computations in
a class of systems suitable for functional logic programming. Our approach is based
on a translation of these systems into ordinary (£rst-order) rewrite systems and the
subsequent application of conventional narrowing strategies. Our translation is an
adaptation to narrowing of Warren’s translation, but unlike similar previous work,
we preserve static type information, which has a dramatic effect on the size of the
narrowing space. Our approach supports sound, complete, and ef£cient higher-order
narrowing computations in classes of systems larger than those previously proposed.

1 Introduction

Functional logic languages generalize functional languages by supporting the evaluation of
expressions containing (possibly uninstantiated) logic variables. Narrowing is an essential
component of the underlying computational mechanism of an internationally supported
uni£ed functional logic language [4]. In recent years a considerable effort has been in-
vested in the development of narrowing strategies. The results of this effort are satisfactory
for £rst-order computations. Higher-order narrowing, the situation in which a computation
may instantiate a variable of functional type, is still evolving.

The most fundamental question is what universe of functions should be considered as
possible instantiations for variables of functional type. One attractive answer is to consider
just those functions (perhaps partially applied) that are explicitly de£ned in the program
already, or a user-speci£ed subset of these functions. For example, consider the program

data nat = z | s nat
data list = [] | nat:list
compose (F,G) X = F (G X)
map F [] = []
map F (H:T) = (F H):(map F T)

and abbreviate s z with 1, s 1 with 2, etc. The goal map G [1,2] == [2,3]
would have the solution {G 7→ s}, the goal map G [1,2] == [3,4]would have the
solution {G 7→ compose (s,s)}, but the goal map G [1,2] == [2,4] would
have no solutions.

Authors’ address: Department of Computer Science, Portland State University, P.O. Box 751,
Portland, OR 97207, U.S.A., {antoy,apt}@cs.pdx.edu.
This work has been supported in part by the National Science Foundation under grant CCR-
9503383.

This approach is quite expressive, and also relatively easy for the programmer to un-
derstand. Moreover, there is a very reasonable approach to solving higher-order problems
of this kind by translating them into equivalent £rst-order problems, in which unapplied
and partially applied functions are represented by constructors and implicit higher-order
applications are made into explicit £rst-order applications. This idea dates back to War-
ren [13] for logic programs and to Reynolds [11] for functional programs. Hanus [7, 8]
shows how this idea works for dynamically typed languages. González-Moreno [5] adapts
the same idea to untyped narrowing.

Our contribution is to de£ne this transformation for statically typed source and target
languages. We give a rigorous presentation for monomorphic programs and sketch an ex-
tension to polymorphic programs. The bene£ts of a typed source language are well known.
The bene£ts of maintaining types during program transformation and compilation are be-
coming increasingly recognized in the functional programming community (e.g., [14, 15]);
these include the ability to use ef£cient, type-speci£c data representations, the ability to
perform optimizations based on type information, and enhanced con£dence in compiler
correctness obtained by type-checking compiler output. In functional logic programming,
typing the target language has additional dramatic, immediate effects on the narrowing
space; in particular, typing allows possibly in£nite, extraneous branches of the narrowing
space to be avoided. This obviously improves the ef£ciency of the language, and avoids
run-time behaviors, especially for sequential implementations, that would be unintelligible
to the programmer.

2 Background

The most recent and comprehensive proposals of higher-order narrowing strategies differ
in both the domain and the computation of the strategy. González-Moreno [5] considers
SFL-programs. Rules in these systems are constructor-based, left-linear, non-overlapping,
conditional, and allow extra variables in the conditional part. A translation inspired by
Warren [13] removes higher-order constructs from these systems and allows the use of
(£rst-order) narrowing strategies for higher-order narrowing computations

Nakahara et al. [10] consider £rst-order applicative constructor-based orthogonal re-
write systems. A rule’s left-hand side in these systems allows variables of functional type,
but prohibits both the application of a variable to subterms and the presence of a function
symbol in a pattern. The strategy proposed for these systems is computed by a handful of
small inference steps, where “small” characterizes the fact that several inferences may be
necessary to compute an ordinary narrowing step.

Hanus and Prehofer [6] consider higher-order inductively sequential systems. An op-
eration in these systems has a de£nitional tree in which the patterns may contain higher-
order patterns [9] as subterms and the application of variables to subterms. The strategy
proposed for these systems is again computed by a handful of small inference rules that,
when concatenated together, for the most part simulate a needed narrowing computation.

The domains of these strategies have a large intersection, but none is contained in
any other. For example, applicative orthogonal systems include Berry’s system, which is
excluded from inductively sequential systems; higher-order inductively sequential systems
allow higher-order patterns in left-hand sides, which are banned in SFL programs; and SFL
programs use conditional rules with extra variables, which are excluded from applicative

336

systems. All the above strategies are sound and complete for the classes of systems to
which they are applied.

While £rst-order narrowing is becoming commonplace in functional logic program-
ming, the bene£ts and costs of higher-order narrowing are still being debated. Factors
limiting the acceptance of higher-order narrowing are the potential inef£ciency of compu-
tations and the dif£culty of implementations. In this paper we describe a new approach to
higher-order narrowing that addresses both problems. Our approach is based on a program
translation, similar to [3, 5, 11–13], that replaces higher-order narrowing computations in
a source program with £rst-order narrowing computations in the corresponding target pro-
gram. Our approach expands previous work in three directions.

(1) We use a translation [12] that preserves type information of the source pro-
gram. Type information dramatically affects the size of the narrowing space of
a computation.

(2) We present our technical results for the same class of systems discussed in [10].
We will argue later that our approach extends the systems considered in [5] and
with minor syntactic changes extends the systems considered in [6], too.

(3) For a large class of source programs of practical interest [4], our approach sup-
ports optimal, possibly non-deterministic, higher-order functional logic com-
putations [1] without the need for a higher-order narrowing strategy.

3 Language

3.1 Basics

We describe our approach with reference to a monomorphically typed functional logic
language L, whose abstract syntax is speci£ed in Figure 1. For ease of presentation, we
explicitly type all functions, constructors, and variables, but types could be inferred (and
we therefore omit some typing information in the concrete examples in this paper). The
abstract syntax is something of a compromise among the conventional notations for func-
tional programs, logic programs, and rewrite systems. The concrete syntax of functional
logic languages that could bene£t from our approach could be much richer, e.g., it could al-
low in£x operators, ad-hoc notation for numeric types and lists, nested blocks with locally
scoped identi£ers, anonymous functions, etc. Programs in languages with these features
are easily mapped to programs in our language during the early phases of compilation.
Thus, our approach is perfectly suited for contemporary functional logic languages, too.

A program is a collection of constructor declarations and function de£nitions. Con-
structors and functions are collectively called symbols; we use identi£ers not beginning
with upper-case letters for symbol names. Each symbol s has a unique associated non-
negative arity, given by ar(s). A function de£nition consists of one or more rules (not
necessarily contiguously presented); each rule has a left-hand side which is a sequence of
patterns and a right-hand side which is an expression. All the rules for a function of arity
n must have n patterns. The patterns control which right-hand side(s) should be invoked
when the function is applied; they serve both to match against actual arguments and to bind
local variables mentioned in the right-hand side. Patterns are applicative terms, i.e., they
are built from variables, fully-applied constructors, partially-applied functions, and tuples.
This de£nition of “applicative” generalizes the one in [10], in that it permits partially-
applied functions. In the logic programming tradition, we reserve identi£ers beginning

337

(algebraic types) d := identi£er
(types) t := d (algebraic types)

| (t1, . . . , tn) (tuples; n ≥ 0)
| (t→ t) (functions)

(variables) v := identi£er beginning with upper-case letter
(constructors) c := identi£er
(functions) f := identi£er
(symbols) s := c | f

(problems) problem := (program, goal)

(programs) program := dec1 . . . decm rule1 . . . rulen (m,n ≥ 0)

(goals) goal := (v1 : t1, . . . , vn : tn) e1 == e2 (vi disjoint)

(constr. decl.) dec := c : t1 → . . .→ tn → d (n = ar(c))

(function rules) rule := f p1 . . . pn = e (n = ar(f))

(patterns) p := (v : t) (variable)
| (c p1 . . . pn) (constructor; n ≤ ar(c))
| (f p1 . . . pn) (function; n < ar(f))
| (p1, . . . , pn) (n ≥ 0)(tuple)

(expressions) e := v (variable)
| s (constructor or function)
| (e1, . . . , en) (tuple)
| (e1 e2) (application)

Fig. 1. Abstract syntax of functional logic language L. By convention, type arrows associate to the
right and expression applications associate to the left. Each symbol s has a £xed associated arity,
given by ar(s). Only partially-applied function symbols are allowed in a pattern.

with upper-case letters for variables. Expressions are built from symbols, variables, tuples
and binary application denoted by juxtaposition. Intuitively, function applications evaluate
to the right-hand side of a matching rule, and constructor applications evaluate to them-
selves. Parentheses in expressions are avoided under the convention that application is left
associative.

Functions (and constructors) are curried; that is, a function f of arity ar(f) > 1
is applied to only one argument at a time. This permits the manipulation of partially-
applied functions, which is fundamental to expressing higher-order algorithms involving
non-local variables. Unlike conventional functional and functional logic languages, which
treat functions as black boxes, we permit matching against unapplied or partially-applied
functions (or constructors). We delay the discussion of this feature until Section 6 when
we compare our approach with [6]. It is often useful (particularly in presenting the result
of our translation system) to describe uncurried functions that take their arguments “all at
once;” this is done by specifying an arity-1 function taking a tuple argument.

338

A problem (p, g) consists of a program p and a goal g. A goal consists of a sequence
of variable declarations followed by an equation, an expression of the form e1 == e2. Any
variables appearing in e1 or e2 must appear in a declaration. There is no loss of generality
in restricting goals to equations. A problem solution is a substitution θ (see Sect. 3.4) from
the variables declared in the goal to applicative terms, such that θ(e1) and θ(e2) reduce to
the same applicative term.

3.2 Typing

L is an explicitly typed, monomorphic language. Types include algebraic types, whose
values are generated by constructors; tuple types; and function types. The typing rules
are speci£ed in Figure 2 as a collection of judgments for the various syntactic classes.
The judgment E `class phrase : t⇒ E′ asserts that phrase of syntactic category class is
well-typed with type t in environment E, and generates an environment E ′; judgments for
speci£c classes may omit one or more of these components. Environments map symbols
and variables to types. Note that all functions are potentially mutually recursive.

Each variable declaration (in rules or goals) has an explicit type annotation; together
with the typing rules these allow us to assume the existence of a well-de£ned function
typeof (), mapping each (well-typed) expression or pattern to its type. A solution substi-
tution {vi 7→ ei} is well-typed if and only if ∀i, typeof (vi) = typeof (ei). In practice,
we could generate the type annotations for L automatically by inference from a source
program with missing or incomplete type annotations.

3.3 Relationship to Term Rewriting

A program p may be viewed as a rewrite system (Σ,R) where

– Σ is a signature, i.e., a set of symbols (partitioned into functions and constructors),
with associated types, consisting of those symbols that appear in p;

– R is the set of rewrite rules consisting of the function rules in p.

In the terminology of [10], our system is an applicative term rewriting system (ATRS)
using our slightly generalized notion of applicative term. We do not specify other funda-
mental properties, such as left-linearity, or non-overlapping of rules, though each of these
may be useful in practice. For simplicity of presentation, we prohibit extra variables on
the right-hand sides of rules, but these could be added similarly to goal variables without
fundamental dif£culty, as could conditions to the rules.

3.4 Evaluation

This view of programs as rewrite systems de£nes the notion of evaluation for our sys-
tem. We de£ne the evaluation of variable-free expressions as ordinary rewriting. An ex-
pression is in normal form if it cannot be further rewritten. Orthogonal (left-linear and
non-overlapping) programs will be con¤uent, but not necessarily terminating. Well-typed
expressions enjoy the subject reduction property, which says that their type is invariant
under reduction.

As noted above, a problem solution is a substitution from the variables declared in the
goal to applicative terms. This de£nition doesn’t indicate how a solution might be found.

339

`program program ⇒ E E `goal goal

`problem (program, goal)

`dec dec1 ⇒ E1 . . . `dec decm ⇒ Em

E `rule rule1 ⇒ Em+1 . . . E `rule rulen ⇒ Em+n

E = E1 + . . .+ Em+n

`program dec1 . . . decm rule1 . . . rulen ⇒ E

E + {v1 7→ t1, . . . , vn 7→ tn} `e ei : t(i = 1, 2)

E `goal (v1 : t1, . . . , vn : tn) e1 == e2

`dec c : t1 → . . .→ tn → d⇒ {c 7→ t1 → . . .→ tn → d}

E(f) = t1 → . . .→ tn → t E `p pi : ti ⇒ Ei(1 ≤ i ≤ n) E + E1 + . . .+ En `e e : t

E `rule f p1 . . . pn = e⇒ {f 7→ t1 → . . .→ tn → t}

E `p (v : t) : t⇒ {v 7→ t}

E(c) = t1 → . . .→ tn → d E `p pi : ti ⇒ Ei(1 ≤ i ≤ n)

E `p (c p1 . . . pn) : d⇒ E1 + . . .+ En

E(f) = t1 → . . .→ tn → t E `p pi : ti ⇒ Ei(1 ≤ i ≤ m)

E `p (f p1 . . . pm) : tm+1 → . . .→ tn → t⇒ E1 + . . .+ Em

E `p pi : ti ⇒ Ei(1 ≤ i ≤ n)

E `p (p1, . . . , pn) : (t1, . . . , tn) ⇒ E1 + . . .+ En

E(v) = t

E `e v : t

E(s) = t

E `e s : t

E `e ei : ti(1 ≤ i ≤ n)

E `e (e1, . . . , en) : (t1, . . . , tn)

E `e e1 : t2 → t E `e e2 : t2
E `e (e1e2) : t

Fig. 2. Typing rules for language L. The environment union operator E1 +E2 is de£ned only when
E1 and E2 agree on any elements in the intersection of their domains.

To be more concrete, we de£ne the evaluation of a problem to mean the computation
of a solution substitution by a sequence of narrowing steps. Formally, a substitution is a
mapping from variables to terms which is the identity almost everywhere. Substitutions are
extended to homomorphisms from terms to terms. The narrowing relation on R, denoted
;
R

, is de£ned as follows: e ;
R

θ,p,l=r e′, iff θ uni£es e|p (the subterm of e at position p)

340

with the left-hand side l of some rule l=r (with fresh variables), and e′ = θ(e[r]p) (where
e[r]p is the result of replacing the subterm at position p of e by r). We will drop θ, p, or
l=r from this notation when they are irrelevant. When presented, the representation of θ
will be restricted to the variables of a goal.

As habitual in functional logic languages with a lazy operational semantics, we de£ne
the validity of an equation as a strict equality on terms denoted by the in£x operator ==.
Because of the applicative nature of our systems, strict equality is de£ned by the families
of rules

c == c = true, ∀c
c X1 . . . Xn == c Y1 . . . Yn = X1 == Y1 ∧ . . . ∧Xn == Yn, ∀c, ar(c) > n > 0
(X1, . . . , Xn) == (Y1, . . . , Yn) = X1 == Y1 ∧ . . . ∧Xn == Yn, ∀n > 0
f == f = true, ∀f, ar(f) > 0
f X1 . . . Xn == f Y1 . . . Yn = X1 == Y1 ∧ . . . ∧Xn == Yn, ∀f, ar(f) > n > 0
true ∧X = X

where c is a constructor and f is a function. (Recall that our language allows only partially-
applied function symbols in a pattern.)

A sequence of narrowing steps g
∗
;
R

θ true, where R is the set of rules of p, is called

an evaluation of (p, g) producing solution θ.
As a very simple example, consider the following problem, taken from [5, Ex. 1] (orig-

inally from [13]).

z : nat
s : nat -> nat
twice (F:nat->nat) (X:nat) = F (F X)
(G:(nat->nat)->(nat->nat)) G s z == s (s z)

A solution of this problem is the substitution {G 7→ twice}. It is computed by the fol-
lowing evaluation.

G s z == s (s z) ;{G7→twice} s (s z) == s (s z)
+

;{} true

Note that we still haven’t suggested a strategy for choosing the appropriate sequence of
narrowing steps. In fact, while a great deal is known about ef£cient strategies for £rst-
order programs, we understand much less about higher-order ones. We will show shortly,
however, that typing information can be a valuable guide to computing an ef£cient strategy.
The main idea of this paper is to reduce the higher-order case to the £rst-order one while
maintaining typability, as described in the next section.

4 Translation

The idea behind the translation is to encode all unapplied or partially-applied symbols1 as
constructors (called closure constructors), grouped into new algebraic data types (closure
types), and replace all applications in the original program by applications of special new
dispatch functions. As its name suggests, a dispatch function takes a closure constructor
as argument, and, based on the value of that argument, dispatches control to (a translation

1 Because constructors in the source program can be treated just like £rst-class functions (e.g., as
arguments to higher-order functions), they are encoded just like functions.

341

of) the appropriate original function. The resulting program is well-typed in the strict £rst-
order subset of the original language, so ordinary £rst-order narrowing strategies can be
used to £nd solutions.

The main novelty introduced by the presence of types is that the translation constructs
type-speci£c dispatch functions and associated closure-constructor types, one for each dif-
ferent function type encountered in the source program. (The obvious alternative—using
a single dispatch function that operates over all closure constructors—is unattractive, be-
cause such a function could not be given a conventional static polymorphic type; some
form of dependent typing would be required, and this would in general require dynamic
type checking.) The translation essentially consists of two parts:

– generation of a set of new nullary or unary closure constructors, corresponding to
partially applied functions and constructors in the source program, and a set of new
unary dispatch functions;

– a syntax-directed transformation of the original program and goal, which replaces
original constructor and function names by closure constructor names, original appli-
cations by dispatch function applications and original function de£nitions by equiva-
lent uncurried function de£nitions.

The closure constructors and dispatch functions are then integrated with the translated pro-
gram to produce the complete translated problem. Details of the translation are speci£ed in
Figures 3 and 4. Borrowing from [5], we denote closure constructors with identi£ers pre-
£xed by “#,” closure types with the symbol “$” indexed by an (arrow) type, and dispatch
functions with the symbol “@” indexed by a type.

In a translated program, all functions appearing in expressions are fully applied, so
no applicative expression ever mentions a function. Thus, solutions of a goal under the
translated program never mention the new dispatch functions, though they may mention
the new #s constructors. Solutions may be translated back into a higher-order form that
doesn’t contain these constructors by translating each construction #s0 into the symbol
name s, and each construction #sk(e1, . . . , ek) into the application (s e1 . . . ek). A com-
plete inverse translation for expressions is given in Figure 5.

4.1 Example

Consider again the small example problem of the previous section. Our translation gives
the following target problem

z : nat
s : nat -> nat
#twice0 : d1
#twice1 : d2 -> d2
#s0 : d2
twice (F:d2, X:nat) = @d2(F,@d2(F,X))
@d1(#twice0:d1, F:d2) = #twice1(F)
@d2(#twice1(F:d2), X:nat) = twice(F,X)
@d2(#s0:d2, X:nat) = s(X)
(G:d1) @d2(@d1(G,#s0),z) == @d2(#s0,@d2(#s0,z))

where
d1 = $[[nat→nat]]→[[nat→nat]] = [[(nat→ nat)→ (nat→ nat)]]
d2 = $[[nat]]→[[nat]] = [[nat→ nat]]

342

[[d]] = d

[[(t1, . . . , tn)]] = ([[t1]] , . . . , [[tn]])
[[t1 → t2]] = $[[t1]]→[[t2]]

[[dec1 . . . decm rule1 . . . rulen]] = [[dec1]] . . . [[decm]] newsigs [[rule1]] . . . [[rulen]] newrules
where newsigs = nsigs(dec1) . . . nsigs(decm)

nsigs′(rule1) . . . nsigs′(rulen)
and newrules = nrules(dec1) . . . nrules(decm)

nrules′(rule1) . . . nrules′(rulen)
[[(v1 : t1, . . . , vn : tn) e1 == e2]] = (v1 : [[t1]] , . . . , vn : [[tn]]) [[e1]] == [[e2]]

[[c : t1 → . . .→ tn → d]] = c : ([[t1]] , . . . , [[tn]]) → d (if ar(c) = n > 0)
= c : d (if ar(c) = n = 0)

[[f p1 . . . pn = e]] = f([[p1]] , . . . , [[pn]]) = [[e]]

(patterns) [[(v : t)]] = (v : [[t]])
[[(c p1 . . . pn)]] = (c([[p1]] , . . . , [[pn]]))

[[f]] = #f0
[[(f p1 . . . pn)]] = (#fn([[p1]] , . . . , [[pn]]))
[[(p1, . . . , pn)]] = ([[p1]] , . . . , [[pn]])

(expressions) [[v]] = v

[[s]] = #s0 (if ar(s) > 0)
[[s]] = s (if ar(s) = 0)

[[(e1, . . . , en)]] = ([[e1]] , . . . , [[en]])
[[(e1 e2)]] = @[[typeof (e1)]]([[e1]] , [[e2]])

Fig. 3. Translation Rules. The notation for translation is overloaded to work on each syntactic class.
The de£nitions of nsigs(),nsigs′(),nrules(), and nrules′() are given in Figure 4.

An evaluation of the translated problem produces the following (incomplete) narrowing
sequence:

@d2(@d1(G,#s0),z) == @d2(#s0,@d2(#s0,z))
;{G 7→ #twice0} @d2(#twice1(#s0),z) == @d2(#s0,@d2(#s0,z))
;{} twice(#s0,z) == @d2(#s0,@d2(#s0,z))
;{} @d2(#s0,@d2(#s0,z)) == @d2(#s0,@d2(#s0,z))

The solution substitution {G 7→ #twice0} to the translated problem is mapped by the
inverse translation back to the substitution {G 7→ twice}, which is a solution of the
original problem.

4.2 Discussion

We have tried to present the translation in the simplest and most uniform way possible.
As a result, the translated code is substantially more inef£cient than necessary; this can
be corrected by using a more sophisticated translation or by post-translation optimization,

343

nsigs(s : d) = {}

nsigs(s : t1 → . . .→ tn → d) =

#s0 : [[t1 → . . .→ tn → t]] ,
#s1 : [[t1]] → [[t2 → . . . tn]] ,
. . . ,

#sn−1 : ([[t1]] , . . . , [[tn−1]]) → [[tn → t]]

nsigs′(f p1 . . . pn = e) = nsigs(f : typeof (f))

nrules(s : d) = {}

nrules(s : t1 → . . .→ tn → d) =

@[[t1→...→tn→t]](#s0, v1 : [[t1]]) = #s1(v1),
@[[t2→...→tn→t]](#s1(v1 : [[t1]]), v2 : [[t2]]) = #s2(v1, v2),
. . . ,

@[[tn→t]](#sn−1(v1 : [[t1]] , . . . , vn−1 : [[tn−1]]), vn : [[tn]]) =
s(v1, . . . , vn)

nrules′(f p1 . . . pn = e) = nrules(f : typeof (f))

Fig. 4. De£nition of closure constructors and dispatch functions.

[[v]]−1 = v

[[#s0]]
−1 = s

[[#sk(e1, . . . , ek)]]−1 = (s e1 . . . ek)

[[c]]−1 = c (for other constructors c)
[[(e1, . . . , en)]]−1 = ([[e1]] , . . . , [[en]])

Fig. 5. Inverse Translation Rules.

using standard simpli£cation techniques. For example, we replace all source applications
by dispatch function applications, whereas in fact only applications whose operators are
variables need to be dispatched; when the operator is a known symbol, the dispatch func-
tion call could be inlined. As another example, translated functions are called in only one
place, from within the (type-appropriate) dispatch function, so they could be inlined there
without increasing code size. Note, however, that one cannot in general perform both these
transformations simultaneously without risking a blow-up in the size of the translated pro-
gram.

Our translation relies fundamentally on having a monomorphic source program, so
that each source function can be assigned unambiguously to a closure-constructor type and
associated dispatch function in the target. It is obviously desirable to extend the translation
to polymorphic problems. One straightforward approach is to generate (automatically)
multiple specialized versions of the program’s polymorphic functions, one for each type
at which the function is used, before applying the translation [12]. This method works
for problems that combine polymorphic programs with monomorphic goals. For example,
given the program

u : foo
v : bar
id (Z:α) = Z

344

where α is a type variable, we can solve the goals

(X:foo, Y:bar) (id X, id v) == (u,Y)
(F:foo->foo,G:bar->bar) (F u, G v) == (u,v)

by £rst specializing id into two functions

id foo (Z:foo) = Z
id bar (Z:bar) = Z

and then translating to £rst-order and solving in the normal way. For the latter goal, we ob-
tain the solution {F 7→ id foo,G 7→ id bar}; we can transform both the monomor-
phic function names appearing in the solution back into id for presentation to the user.
Note that the type annotations on variables F and G are needed to guide the specialization
process.

This approach fails to handle goals with polymorphic function-typed variables. For
example, given the above program, consider the goal

(F u, F v) == (u,v)

Here {F 7→ id} is the (sole) solution to the polymorphic goal; no single monomorphic
instance can possibly be a solution. Solving this problem appears to require dynamic (run-
time) type manipulation. For example, Hanus [8] has shown that a system using explicit
type annotations on all terms together with runtime type uni£cation can express the War-
ren transformation using a single polymorphic dispatch function; there are static analyses
that permit the runtime types to be omitted provided there are no function-valued goal vari-
ables [7]. If there are function-valued variables, some runtime type operations will need
to remain, and it is not clear what level of static type checking can be guaranteed to the
programmer; we are currently investigating this question.

Our translation is presented as operating on an entire program at one time, but this is
not a fundamental requirement. If the source program is given incrementally, the transla-
tion can be performed incrementally too, provided that it is possible to add new construc-
tors to an existing algebraic datatype and new rules for an existing dispatch function on an
incremental basis.

5 Correctness

In this section we formulate the correctness of our translation and sketch its proof. Intu-
itively, a translation of a source problem into a target problem is correct if solutions of
the source problem can be computed by means of the target problem, i.e., if the following
diagram commutes:

source
problem

target
problem

translate

solution solution
inverse translate

solve solve

More speci£cally, it should make no difference whether we compute the solutions of
a source program directly or through its translation. To formalize this idea, we need the

345

following notation and de£nitions. If θ is a substitution, we de£ne [[θ]] as the substitution
that, for any variable v, [[θ]] (v) = [[θ(v)]]. We say that a substitution θ is applicative if, for
any variable v, θ(v) is an applicative term. Two substitutions are equivalent if each one
can be obtained by the other through a renaming of variables. If θ is a substitution and g

is a goal, then θ|Var(g) denotes the restriction of θ to the variables of g. If P is a problem,
then solve(P) is the set of its solutions. If S is a set, then [[S]] = {[[x]] |x ∈ S}. The
comparison of two sets of substitutions is always implicitly intended modulo equivalence
of substitutions.

Let P be a source problem. We say that a translation [[]] is complete iff, for every
source problem P , solve(P) ⊆ [[solve([[P]])]]

−1. We say that a translation [[]] is sound iff,
for every source problem P , solve(P) ⊇ [[solve([[P]])]]

−1.
Note that the soundness and completeness of a narrowing strategy used to compute

a problem solution are not an issue for the soundness and completeness of a translation,
though we envision that a sound and complete strategy will be used for the target program.

We express the completeness of our translation as:

Let θ be a solution (applicative substitution) of a problem (p, g), where p is an
ATRS. There exists a substitution θ′ such that [[g]]

∗
;
[[p]]

θ′ true and [[θ′]]
−1
|Var(g) is

equivalent to θ.

The proof of the completeness of our translation is in two parts. First, one proves the
completeness claim when all the steps of a computation are rewriting steps by induction
on the length of the computation. Then, one proves the completeness claim of a narrowing
computation by lifting the completeness result for the corresponding rewrite computation.

The intuition behind the completeness of our translation is that a computation in the
source program is “simulated” by a computation in the target program. For example, the
evaluation presented in Section 4.1 simulates the corresponding evaluation presented in
Section 3.4.

Each application in the source program is replaced by at most two applications in the
target program (before optimization). Consequently, the derivation in the target program
takes more steps than in the source program, but only by a constant factor. Moreover, all the
target program steps are £rst-order. In addition, the optimized translation of a £rst-order
source application is just itself. Thus, there is no loss of ef£ciency in the target program
for purely £rst-order narrowing computations in the source program.

We express the soundness of our translation as:

Let (p, g) be a problem, where p is an ATRS. If [[g]]
∗
;
[[p]]

θ true, then [[θ]]
−1
|Var(g) is

a solution of (p, g).

The proof of the soundness of our translation stems directly from González-Moreno’s
work [5]. His translation of a problem can be obtained from our translation of the same
problem by collapsing all our dispatch functions into a single untyped dispatch function.
Some consequences of this difference are discussed in Section 6. For example, his trans-
lation of Example 4.1 yields the following £rst-order program (where we have added type
annotations):

twice (F:nat->nat, X:nat) = @(F,@(F,X))
@(#twice0:(nat->nat)->(nat->nat), F:nat->nat) = #twice1(F)

346

@(@(G,#s0),z)==2

@(#twice1(#s0),z)==2

{G7→#twice0}

@(s(#s0),z)==2

{G7→#s0}

@(twice(G’,#s0),z)==2

{G7→#twice1(G’)}

@(@(G’,@(G’,#s0)),z)==2

{}

Fig. 6. Portion of the search space of @(@(G,#s0),z)==2

@(#twice1(F:nat->nat), X:nat) = twice(F,X)
@(#s0:nat->nat, X:nat) = s(X)
(G:(nat->nat)->(nat->nat)) @(@(G,#s0),z) == @(#s0,@(#s0,z))

Therefore, every solution (substitution) of a problem computed via our translation is also
computed by González-Moreno’s translation of the same problem. Thus, [5, Th. 1] directly
implies that our translation is sound.

6 Related Work

The bene£ts of our approach to higher-order narrowing computations can be better under-
stood by comparing it with related work.

6.1 Smaller Narrowing Space

The approach to higher-order narrowing closest to ours is [5]. The major difference be-
tween these approaches is that our target programs are well-typed whereas the target pro-
grams in [5] are not. We show the effects of this difference on the narrowing space of the
example discussed in Section 5. Figure 6 shows a portion of the goal’s narrowing space
computed with the translation proposed in [5], where 2 is an abbreviation of s (s z).
The same portion of narrowing space generated by our target program contains only the
left branch. Both middle and right branches of Figure 6 contain ill-typed terms. The right
branch is in£nite due to

@(G,#s0)
+

; @(G’,@(G’,#s0))
+

; @(G’’@(G’’,@(G’’,#s0)))
+

; . . .

These conditions, neither of which arises with our translation, have far reaching conse-
quences. An increase in the branching factor of the nodes of a narrowing space implies an
exponential growth of the number of nodes that may be generated during a computation.
The presence of in£nite branches in the search space implies that sequential implemen-
tations of complete narrowing strategies may become operationally incomplete. Even if

347

these extreme consequences can be avoided in many cases, we expect in most cases a
substantial slowdown of narrowing computations that discard type information. This ob-
servation is also made in [10].

Of course, even branches containing only type-correct terms may be in£nite, making
the use of sequential implementations problematic. We believe, however, that the behavior
of such implementations will be much easier for the programmer to understand if they are
guaranteed to proceed in a well-typed manner. Gratuitous alteration of the size or £niteness
of the narrowing space which cannot aid in £nding solutions is surely unacceptable.

6.2 Expanded programs

Our overall approach has a signi£cant difference with respect to both [6, 10]. We reduce
higher-order narrowing computations to £rst-order ones by means of a program translation
that is largely independent of both the class of source programs and the narrowing strategy
applied to these programs. This decoupling opens new possibilities. For example, there is
no published work on higher-order narrowing in both constructor based, weakly orthogo-
nal rewrite systems and inductively sequential, overlapping rewrite systems. It is easy to
verify that our translation preserves many common properties of rewrite systems, includ-
ing weak orthogonality and inductive sequentiality. Since sound, complete, and ef£cient
£rst-order narrowing strategies are known for both weakly orthogonal rewrite systems [2]
and inductively sequential, overlapping rewrite systems [1], our approach immediately
provides a means for higher-order narrowing computations in these classes.

6.3 Ef£ciency

Another difference of our approach with respect to both [6, 10] is the granularity of the
steps. Both [6, 10] perform narrowing computations by means of inferences whereas our
approach promotes the use of strategies that perform true narrowing steps. Generally, we
expect an overhead when a narrowing step is broken into many inferences.

A noteworthy feature of our approach is that when no variable of function type is in-
stantiated, higher-order narrowing computations do not cost signi£cantly more than £rst-
order narrowing computations. This feature is essential for powerful functional logic lan-
guages. For example, the current proposal for Curry de£nes the dispatch function as rigid,
thus excluding higher-order narrowing computations from the language, “since higher-
order uni£cation is an expensive operation” [4, Sect 2.6]. Our translation is a step toward
lifting exclusions of this kind. Indeed, the above feature extends (at least for monomor-
phically typed programs) the behavior of modern narrowing strategies in that when no
variable is instantiated, narrowing computations should not cost signi£cantly more than
functional computations.

6.4 Partial Applications in Patterns

There is a signi£cant difference between [6] and the other higher-order narrowing ap-
proaches referenced in this paper. In [6], the patterns of a rule may consist of or contain
higher-order patterns [9]. For example, [6, Ex. 1.2] de£nes a higher-order function diff ,
where diff (F,X) computes the differential of F at X in the form of a higher-order pat-
tern. The rules of diff include higher-order patterns for symbols such as sin, cos, and

348

ln. Although intuitively these symbols stand for functions sine, cosine, and logarithm, the
program de£nes neither the symbols nor the functions by means of rewrite rules. Our ap-
proach supports and extends this feature. The following de£nitions, where for readability
we omit type declarations, allow us to express polynomial functions.

const N _ = N
x X = X
plus F G X = F X + G X
times F G X = F X * G X

For example, the function x2 + 1 would be expressed using the above rules as

plus (times x x) (const 1)

The following program de£nes our diff function. Similar to [6], narrowing allows us to
use diff to compute symbolic integration, although diff alone would be inadequate in most
cases. By contrast to [6], we use diff to compute both the symbolic derivative with respect
to x of a polynomial and the differential of a polynomial at x = X — in our framework
the former evaluates to a function and the latter evaluates to a number.

diff (const _) = const 0
diff x = const 1
diff (plus F G) = plus (diff F) (diff G)
diff (times F G) = plus (times (diff F) G) (times F (diff G))

For example

plus (times x x) (const 1) 2
∗

; 5
diff (plus (times x x) (const 1)) 2

∗

; 4
diff (plus (times x x) (const 1))

∗

;

plus (plus (times (const 1) x) (times x (const 1)))
(const 0)

A “simpli£cation” function with rules such as the following ones would be useful to im-
prove the latter and necessary to compute non-trivial symbolic integration.

simpl (plus F (const 0)) = F
simpl (times F (const 1)) = F
...

Our approach eases understanding the appropriateness of this unusual programming style.
Intuitively, both functions and constructors of the source program become (closure) con-
structors of the target program, hence function symbols in patterns of the source program
need not be harmful. Indeed, higher-order programming is, loosely speaking, allowing a
function f to be the argument of a function g. A rule of g has generally a variable, of
functional type, to match or unify with f, but there is no reason preventing the use of the
symbol f itself in the rule of g. Furthermore, since we do not allow fully applied functions
in patterns, the use of functions in patterns does not compromise the con¤uence of the
program, although the lack of con¤uence would not be an issue for our translation in any
case.

7 Conclusion

We have presented a translation from source to target programs that allows us to perform
higher-order narrowing computations with £rst-order narrowing strategies. This has sev-
eral noteworthy advantages.

349

Our approach immediately provides sound, complete and ef£cient higher-order nar-
rowing computations for large classes of systems for which no sound, complete and/or
ef£cient higher-order narrowing strategies were known.

Our approach re£nes previous translation attempts by preserving in the target program
type information of the source program. It is easy to verify that even in trivial examples
this has a dramatic effect on the size of the narrowing space.

Our approach allows and justi£es the presence of function symbols in the patterns of a
rewrite rule. This feature extends the use of higher-order patterns, increases the expressive
power of a language and simpli£es metaprogramming tasks.

Acknowledgments

The authors are grateful to J. C. González Moreno and M. Hanus for discussions and
suggestions on the topics of this paper.

References

1. S. Antoy. Optimal non-deterministic functional logic computations. In Proc. of the 6th Int.
Conference on Algebraic and Logic Programming (ALP’97), pages 16–30, Southampton, UK,
Sept. 1997. Springer LNCS 1298.

2. S. Antoy, R. Echahed, and M. Hanus. Parallel evaluation strategies for functional logic lan-
guages. In Proc. of the 14th Int. Conference on Logic Programming (ICLP’97), pages 138–152,
Leuven, Belgium, July 1997. MIT Press.

3. J. M. Bell, F. Bellegarde, and J. Hook. Type-driven defunctionalization. In Proc. 2nd Interna-
tional Conference on Functional Programming, pages 25–37, June 1997.

4. Curry: An integrated functional logic language. M. Hanus (ed.), Draft Jan. 13, 1999.
5. J.C. González-Moreno. A correctness proof for Warren’s HO into FO translation. In Proc.

GULP’ 93, pages 569–585, Gizzeria Lido, IT, Oct. 1993.
6. M. Hanus and C. Prehofer. Higher-order narrowing with de£nitional trees. In Proc. 7th In-

ternational Conference on Rewriting Techniques and Applications (RTA’96), pages 138–152.
Springer LNCS 1103, 1996.

7. Michael Hanus. Polymorphic higher-order programming in prolog. In Proc. 6th International
Conference on Logic Programming, pages 382–397. MIT Press, June 1989.

8. Michael Hanus. A functional and logic language with polymorphic types. In Proc. International
Symposium on Design and Implementation of Symbolic Computation Systems, pages 215–224.
Springer LNCS 429, 1990.

9. D. Miller. A logic programming language with lambda-abstraction, function variables, and
simple uni£cation. Journal of Logic and Computation, 1(4):497–536, 1991.

10. K. Nakahara, A. Middeldorp, and T. Ida. A complete narrowing calculus for higher-order func-
tional logic programming. In Proc. 7th International Symposium on Programming Languages,
Implementations, Logics and Programs (PLILP’95), pages 97–114. Springer LNCS 982, 1995.

11. J. C. Reynolds. De£nitional interpreters for higher-order programming languages. In ACM
National Conference, pages 717–740. ACM, 1972.

12. A. Tolmach and D. Oliva. From ML to Ada: Strongly-typed language interoperability via source
translation. Journal of Functional Programming, 8(4):367–412, July 1998.

13. D.H.D. Warren. Higher-order extensions to PROLOG: are they needed? In Machine Intelligence
10, pages 441–454, 1982.

14. Proc. Workshop on Types in Compilation (TIC97), June 1997. Boston College Computer Sci-
ence Technical Report BCCS-97-03.

15. Proc. Second Workshop on Types in Compilation (TIC98). Springer LNCS 1473, March 1998.

350

