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Abstract. We introduce a handful of software design patterns for functional
logic languages. Following usual approaches, for each pattern we propose a name
and we describe its intent, applicability, structure, consequences, etc. Our patterns
deal with data type construction, identifier declarations, mappings, search, non-
determinism and other fundamental aspects of the design and implementation of
programs. We present some problems and we show fragments of programs that
solve these problems using our patterns. The programming language of our ex-
amples is Curry. The complete programs are available on-line.

1 Introduction

A design patternis a proven solution to a recurring problem in software design and
development. A pattern itself is not primarily code. Rather it is an expression of design
decisions affecting the architecture of a software system. A pattern consists of both
ideas and recipes for the implementations of these ideas often in a particular language
or paradigm. The ideas are reusable, whereas their implementations may have to be
customized for each problem. For example, a pattern introduced in this paper expresses
the idea of calling a data constructor exclusively indirectly through an intermediate
function. The idea is applicable to a variety of problems, but the code of the intermediate
function is highly dependent on each application.

Patterns originated from the development of object-oriented software [7] and be-
came both a popular practice and an engineering discipline after [14]. As the landscape
of programming languages evolves, patterns are “translated” from one language into
another [12,16]. Some patterns are primarily language specific, whereas others are fun-
damental enough to be largely independent of the language or programming paradigm
in which they are coded. For example, theAdapterpattern, which solves the problem of
adapting a service to a client coded for different interface, is language independent. The
Facadepattern, which presents a set of separately coded services as a single unit, de-
pends more on the modularization features of a language than the language’s paradigm
itself. TheCompositeandVisitor patterns are critically dependent on features of object
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orientation, such as derivation and overriding, in the sense that other paradigms tend to
trivialize them. For example, Section 4 references programs that show the simplicity of
these patterns in a declarative paradigm.

In this paper, we present a handful of patterns intended for a declarative paradigm—
in most cases specifically for a functional logic one. High level languages are better
suited for the implementation of reusable code than imperative languages, see, e.g.,
parser combinators [10]. Although in some cases, e.g., search-related patterns, we at-
tempt to provide reusable code, the focus of our presentation is on the reusability of
design and architecture which are more general than the code itself. Our presentation
of a pattern follows the usual (metapattern) approaches that provides, e.g., name, in-
tent, applicability, structure, consequences, etc. Some typical elements, such as “known
uses,” are sparse or missing because of the novelty of our work. To our knowledge this
is the first paper on patterns for functional logic programming.

Section 2 briefly recalls some principles of functional logic programming and the
programming language Curry which we use to present the examples. Section 3 presents
a small catalog of functional logic patterns together with motivating problems and im-
plementation fragments. Section 4 contains references to on-line versions of the entire
programs whose fragments are interspersed in the text. Section 5 concludes the paper.
Appendix A further elaborates a framework for search problems analyzed in relation to
the Incremental Solution pattern.

2 Functional Logic Programming and Curry

This section provides both an introduction to the basic ideas of functional logic pro-
gramming and the elements of the programming language Curry that are necessary to
understand the subsequent examples.

Functional logic programming integrates in a single programming model the most
important features of functional and logic programming (see [18] for a detailed survey).
Thus, functional logic languages provide pattern matching in the definition of functions
and predicates as well as the use of logical variables in expressions. The latter feature
requires some built-in search principle in order to guess the appropriate instantiations of
logical variables. There are a number of languages supporting functional logic program-
ming in this broad sense, e.g., Curry [28], Escher [31], Le Fun [2], Life [1], Mercury
[39], NUE-Prolog [34], Oz [38], Toy [32], among others. Some of these proposals, as
well as some Prolog implementations (e.g., Ciao Prolog [9]), consider the functional no-
tation only as syntactic sugar for particular predicates. Functions withn arguments are
translated into predicates of arityn+1 by including the result value as an additional ar-
gument. This technique, known as naiveflattening, does not exploit the fact that in some
situations the value of an argument of a function does not affect the result. Computing
these arguments would be a waste. For instance, thedemand-drivenor neededevalua-
tion strategy evaluates an argument of a function only if its value is needed to compute
the result. An appropriate notion of “need” is a subtle point in the presence of a non-
deterministic choice, e.g., a typical computation step, since the need of an argument
might depend on the choice itself. [4] proposes aneeded narrowingstrategy to solve
this problem. This strategy is optimal w.r.t. both the length of successful derivations
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and the disjointness of computed solutions. Narrowing is a combination of term re-
duction as in functional programming and (non-deterministic) variable instantiation as
in logic programming. It exploits the presence of functions without transforming them
into predicates which yields a more efficient operational behavior (e.g., see [17,20]).

Functions can be also interpreted as a declarative notion to improve control in logic
computations, i.e., functional logic languages do not include non-declarative control
primitives like the Prolog’s “cut” operator. The main reason is the dependency between
input and output arguments which leads to needed evaluations. It is interesting to note
that thedeterminismproperty of functions (i.e., there is at most one result value for
fixed input arguments) is not strictly required. Actually, one can also deal withnon-
deterministic functionsthat deliver more than one result on a given input [3,15]. This
comes at no cost to the implementor since non-determinism is always available in func-
tional logic languages. On the other hand, the combination of demand-driven evalua-
tion and non-deterministic functions can result in a large reduction of the search space
[3,15].

It is well known that narrowing is an evaluation strategy that enjoys soundness and
completeness in the sense of functional and logic programming, i.e., computed solu-
tions/values are correct and correct solutions/values are computed. Nevertheless, nar-
rowing is not able to deal with external functions. Therefore, [1,2,8,31,34] proposed
alternative evaluation strategies based onresiduation. The residuation principle delays
a function call until the arguments are sufficiently instantiated so that the call can be
deterministically reduced. Thus, residuation-based languages also support concurrent
evaluations in order to deal with suspended computations. However, they do not ensure
completeness in contrast to narrowing [19].

[21] proposes a seamless combination of needed narrowing with residuation-based
concurrency. This is the basis of the programming language Curry [28], an attempt to
provide a standard in the area of functional logic programming languages. The patterns
presented in this paper are independent of Curry since they require only general features
that can be found in many functional logic languages. Nevertheless, we use Curry for
its dominant role in this field and due to its support for all typical features of functional
logic languages. Thus, we provide in the following a short overview on Curry.

Curry has a Haskell-like syntax [35], i.e., (type) variables and function names usu-
ally start with lowercase letters and the names of type and data constructors start with
an uppercase letter. The application off to e is denoted by juxtaposition (“f e”). In
addition to Haskell, Curry supports logic programming by means of free (logical) vari-
ables in both conditions and right-hand sides of defining rules. Thus, a Curryprogram
consists of the definition of functions and the data types on which the functions operate.
Functions are evaluated lazily and can be called with partially instantiated arguments.
In general, functions are defined by conditional equations, orrules, of the form:

f t1 . . . tn | c = e where vs free

wheret1, . . . , tn aredata terms(i.e., terms without defined function symbols), thecon-
dition c is a Boolean function or constraint,e is an expression and thewhere clause
introduces a set of free variables. The condition and thewhere clause can be omitted.
Curry definesequational constraintsof the forme1 =:= e2 which are satisfiable if both
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sidese1 ande2 are reducible to unifiable data terms. Furthermore, “c1 & c2” denotes the
concurrent conjunctionof the constraintsc1 andc2 which is evaluated by solving both
c1 andc2 concurrently.

Thewhere clause introduces the free variablesvs occurring inc and/ore but not in
the left-hand side. Similarly to Haskell, thewhere clause can also contain other local
function or pattern definitions. In contrast to Haskell, where the first matching function
rule is applied, in Curry all matching (to be more precise, unifiable) rules are non-
deterministically applied to support logic programming. This enables the definition of
non-deterministic functions which may have more than one result on a given input.

Consider the following definition of lists and a function that non-deterministically
inserts an element into a list:

data List a = [] | a : List a

insert :: a -> [a] -> [a]

insert e [] = [e]
insert e (x:xs) = e : x : xs
insert e (x:xs) = x : insert e xs

The data type declaration defines[] (empty list) and: (non-empty list) as the construc-
tors of polymorphic lists. The symbola is a type variable ranging over all types and the
type “List a” is usually written as[a] for conformity with Haskell. The second line
of the code declares the type of the functioninsert. This declaration is optional, since
the compiler can infer it, and its is written for checkable redundancy. The type expres-
sionα->β denotes the type of all functions from typeα to typeβ. Since the application
of a function is curried,insert takes an element of typea, a list of elements of typea
and returns a list of elements of typea, wherea is any type.

A consequence of the rules defininginsert, where the second and third rule over-
lap, is that the expression(insert 1 [3,5]) has three possible values:[1,3,5],
[3,1,5], and[3,5,1]. Usinginsert, we define the possible permutations of a list
by:

perm [] = []
perm (x:xs) = insert x (perm xs)

As an example of solving constraints, we want to define a function that checks whether
some list starts with a permutation of another list and delivers the list of the remaining
elements. For this purpose we use the concatenation of two lists which is defined by:

conc [] ys = ys
conc (x:xs) ys = x : conc xs ys

Now we can define the required function by a single conditional rule:

pprefix xs ys | conc (perm ys) zs =:= xs
= zs where zs free

The operational semantics of Curry, precisely described in [21,28], is a conservative ex-
tension of both lazy functional programming (if no free variables occur in the program
or the initial goal) and (concurrent) logic programming. Since it is based on an optimal
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evaluation strategy [4], Curry can be considered a generalization of concurrent con-
straint programming [36] with a lazy (optimal) evaluation strategy. Furthermore, Curry
also offers features for application programming like modules, monadic I/O, encapsu-
lated search [27], ports for distributed programming [22], libraries for GUI [23] and
HTML programming [24] etc. We do not discuss them here since they are not relevant
for the subsequent examples.

There exist several implementations of Curry. The examples presented in this paper
were all compiled and executed by PAKCS [25], a compiler/interpreter for a large subset
of Curry.

3 Patterns

In this section we present a small catalog of patterns. Practitioners makes a distinction
between the wordspattern and idiom, although there are no formal definitions. An
idiom is more language specific and addresses a smaller and less general problem than
a pattern. An emblematic idiom of the C programming language is the code for copying
a string:

while(*s++ = *t++) ;

The problem solved by this code is simple and the code relies on several peculiari-
ties of the C language, e.g., the combination of the conventions of ending strings with
a null character and representing the Boolean valuefalsewith the integer value zero.
By contrast, patterns are more general both in applicability and scope. Many patterns
of [14] were originally coded in C++ and/or Smalltalk. Later, they were easily ported
to other object-oriented languages such as Java [16,30]. Also, these patterns address
design and/or architectural problems that often span across several classes with sev-
eral methods each. The code of these classes and methods often depends on a specific
application and, consequently, it is not easily reusable.

The same distinction between patterns and idioms holds for functional logic lan-
guages. To clarify the difference, we discuss an idiom in Curry. This idiom ensures that
a function returns a value only if the value satisfies a certain property. The idiom is
based on the followingsuchthat operator:

infix 0 ‘suchthat‘
suchthat :: a -> (a->Bool) -> a
x ‘suchthat‘ p | p x = x

For example, typical functional logic implementations of then-queens puzzle gener-
ate a permutation of the input and test whether such permutation is “safe.” Using the
suchthat operator, the top-level function,queens, of an implementation of this puzzle
looks like:

queens x = permute x ‘suchthat‘ safe

wherepermute andsafe have the expected meanings.
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When appropriately used, this idiom yields terser and more elegant code, but hardly
more than this. The patterns that we describe below address non-trivial solutions of
some general and challenging problems.

3.1 Constrained Constructor

Name Constrained Constructor
Intent prevent invoking a constructor that might create invalid data
Applicability a type is too general for a problem
Structure define a function that either invokes a constructor or fails
Consequencesinvalid instances of a type are never created by the function
Known uses
See also [30]; sometimes used with the Incremental Solution

The signature of a functional logic program is partitioned intodefined operationsand
data constructors. They differ in that operations manipulate data by means of rewrite
rules, whereas constructors create data and have no associated rewrite rules. Therefore,
a constructor symbol cannot perform any checks on the arguments to which it is applied.
If a constructor is invoked with arguments of the correct types, but inappropriate values,
conceptually invalid data is created. We use an example to clarify this point.

TheMissionaries and Cannibalspuzzle is stated as follows. Three missionaries and
three cannibals want to cross a river with a boat that holds up to two people. Further-
more, the missionaries, if any, on either bank of the river cannot be outnumbered by the
cannibals (otherwise, as the intuition hints, they would be eaten by the cannibals).

A state of this puzzle is represented by the number of missionaries and cannibals
and the presence of the boat on an arbitrarily chosen bank of the river, by convention
the initial one:

data State = State Int Int Bool

For example, with suitable conventions,(State 3 3 True) represents the initial state.
The simplicity of this representation has the drawback that invalid states, e.g., those with
more than 6 people, can be created as well. Unless complex and possibly inefficient
types for the state are defined, it is not possible to avoid the creation of invalid states
using constructors alone.

Before completing the presentation of theConstrained Constructorpattern, con-
sider one of the rewrite rules defining the operation that moves the boat and some people
across the river:

move (State m c True)
| m>=2 && (m-2==0 || m-2>=c) && (c==3 || m-2=<c)
= State (m-2) c False -- move 2 missionaries

...

This rewrite rule abstracts moving two missionaries across the river. The complex guard
ensures that before the move there are at least two missionaries on the originating bank
of the river,m>=2, and that after the move, on each bank, the missionaries are not out-
numbered by the cannibals. The second conjunct of the condition ensures that after the
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move either there are no missionaries left on the originating bank of the river,m-2==0,
or the number of missionaries left is not smaller than the number of cannibals,m-2>=c.
The third conjunct expresses a similar condition for the destination bank. Nine other
rewrite rules with different, but similarly complex, guards are required to complete the
definition of this operation.

Both the complexity of operationmove and the creation of invalid states are avoided
by theConstrained Constructorpattern. This pattern ensures that only states that are
consistent with the conditions of the puzzle and are safe for the missionaries are created.
For example,(State 2 1 -) is not safe since on one bank of the river the cannibals
outnumber the missionaries and therefore should not be created. The function that con-
structs only desirable states is defined below:

makeState m c b | valid && safe = State m c b
where valid = 0<=m && m<=3 && 0<=c && c<=3

safe = m==3 || m==0 || m==c

Using operationmakeState, the definition of operationmove is greatly simplified with
a minimal loss of efficiency:3

move (State m c True)
= makeState (m-2) c False -- move 2 missionaries
! makeState (m-1) c False -- move 1 missionary
! makeState m (c-2) False -- move 2 cannibals
! ...

Programmission.curry, referenced in Section 4, contains a second occurrence of the
Constrained Constructorpattern. The program finds the solutions of the puzzle by con-
structing paths from the initial state (all the people and the boat on the initial bank) to
the final state (no people and no boat on the initial bank). A path is defined by sequence
of states as follows:

data Path = Initial State | Extend Path State

However, not all sequences of states are valid or desirable. In any path, any state except
the initial one must be obtained from the preceding state by means of a move. More-
over, cycles in a path are undesirable since they unnecessarily consume memory and
increase the size of the search space. Therefore, we have a second opportunity to use
theConstrained Constructorpattern.

A crucial advantage of creating only valid paths with no cycles is that the search
space of the puzzle changes from infinite to finite. This condition ensures that even naive
strategies, e.g., depth-first search which may result from an incomplete implementation
of a functional logic language such as a Prolog-based implementation [5], suffice to
solve the puzzle. An implementation of then-queens puzzle using theConstrained
Constructorpattern,queens.curry, is referenced in Section 4. This implementation is

3 The infix operator! denotes the most fundamental non-deterministic function. It returns one
of its arguments and is defined by the two rules:

x ! y = x

x ! y = y
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structurally identical to that of the missionaries and cannibals and is much faster than
implementations, e.g.,queens-permute.curry, of then-queens puzzle based directly on
permutations.

This pattern, in the form here presented, is not available in functional languages. In
a functional program, if a function call fails the entire execution of the program fails.
The same problem does not occur in a logic language, though a new problem arises. In a
functional language, constructor and function symbols are syntactically interchangeable
in an expression. In a logic language they are not. Thus, replacing a constructor with a
constrained constructor changes the structure of a logic program.

3.2 Concurrent Distinct Choices

Name Concurrent Distinct Choices
Intent ensure that a mapping from indexes to values is injective
Applicability index-value pairs are computed concurrently
Structure bind a unique token to a variable indexed by a value
Consequencesthe index-value relation is an injective mapping
Known uses
See also

A injective mappingis a function from a set ofindexesto a set ofvaluessuch that
distinct indexes are mapped to distinct values. Defining one such mapping is a compo-
nent of the solution of many problems. For example, programs for both then-queens
and cryptarithmetic puzzles that are based on injective mappings are referenced in Sec-
tion 4. A plausible representation of an injective mapping consists of a structure con-
taining index-value pairs. Index-value pairs are computed during the execution of a
program. To ensure injectivity, when an index-value pair is computed the program must
check that no previously computed pair with the same index has the same value.

TheConcurrent Distinct Choicespattern serves this purpose. One noteworthy fea-
ture of this pattern is that it allows the concurrent computation of the mapping. In
other words, different portions of a program can compute index-value pairs in a non-
sequential flow of control (e.g., due to residuation). With this condition, an implemen-
tation cannot pass around the structure containing the current index-value pairs in order
to test the injectivity constraint.

In the simplest form of this pattern, the values are integer numbers in the range0
to n − 1. The representation of the mapping is a list referred to as thestore. Initially,
the elements of the store aren free variables. Thevaluesare used as indexes in the
store. The elements in the store are referred to astokens. A token represents the action
of choosing a value that must be different from the value of any other choice. The type
of the tokens is arbitrary. Often, the tokens are theindexesof the problem’s mapping.
Thus, the indexes and values of a problem are used as values and indexes respectively,
i.e., the roles they have in the problem is reversed in the store.

To clarify this architecture, let us consider an example. Acryptarithmetic puzzle
presents an arithmetic computation in which digits are replaced by letters. The problem
is to find a correspondence from letters to digits that satisfies the computation. Different

8

http://www.cs.pdx.edu/~antoy/flp/patterns/fused-gen-test-dir/queens-permut.curry


letters stand for different digits and leading zeros are disallowed in the encrypted rep-
resentation of numbers. A well-know cryptarithmetic puzzle and its solution are shown
in the following display:

SEND + MORE = MONEY
9567 + 1085 = 10652

In this case, the lettersS, E, N, . . . are mapped to the digits9, 5, 6, . . .

A program for this cryptarithmetic puzzle,send-more.curry, declares one variable for
each letter:

vs,ve,vn,vd,vm,vo,vr,vy free

and defines, as a constraint, the set of equations that the variables must satisfy:

vd+ve =:= c0*10+vy &
vn+vr+c0 =:= c1*10+ve &
ve+vo+c1 =:= c2*10+vn &
vs+vm+c2 =:= c3*10+vo &

c3 =:= vm

wherec0 is the carry of the units,c1 of the tens, etc. Each carry must be either0 or 1
and consequently it is initialized as follows:

ci = 0!1 i = 0, . . . , 3

It follows from the conventions of the problem thatvm is not zero and consequently
c3 is equal to one. In general, such precise inferences are not available and thus the
program will ignore them.

The relation among the letters could be formulated as the single equation:

vd+ve + 10*(vn+vr) + 100*(ve+vo) + 1000*(vs+vm)
=:= vy + 10*ve + 100*vn + 1000*vo + 10000*vm

Instead, we choose to split it into the conjunction of five simpler equations. This splitting
enables the program to detect an incorrect mapping of letters to digits when fewer letters
are mapped and consequently it improves considerably the efficiency of the execution.
We will see shortly that these equations are not executed sequentially.

Since the variables,vs, ve, . . ., that stand for the letters of the puzzle are initially
unbound and the addition and multiplication operators are rigid, the execution of the
equations that the variables must satisfy residuates, i.e., it is suspended until both the
operands of an operator become bound. Each operand is a variable that is non-deter-
ministically bound to a digit, similarly to the carries. However, in this case, different
variables must be bound to different digits and the order in which variables are bound
is not easily determined in advance. Here is where theConcurrent Distinct Choices
pattern comes handy.

The initial store is a list of 10 free variables:

store = [s0,s1,s2,s3,s4,s5,s6,s7,s8,s9]
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where s0,s1,s2,s3,s4,s5,s6,s7,s8,s9 free

A letter of the cryptarithmetic puzzle is bound to a digit by the functiondigit defined
as follows:

digit token | store !! x =:= token = x
where x = 0!1!2!3!4!5!6!7!8!9

The argumenttoken must be unique for each letter, hence, it is natural and convenient
to represent it with the letter itself. The store, identified by the variablestore, is defined
in the scope of the function. The operator!! applied to argumentsl andi returns the
i-th element of the listl.

The letters of the cryptarithmetic puzzle are computed as follows:

vs = nzdigit ’S’
ve = digit ’E’
vn = digit ’N’
...

wherenzdigit is a variant ofdigit that returns only non-zero digits. For example,
(digit ’Y’) returns2 if and only iff the second (starting from zero) element of the
store is bound to’Y’. The entire program for this problem,send-more.curry, is refer-
enced in Section 4.

Then-queens puzzle can be framed using theConcurrent Distinct Choicespattern,
too, although concurrency is not a condition of this program. This program,queen-
schoices.curry, similar to many others for this problem, computes a permutation of the
integers0, 1, . . . , n − 1, where thei-th element of the permutation is the row in which
the queen in thei-th column is placed. A permutation can be seen as an injective map-
ping of the values0, 1, . . . , n− 1 into themselves. In this case, both the indexes and the
values of this problem’s mapping are most naturally represented by the integer numbers
in the range0 throughn− 1.

This pattern is not available in functional languages since they lack free variables.
On the other hand, pure logic languages do not support concurrency by residuation
(although some implementations offer coroutining) and the functional notation.

3.3 Incremental Solution

Name Incremental Solution
Intent compute solutions in an incremental manner
Applicability a solution consists of a sequence of steps
Structure non-deterministically extend a partial solution stepwise
Consequencesavoid explicit representation of the search space
Known uses [27,37]
See also often used with Constrained Constructor

A solutionof a search problem is an element of a set, the search space, satisfying par-
ticular properties. To avoid both the enumeration of all the elements in the search space
and the test of whether each element satisfies these properties, one defines a solution
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in an incremental manner, i.e., as a sequence of steps that extend a partial solution to a
complete one. For instance, consider the problem, known asstagecoach, of constructing
a path between two cities (see [29, p. 187]). The topology of a problem is represented
by the connections between a set of cities using adistance function, e.g.:

distance Boston Chicago = 1500
distance Boston NewYork = 250
...
distance Denver LosAngeles = 1000
distance Denver SanFrancisco = 800
distance SanFrancisco LosAngeles = 300

An instance of this problem asks for a path from Boston to Los Angeles. A solution
is a sequence of cities where Boston and Los Angeles are the first and last elements,
respectively, and two consecutive elements are connected according to thedistance
function. Instead of this “monolithic” definition, it is preferable to define a solution
in an incremental manner. Apartial solution is any path from Boston to another city
connected bydistance. A complete solution is a partial solution with Los Angeles as
the final element. A partial solution is extended, hopefully to a “more complete” one, by
adding a new city reachable from the last one according todistance. It is convenient
to represent a path as a list, in reverse order, of the cities of a partial solution. Extending
a partial solution is implemented by the following function:

addCity (c:cs) | distance c c1 =:= d1
= c1:c:cs where c1,d1 free

Thus, a general search problem of this kind is specified by a triple: a functionextend
that extends a partial solution, the initial partial solution, and a predicatecomplete
that defines the completeness of a partial solution. Based on such specification, the
following non-deterministic search function computes a solution:

searchNonDet :: (ps->ps) -> ps -> (ps->Bool) -> ps
searchNonDet extend initial complete = solve initial
where
solve psol = if complete psol then psol

else solve (extend psol)

The functionsearchNonDet is equivalent, except for the order of the arguments, to
the functionuntil found in the preludes of both Curry and Haskell. The Incremental
Solution pattern greatly simplies the structure of the code in that no global search space
is explicitly constructed. The functionsearchNonDet “sees” only a partial solution,
i.e., a single path originating from the initial state. This works because the function
extend is non-deterministic and the semantics of functional logic languages ensure the
completeness of the computation.

The following expression computes a solution of our reachability problem:

searchNonDet addCity [Boston] (\(c:_)->c==LosAngeles)
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The entire program,stagecoach.curry, implementing this problem is referenced in Sec-
tion 4. This program has several advantages over a plausible formulation in a pure
functional language. It is natural and convenient to define the stepwise extension of
partial solutions as a non-deterministic function, see the definition ofaddCity and
the examples of the Constrained Constructor pattern in Section 3.1. Non-deterministic
specifications are simpler and more adaptable to new situations than equivalent deter-
ministic specifications. For instance, the distance between two cities is defined as a
(partial) function on cities which can be used in a narrowing-based functional logic
language in a flexible way. To expand the topology of our sample problem with east-
bound connections, it suffices to add the following symmetric rule to the definition of
addCity:

addCity (c:cs) | distance c1 c =:= d1
= c1:c:cs where c1,d1 free

Although this expansion generates paths of unbounded length, successful connections
are nevertheless found with the proposed search function if the implementation either
evaluates all the alternatives in a fair manner, as in [6,26], or appropriately uses the
Constrained Constructorpattern discussed earlier.

Among the advantages of this pattern is a modular architecture that separates the
definition or specification of a problem from the computation of its solution. This
separation makes different computations interchangeable. For instance, suppose that
searchDepthFirst is a search strategy (its definition is shown in Appendix A) com-
puting the possibly infinite list of the solutions of the stagecoach problem in a depth-first
order. The list of solutions is obtained by evaluating:

searchDepthFirst addCity [Boston] (\(c:_)->c==LosAngeles)

We can refine the problem by including in a path its length which is defined as the sum
of the distances of consecutive cities:

data DPath = DPath Int [City]

extendPath (DPath d (c:cs)) | distance c c1 =:= d1
= DPath (d+d1) (c1:c:cs)
where c1,d1 free

startAtBoston = DPath 0 [Boston]

reachedLA (DPath _ (c:_)) = c == LosAngeles

Now, we compute solutions containing distance information by evaluating the expres-
sion:

searchNonDet extendPath startAtBoston reachedLA

In order to compute the solutions with the shortest distance first, we define an appropri-
ate comparison predicate between partial solutions:

shorter (DPath d1 _) (DPath d2 _) = d1<d2
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Now, we compute the shortest path by applying a “best-first” strategy (its implementa-
tion is shown in Appendix A) to the problem:

searchBestFirst extendPath startAtBoston reachedLA shorter

Many other search problems are conveniently implemented by programs, e.g.,mis-
sion.curry, queensincr.curryandwaterjug.curry, that use theIncremental Solutionpat-
tern.

3.4 Locally Defined Global Identifier

Name Locally Defined Global Identifier
Intent ensure that a local name is globally unique
Applicability a global identifier is declared in a local scope
Structure introduce local names as logical variables to be bound later
Consequenceslocal names are globally unique
Known uses Curry’s GUI library [23] and HTML/CGI library [24]
See also often used with Opaque Type

Lists and trees are ubiquitous datatypes in functional and logic programming because
of their simplicity. In many application areas, the use of these simple datatypes leads
to unnatural models of a problem resulting in error-prone programs that are difficult
to maintain. For instance, graphical user interfaces can be considered tree-like struc-
tures since widgets can be grouped in containers that are used as widgets themselves.
However, these structures may include dependencies among each other, e.g., a button
widget may manipulate another widget in a different hierarchy. Thus, a graph structure
is a more appropriate model in this situation. The usual representation of a graph as an
algebraic type is based on the definition of a pair consisting of nodes and edges:

data Graph = Graph [Node] [Edge]

Edges consist (at a minimum) of a source and a target node, i.e., we need a unique
identification of nodes in order to specify the edges between them. If we identify nodes
by unique integers, we obtain:

data Node = Node Int

data Edge = Edge Int Int

Depending on the application, additional information items are included into both nodes
and edges, e.g., lengths of edges, names of nodes, etc., that we omit for the sake of
clarity. With these assumptions, a simple graph instance is:

g1 = Graph [Node 1, Node 2, Node 3]
[Edge 1 2, Edge 3 2, Edge 1 3, Edge 3 3]

Unfortunately, graph instances of this kind cannot be composed and lack desirable
properties like functional abstraction. For instance, ifaddGraphs is a function that
composes two graphs by joining their nodes and edges, respectively, the expression
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(addGraphs g1 g1) produces a non-intended graph containing supposedly different
nodes with identical numbers.

This problem is avoided by passing a counter through all the nodes when all the
graphs are defined. However, this solution leads to code that is non-reusable and difficult
to both understand and maintain because two separate tasks are interleaved.

The Locally Defined Global Identifierpattern elegantly solves this problem. This
pattern separates the local definition of names from the task of assigning globally unique
identifiers. The idea is to use unbound local variables as names when defining or creat-
ing graphs. Following this idea, we define the graph of the previous example as follows:

g1 = Graph [Node n1, Node n2, Node n3]
[Edge n1 n2, Edge n3 n2, Edge n1 n3, Edge n3 n3]

where n1,n2,n3 free

Sincen1, n2 andn3 are local variables,g1 becomes compositional as a list or a tree
would be. For example,(addGraphs g1 g1) is a graph with six different nodes.

To connect two graphs of this kind with an additional edge, one “exposes” the nodes
intended for the connection:

g2 = (Graph [Node n1, Node n2, Node n3]
[Edge n1 n2, Edge n3 n2, Edge n1 n3, Edge n3 n3],

n1)
where n1,n2,n3 free

The following function connects graph/node pairs with an edge provided thataddEdge
is a function that adds a new edge between two nodes of a graph:

connectGraphs (g,m) (h,n) = addEdge m n (addGraphs g h)

Now, (connectGraphs g2 g2) defines a graph consisting of six nodes and nine
edges. The locally defined identifiersn1, n2 andn3 act as global identifiers in the com-
position.

Since unbound variables are not expressive, one may wish to instantiate them in
some applications, e.g., visualization. To visualize graphs, one instantiates the node
identifiers to pairwise distinct numbers or strings as usually required by visualization
tools. The following function implements this process:

finalizeGraph (Graph ns es) = Graph (numberNodes 1 ns) es
where numberNodes _ [] = []

numberNodes n (Node ni : nodes)
| ni =:= n -- assign unique identifier
= Node ni : numberNodes (n+1) nodes

A skeletal program,graph.curry, showing the use of this pattern is referenced in Sec-
tion 4.

This pattern is not only useful in graph-based applications, but also in applications
where hierarchical (tree-like) data structures are appropriate, but additional references
inside such structures are needed. As mentioned earlier, graphical user interfaces are
one class of such applications. This pattern has been applied in this context in [23]. An-
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other application area is dynamic web page generation with form-based input. HTML
documents are structured as trees, but the input forms and their “submit” buttons con-
tain dependencies between subtrees that can be appropriately described with this pattern
[24].

TheGraph datatype is only a simple example demonstrating the basic use of this
pattern. In real world applications, this pattern is refined in various ways. For instance,
the use of logical variables instead of concrete numbers in the definition of graphs is
only a guideline for the programmer. By contrast, theOpaque Typepattern presented in
the next section enforces the use of logical variables exclusively. A remaining problem
not addressed by these patterns is ensuring that the variables used in different nodes are
distinct. This situation occurs in other environments as well, e.g., Tcl/Tk or Perl/CGI
programs, which use additional analysis to solve the problem. In functional logic pro-
gramming, a convenient option is using theConstrained Constructorpattern discussed
earlier.

This pattern is not available in functional languages since they lack free variables.
As a consequence, functional approaches to GUI or HTML programming use a more
imperative style and/or lack compositionality [11,33]. Erwig [13] proposes an inductive
definition of graphs that supports coding graph algorithms in a functional style. His
approach is specific to graphs and does not lead to appropriate descriptions of the GUI
and HTML applications that we mentioned.

3.5 Opaque Type

Name Opaque Type
Intent ensure that values of a datatype are hidden
Applicability define instances of a type whose values are unknown
Structure wrap values with a private constructor
Consequencesvalues can only be denoted by free variables
Known uses Curry’s GUI library [23] and HTML/CGI library [24]
See also

In applications containing elements which are interesting only in relation to each other,
it is often desirable to hide the values of these elements since they are either irrelevant
or are computed by some function of the application. The construction of graphical
user interfaces and interactive HTML documents mentioned in the previous section and
abstracted by graphs are examples of this situation. A problem of this situation is that
the programmer may have to construct instances of a type, but no value of that type is
available.

In the graph example of the previous section, the values of the datatype that abstracts
node identifiers should be hidden, but the datatype itself should be visible to construct
the nodes. A convenient option to satisfy this condition is the use of unbound variables
rather than literal values for node identifiers when a graph is defined. As an added
bonus, this condition gives the implementor of a graph library the freedom to change
this datatype, e.g., fromInt to String whenever it is convenient, without affecting a
client of the library.
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The values of a datatype can be hidden by “wrapping” them with a private construc-
tor of the datatype. This means that literal values are replaced by values of an abstract
datatype that has no public constructors. The values of this datatype can be denoted by
unbound variables.

For instance, consider the graph of Section 3.4. To hide the use of integers to identify
nodes, we define in the graph library a datatype fornode identifiers:

data NodeId = NodeId Int

where the constructorNodeId is not exported—a standard feature of module systems.
Furthermore, we change the definition of nodes and edges so that we use the type
NodeId wherever nodes are required:

data Node = Node NodeId

data Edge = Edge NodeId NodeId

These definitions are in the same module that declaresNodeId and consequently may
access it even though it is private. Finally, we adapt all the functions in the graph library
where node identifiers are involved. These functions may accessNodeId as well. In our
example we slightly change the definition offinalizeGraph by replacing “ni =:= n ”
with “ ni =:= NodeId n .” This change is completely invisible to the user of the library.
The coding of graphs remain identical, but the pattern ensures that the arguments of
Node are exclusively unbound variables.

Programgraph.curry, mentioned in the previous section and referenced in Sec-
tion 4, shows an application of this pattern as well.

This pattern is not directly available in functional languages since they lack free
variables. Although most functional languages have a module system that allows the
programmer to hide values, using hidden values require accessor functions that may be
more difficult to define when the values are distributed across tree-structured datatypes.

4 Exemplary Programs

The programs discussed in this paper are available at URL:

http://www.cs.pdx.edu/~antoy/flp/patterns/

5 Conclusion

We have presented five software design patterns specifically intended for a functional
logic language. Our patterns are quite general. In the short programs referenced in Sec-
tion 4, we find repeated opportunities of applications of our patterns. In several cases,
more than one pattern is appropriately used in the same program.

This is the first paper on patterns for a functional logic language. Therefore, the pat-
terns that we have selected for our small catalog address essential activities of program
design and implementation. TheConstrained Constructoroffers a technique for using
types that are more specialized than those directly available in functional and func-
tional logic languages. TheConcurrent Distinct Choicessupports a simple and efficient

16

http://www.cs.pdx.edu/~antoy/flp/patterns/unique-names-dir/graph.curry
http://www.cs.pdx.edu/~antoy/flp/patterns/


implementation of an injective mapping where the mapping of indexes to values may
occur concurrently or in no pre-established order. TheIncremental Solutionsuggests
a flexible general architecture for non-deterministic search problems which avoids the
explicit manipulation of a global search space. TheLocally Defined Global Identifier
and theOpaque Typeare intended for the definition of respectively global identifiers in
local scopes and instances of a type whose values are hidden. These patterns simplify
data construction in a way that promotes code modularity and reuse.

Object-oriented patterns are classified according to tasks, e.g., creational patterns
for the construction of objects, behavioral patterns for the execution of code, etc., and
develop some general themes, e.g., replacement of inheritance, a static property, with
delegation, a dynamic property. Our catalog is yet too small for meaningful classifica-
tions, but it already outlines two general themes. The theme of the first three patterns
that we presented is the use of non-determinism in computations. The theme of the last
two patterns is the use of logical variables in expressions.

The elegance of some of our patterns and the ease with which they solve some dif-
ficult problems highlight the features that distinguish a functional logic language from
other paradigms. Of course, the functional evaluation is an essential aspect since it pro-
vides sophisticated efficient control of execution, through lazy evaluation, in a purely
declarative manner, e.g., without the Prolog “cut.” A related important aspect is non-
determism, specifically the integration of non-determinism with functional evaluation.
This combination supports implicit search in the logic programming style without sac-
rificing the efficient control of execution discussed earlier. Another essential aspect are
logic variables, specifically the integration of logic variables with functional evaluation.
This combination, made possible by narrowing, supports both equational reasoning and
functional inversion in the logic programming style. The final aspect is concurrency,
specifically the interleaving of different computations. The interleaving of determin-
istic and non-deterministic computations may reduce the size of the search space and
consequently improve the overall efficiency of a program.

Our patterns rely on these essential aspects of functional logic languages. Conse-
quently, they can be used in any functional logic language that supports these character-
izing aspects. Curry supports all these aspects. For this reason, and for the availability of
an efficient, robust and fairly complete implementation, PAKCS, we have chosen Curry
as the presentation language.

Industry is showing a growing interest in programming with patterns. The proved
or perceived benefits of using patterns for software development include clarity of de-
sign, faster development, lower costs, robustness, efficiency and ease of maintenance.
Although most often the programming language used in industry is object oriented, pat-
terns are more concerned with ideas than with code and many benefits of using patterns
are largely independent of the language.

We plan to continue maintaining our on-line catalog and to add new functional logic
patterns as they become recognized and documented.
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A Further Search Strategies for the Incremental Solution Pattern

In this appendix we show the implementation of additional search strategies to compute
solutions to problems suitable for theIncremental Solutionpattern. These strategies are
variations or refinements of theIncremental Solutionin the sense that they compute
solutions by incremental steps.
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First, we show the implementation of adepth-firststrategy which enumerates the
possibly infinite list of all the solutions in a depth-first order. We make use of the prede-
fined operationfindall for encapsulating search [27]. The expressionfindall \x->c
computes the list of all the solutions forx w.r.t. a constraintc. The depth-first strategy
is implemented by:

searchDepthFirst :: (ps->ps) -> ps -> (ps->Bool) -> [ps]
searchDepthFirst extend initial complete = solve [initial]

where
solve [] = []
solve (st:sts) = if complete st

then st : solve sts
else solve (expand (st:sts))

nextstates st = findall \x -> extend st =:= x

expand (st:sts) = nextstates st ++ sts

A breadth-firstsearch strategy is similarly defined by swapping the order of the concate-
nation of the partial solutions in the local functionexpand. This has the advantage that
solutions are computed even in the presence of infinite expansions of partial solutions.
On the other hand, it requires more memory to store all intermediate partial solutions.

A best-firstsearch strategy that expands the “best” partial solutions first requires
an additional parameter. This parameter is a predicate,better, that determines which
of two partial solutions is better according to an arbitrary general criterion. Namely,
“better s1 s2” wheres1 ands2 are partial solutions is intended to be true ifs1 is
better thans2. The definition of this search strategy is similar tosearchDepthFirst,
the difference being that the list of partial solutions that are candidate for expansion is
sorted according tobetter. The best first strategy is implemented by:

searchBestFirst :: (ps->ps) -> ps ->
(ps->Bool) -> (ps->ps->Bool) -> [ps]

searchBestFirst extend initial complete better
= solve [initial]
where

solve [] = []
solve (st:sts) = if complete st

then st : solve sts
else solve (expand (st:sts))

nextstates st = findall \x -> extend st =:= x

expand (st:sts) =
merge (sort better(nextstates st)) sts

merge [] sts = sts
merge (st:sts) [] = st:sts
merge (st1:sts1) (st2:sts2) =
if better st1 st2 then st1 : merge sts1 (st2:sts2)

else st2 : merge (st1:sts1) sts2

20


	Functional Logic Design Patterns
	Introduction
	Functional Logic Programming and Curry
	Patterns
	Constrained Constructor
	Concurrent Distinct Choices
	Incremental Solution
	Locally Defined Global Identifier
	Opaque Type

	Exemplary Programs
	Conclusion
	References
	Further Search Strategies for the Incremental Solution Pattern


