Functional Logic Programming

Sergio Antoy
Portland State University
Portland, OR 97207, U.S.A.
antoy@cs.pdx.edu

1. INTRODUCTION

The evolution of programming languages is the stepwise
introduction of abstractions hiding the underlying computer
hardware and the details of program execution. Assem-
bly languages introduce mnemonic instructions and sym-
bolic labels for hiding machine codes and addresses. For-
tran introduces arrays and expressions in standard mathe-
matical notation for hiding registers. Algol-like languages
introduce structured statements for hiding gotos and jump
labels. Object-oriented languages introduce visibility levels
and encapsulation for hiding the representation of data and
the management of memory. Along these lines, declarative
languages, the most prominent representatives of which are
functional and logic languages, hide the order of evaluation
by removing assignment and other control statements. A
declarative program is a set of logical statements describing
properties of the application domain. The execution of a
declarative program is the computation of the value(s) of
an expression with respect to these properties. Thus, the
programming effort shifts from encoding the steps for com-
puting a result to structuring the application data and the
relationships between the application components.

Declarative languages are similar to formal specification
languages, but with a significant difference: they are exe-
cutable. The language that describes the properties of the
application domain is restricted to ensure the existence of
an efficient evaluation strategy. Different formalisms lead
to different classes of declarative languages. Functional lan-
guages are based on the notion of mathematical function;
a functional program is a set of functions that operate on
data structures and are defined by equations using case dis-
tinction and recursion. Logic languages are based on pred-
icate logic; a logic program is a set of predicates defined
by restricted forms of logic formulas, such as Horn clauses
(implications).

Both kinds of languages have similar motivations but pro-
vide different features. E.g., functional laguages provide ef-
ficient, demand-driven evaluation strategies that support in-
finite structures, whereas logic languages provide non-deter-

Permission to make digital or hard copies of all or part of thaknfor
personal or classroom use is granted without fee providatiabpies are
not made or distributed for profit or commercial advantage aatidbpies
bear this notice and the full citation on the first page. Toyootherwise, to
republish, to post on servers or to redistribute to listguiees prior specific
permission and/or a fee.

Comm. of the ACM| April 2010 | vol. 53| no. 4.

Michael Hanus
Institut fur Informatik, CAU Kiel
D-24098 Kiel, Germany.
mh@informatik.uni-kiel.de

minism and predicates with multiple input/output modes
that offer code reuse. Since all these features are useful for
developing software, it is worthwhile to amalgamate them
into a single language. Functional logic languages combine
the features of both paradigms in a conservative manner.
Programs that do not use the features of one paradigm be-
have as programs of the other paradigm. In addition to the
convenience of using the features of both paradigms within
a single language, the combination has additional advan-
tages. For instance, the demand-driven evaluation of func-
tional programming applied to non-deterministic operations
of logic programming leads to more efficient search strate-
gies. The effort to develop languages intended to meet this
goal has produced a substantial amount of research span-
ning over two decades (see [22] for a recent survey). These
achievements are reviewed in the following. The concrete
syntax of the examples is Curry [27], but the design of the
code and most of our considerations about the programs are
valid for any other functional logic language, e.g., 7OY [30],
based on reduction for functional evaluation and on narrow-
ing for the instantiation of unbound logic variables.

A common trait of functional and logic languages is the
distinction between data constructors and defined opera-
tions. This distinction is also essential for functional logic
languages to support reasonably efficient execution mecha-
nisms. Data constructors build the data underlying an ap-
plication, whereas defined operations manipulate these data.
For instance, True and False construct (are) Boolean values.
A simple example of a more complex data structure is a list
of values. We denote by [] the empty list and by (x:xs) a
non-empty list where x is the first element and xs is the list of
remaining elements. We create longer lists by nested appli-
cations of constructors: (1:(2:(3:[1))) denotes a list with
elements 1, 2, and 3. Since lists are ubiquitous structures
in declarative languages, syntactic sugar is usually provided
to ease writing lists; thus, [1,2,3] abbreviates the previous
list structure.

A further feature common to many functional and logic
languages is the definition of operations by pattern matching.
Functions are specified by different equations for different
argument values. For instance, a function, “++”, returning
the concatenation of two input lists is defined as follows (here
we use infix notation for “++7):

1 ++ ys = ys

(x:xs) ++ ys = x : (xs ++ ys)

The first equation is applicable to calls to “++” with an empty
list as the first argument. The second equation is used to
evaluate calls with non-empty lists. The pattern (x:xs) of

the second equation combines case distinction (the list is not
empty) and selectors (let x and xs be the head and tail of
the argument list) in a compact way. The meaning of this
definition is purely equational; expressions are evaluated by
replacing left-hand sides by corresponding right-hand sides
(after substituting the equation’s variables with correspond-
ing actual arguments). These replacement steps are also
called reductions, and the defining equations are often called
rules, since they are applied from left to right.

The definition of functions by equations containing pat-
terns in the parameters of the left-hand sides is well known
from functional languages, such as ML [32] or Haskell [34].
Purely functional languages stipulate that rules must be
constructor-based. The patterns in each defining rule con-
sist only of constructors and variables (formal parameters).
This excludes rules like

(xs ++ ys) ++ zs = xs ++ (ys ++ zs)

Such an equation describes a property (associativity) of the
operation “++” rather than a constructive definition about its
evaluation. The restriction to constructor-based rules is an
important factor to support execution with efficient strate-
gies. “Execution” in functional languages means reducing
expressions containing defined operations to values (i.e., ex-
pressions without defined operations) by applying defining
equations (“replacing equals by equals”).

The logic component of functional logic languages comes
into play when computing with incomplete information. The
problem is to evaluate an expression containing a subexpres-
sion e such that the value of e is unknown, but it is known
that e must satisfy certain conditions. In a computation,
e is represented by a free variable and the conditions on e
constrain the values that e may assume. For instance, con-
sider the equation zs++[2] =:= [1,2]. (We use the symbol
“=:=" for equations that should be solved in order to syn-
tactically distinguish them from equations that define oper-
ations.) This equation states that we are interested only in
the values for the variable zs that satisfy the equation. In
this case we have to replace or instantiate zs with the list
[1]. The combination of variable instantiation and term
reduction is called narrowing, originally introduced in auto-
mated theorem proving [37] and first proposed for program-
ming in [35]. In general, there might be infinitely many
instantiations for the free variables of an expression. The
research on functional logic languages has led to reasonable
narrowing strategies that avoid a blind guessing of all the po-
tential values of a variable [4]. Good strategies, as discussed
later, perform only “constructive” guessing steps: They in-
stantiate free variables only if the instantiation is necessary
to sustain a computation and only with those values that are
demanded to perform a reduction step. For instance, in the
evaluation of zs++[2], zs is replaced either by the empty list
[T or by a non-empty list (x:xs) where the head and tail
are again unknown. Either instantiation enables a reduction
step with one of the rule defining “++”. Not every instantia-
tion will lead to a result; thus, some instantiation might be
later discarded. Good narrowing strategies ensure that the
cost of an instantiation is incurred only when a guess for an
unknown value is necessary. Expressions without unknowns
or with unknowns that don’t need to be known are evaluated
as in functional languages.

The capability to compute with unknowns supports new
forms of code reuse. As we have seen in the equation above,

we can compute the prefix of a list by narrowing. Similarly,
the equation zs++[e] =:= [1,2,3] is solved by instantiat-
ing e with the last element of the right-hand side list (and
zs with the remaining list). Thus, we can reuse the con-
catenation operation “++” to compute the last element of a
list. We can also define an explicit function last for this
purpose:

last xs | zs++[e] =:= xs
=e
where zs,e free

Here, we add both a condition to a defining rule, so that this
rule is applicable only if the condition (the equation between
“|” and “=”) can be solved, and a declaration of the variables
introduced by the rule (the where ... free clause).

Although code reuse originating from the evaluation of
operations with unknown arguments is well known in logic
programming, functional logic languages provide additional
structures for reusing code. For instance, it is apparent from
the above rule defining last that this rule is applicable only
if the actual argument has a form that matches the result
of narrowing zs++[e]. Thus, we can re-formulate the above
rule as:

last (zs++[e]) = e

Note that purely functional languages, such as Haskell, do
not allow this rule because it is not constructor-based; rather
it contains a functional pattern, that is, a pattern with a de-
fined function inside. When a rule of this kind is applied
to some function call, the functional pattern is evaluated
(by narrowing) to some value (which likely contains vari-
ables) which is then unified with the actual argument. Since
the functional pattern zs++[e] can be narrowed to infinitely
many values ([e] for zs=[], [x1,e] for zs=[x1],...), it ab-
breviates an infinite number of ordinary patterns. Similarly
to narrowing, it is not necessary to guess all these patterns
at run time. Instead, the necessary patterns can be com-
puted in a demand-driven manner during pattern matching
[7].

These examples show the potential of functional logic lan-
guages: writing programs as clear specifications that ab-
stract from the evaluation order, contain unknowns, and
reuse defined operations in various ways. Of course, there is
a price to pay for these advanced features. Dealing with un-
knowns requires the consideration of different alternatives
during run time; in other words, computations might be
non-deterministic. This non-determinism is don’t-know, and
finding all the solutions of a problem may require consid-
ering many non-deterministic alternatives. To make non-
determinism practically useful, the number of alternatives
that must be considered by the execution of a program
should be contained. This is provided by the evaluation
strategy that will be the subject of Section 3.

2. CURRY

Curry [27] is a functional logic language developed by an
international community of researchers to produce a stan-
dard for research, teaching, and application of functional
logic programming. Details can be found at www.curry-
language.org. In the following we give an overview of Curry
with emphasis on aspects relevant to functional logic pro-
gramming.

The syntax of Curry borrows heavily from that of Haskell

[34]. In fact, Curry mainly introduces a single syntactic ex-
tension (the declaration of free variables) with respect to
Haskell, although the underlying evaluation strategy is dif-
ferent (see below). Thus, a Curry program is a set of defini-
tions of data types and operations on values of these types.
A data type is declared by enumerating all its constructors
with the respective argument types. For example:

data Bool = True | False
data BTree a = Leaf a
| Branch (BTree a) (BTree a)

The type BTree is polymorphic, that is, the type variable
a ranges over all possible type expressions, and it has two
constructors Leaf and Branch. Operations on polymorphic
data structures are often generic. For instance, the follow-
ing operation computes the number of nodes (branches and
leaves) of a binary tree, where the (optional) first line defines
the type signature:

size :: BTree a -> Int
size (Leaf _) =1
size (Branch t1 t2) = 1 + size t1 + size t2

Thus, size (Branch (Leaf 1) (Leaf 3)) evaluates to 3.
As in Haskell, the names of (type) variables and operations
usually start with lowercase letters, whereas the names of
type and data constructors start with an uppercase letter.
The application of f to e is denoted by juxtaposition (f e),
except for infix operators such as “+”. Curry, in contrast to
Haskell, may use the operation size to compute binary trees
of a particular size. For example, if t is a free variable, the
evaluation of size t =:= 3 instantiates t to the tree struc-
ture (Branch (Leaf x1) (Leaf x2)), where x1 and x2 are
free variables that remain unspecified because their values
do not affect the equation.

As discussed earlier, finding solutions to an under-specified
problem requires the non-deterministic evaluation of some
expression. The ability to perform non-deterministic com-
putations supports an interesting language feature, namely
the definition of non-deterministic operations. These opera-
tions deliver more than one result with the intended mean-
ing that one result is as good as any other. The archetype
of non-deterministic operations is the binary infix operation
“?”_called choice, that returns one of its arguments:

xX?7y=x
x?y=y

Thus, we can define the flipping of a coin as:
coin =0 7 1

Non-deterministic operations are unusual at first glance, but
they are quite useful for programming. Note that the result
of a non-deterministic operation is a single (indeterminate)
value rather than the set of all possible values. Thus, the
value of coin is not the set {0, 1}, but one element of this set.
The “single-element” view is important to exploit demand-
driven evaluation strategies for the efficient evaluation of
such operations. For instance, it might not be necessary
to compute all results of a non-deterministic operation if
the context demands only values of a particular shape. A
concrete example of this advantage is given in the following
paragraphs. It should be noted that there exists a declara-
tive foundation (i.e., model-theoretic, big-step, and fixpoint
semantics) for non-deterministic operations [19].

To show a slightly more interesting example involving non-

deterministic operations, consider the definition of an oper-
ation that inserts an element into a list at an indeterminate
position:

insert x ys =X : ys
insert x (y:ys) =y : insert x ys

Since both rules are applicable in evaluating a call to insert
with a non-empty list, insert 0 [1,2] evaluates to any of
[0,1,2], [1,0,2], or [1,2,0]. Thus, insert supports a
straightforward definition of a permutation of a list by in-
serting the first element at some position of a permutation
of the tail of the list:

perm [] =[]

perm (x:xs) = insert x (perm xs)

Permutations are useful for specifying properties of other
operations. For instance, a property of a sort operation on
lists is that the result of sorting is a permutation of the input
list where all the elements are in ascending order. Since
functional logic languages can deal with several results of
an operation as well as failing alternatives, it is reasonable
to specify sorted lists by an operation sorted that is the
identity only on sorted lists (and fails on lists that are not
sorted):

sorted [] =
sorted [x] = [x]
sorted (x:y:ys) | x<=y = x : sorted(y:ys)

Altogether, the expression “sorted (perm xs)” specifies the
sorted permutation of a list xs. Since Curry evaluates non-
deterministic definitions, this specification of sorting is ex-
ecutable. Although it seems that a complete strategy has
to compute all the permutations, a good strategy does bet-
ter than that. Modern functional logic languages, includ-
ing Curry, use demand-driven strategies that do not always
evaluate expressions completely. For instance, the argument
(perm xs) of the expression sorted (perm xs) is evaluated
only as demanded by sorted. If a permutation starts with
out of order elements, as in 2:1:perm ys, sorted will fail
on this expression without further evaluating perm ys, i.e.,
the evaluation of all the permutations of ys is avoided. This
demand-driven search strategy reduces the overall complex-
ity of the computation compared to a simple generate-and-
test strategy. Compared to other sorting algorithms, this
program is still inefficient since we have not used specific
knowledge about sorting collections of objects efficiently.
Non-deterministic operations promote concise definitions,
as shown by perm above. It is interesting to observe that
narrowing, that is, computation with free variables that
are non-deterministically instantiated, and the evaluation
of non-deterministic operations without free variables, have
the same expressive power. For instance, one can replace
a free variable of type Bool in an expression by the non-
deterministic operation genBool that is defined by

genBool = True 7 False

so that it evaluates to any value of type Bool. The equiva-
lence of narrowing with free variables and the evaluation of
such non-deterministic generator functions is formally stated
in [8] and the basis of a recent Curry implementation [13].
Nevertheless, modern functional logic languages provide
both features because both are convenient for programming,.
There is a subtle aspect to consider when non-deterministic
expressions are passed as arguments to operations. Consider

the operation:
double x = x+x

and the expression “double coin”. Evaluating the argument
coin (to 0 or 1) before passing it to double yields 0 and 2 as
results. If the argument coin is passed unevaluated to dou-
ble, we obtain in one rewrite step the expression coin+coin
which has four possible rewrite derivations resulting in the
values 0, 1 (twice), and 2. The former behavior is referred
to as call-time choice semantics [28] since the choice of the
value of a non-deterministic argument is made at call time,
whereas the latter is referred to as need-time choice seman-
tics since the choice is made only when needed.

Although the call-time choice resembles an eager or call-
by-value evaluation behavior, it fits well into the framework
of demand-driven or lazy evaluation where arguments are
shared to avoid the repeated evaluation of the same expres-
sion. For instance, the actual argument (e.g., coin) asso-
ciated to the formal parameter x in the rule “double x =
x+x” is not duplicated in the right-hand side. Rather both
occurrences of x refer to the same term, which consequently
is evaluated only once. This technique, called sharing, is
essential to obtain efficient (and optimal) evaluation strate-
gies. The call-time choice is the semantics usually adopted
by current functional logic languages since it satisfies the
principle of “least astonishment” in most situations [19].

Curry also supports the use of constraint solvers, since the
condition of a rule is not restricted to a Boolean expression
as in Haskell. The condition of a rule can be any constraint
that must be solved before applying the rule. A constraint
is any expression of the predefined type Success. The type
Success is a type without constructors but with a few ba-
sic constraints that can be combined into larger expressions.
We have already seen the constraint operation “=:=" which
is a function that maps its arguments into the type Suc-
cess. Furthermore, there is a conjunction operation on con-
straints, “&”, that evaluates its two arguments concurrently.
Beyond these basic constraints, some Curry implementa-
tions also offer more general constraint structures, such as
arithmetic constraints on real numbers or finite domain con-
straints, together with appropriate constraint solvers. This
enables the implementation of very effective algorithms to
solve specific constraints. In this way, programs access and
combine predefined constraints in a high-level manner.

Curry has a variety of other language features for high-
level general purpose programming. Similarly to Haskell, it
is strongly typed with a polymorphic type system for reli-
able programming. Generic programming is also obtained
through higher-order operations. Curry supports modules
and offers input/output using the monadic approach like
Haskell [34]. Moreover, it predefines primitive operations to
encapsulate search, that is, to embed the non-deterministic
search for solutions into purely functional computations by
passing some or all the solutions into list structures. The
combined functional and logic programming features of Curry
have been shown useful in diverse applications: for exam-
ple, to provide high-level APIs to access and manipulate
databases [12], to construct graphical user interfaces [26],
and to support web programming [21, 26]. These develop-
ments were instrumental in identifying new design patterns
that are specific to functional logic programming [6].

3. STRATEGY

A crucial semantic component of a functional logic pro-
gramming language is its evaluation strategy. Informally,
the strategy tells which subexpression of an expression should
be evaluated first. For non-strict semantics, such demand-
driven semantics, that do not evaluate every subexpression,
the problem is non-trivial. For functional logic languages
the inherent difficulties of the problem are compounded by
the presence of incomplete information in the form of free
variables. The formalization of an evaluation strategy re-
quires a formal model of computation. Various models have
been proposed for functional logic programming. Rewrit-
ing systems [9] are the model that more than any other has
promoted significant progress in this area.

A functional logic computation is the repeated transforma-
tion, by narrowing steps, of an expression e. An elementary
step of e involves a subexpression of e. This subexpression
either is a redex (reducible expression) or is instantiated
to obtain a redex. This redex is then reduced according to
some rewrite rule of the program. The strategy produces the
subexpression, the optional instantiation, and the rewrite
rule that constitute a step. The strategy may produce sev-
eral elementary steps of an expression. Steps that do not
“interfere” with each other can be combined into a multistep
and executed concurrently.

A computation of an expression terminates when the ex-
pression does not allow further steps. This expression is
called a normal form. If a normal form contains occurrences
of defined operations, such as a division by zero or the head
of an empty list, it is called a failure, and the corresponding
computation is said to fail. Otherwise, the normal form is
called a result or value and the corresponding computation
is said to succeed. The non-deterministic nature of func-
tional logic programming may lead to multiple outcomes of
a computation. An expression may have several distinct re-
sults and several distinct failures. Failures are discarded,
but failing computations may be both desirable and explic-
itly planned in the design of some programs [6]. The pri-
mary task of the strategy is to ensure that every result of
an expression is eventually obtained. Not surprisingly, for
functional logic programs it is undecidable to tell whether a
computation will terminate.

The strategy of contemporary implementations of func-
tional logic languages is based on a formalism called a defini-
tional tree. A definitional tree [2] is a hierarchical structure
of the rewrite rules defining an operation of a program. For
example, consider the operation that returns a prefix of a
given length of a list, where for the purpose of illustration
natural numbers are represented by Zero and Successor.

take Z _ = [

take (S n) [] =[]
take (S n) (x:xs) x : take n xs

The operation take makes an initial distinction on its first
argument. The cases on this argument are zero and non-
zero. In the non-zero case, the operation makes a subse-
quent distinction on its second argument. The cases on this
argument are null and non-null. A definitional tree of the
operation take [4, Example 8] encodes these distinctions,
the order in which they are made, and the cases that they
consider.

Definitional trees guide the evaluation strategy similarly
to case expressions of functional languages, but there are
significant differences. Case expressions are explicitly coded

by the programmer, whereas definitional trees are inferred
from the rules defining an operation. This difference be-
comes apparent in some situation where both strategies are
applicable. For example, consider the following operation:

£f00=0
f 1 =1

In Curry, the computation of f¢1 results in 1 even if ¢
does not terminate, whereas in the lazy functional language
Haskell the same computation does not terminate on non-
terminating ¢ due to the fixed left-to-right evaluation of de-
manded arguments.

To fully support non-determinism, in a functional logic
program the textual order of the rules defining an opera-
tion is irrelevant. A consequence of this stipulation is that
not every operation has a definitional tree, and definitional
trees may have different characteristics. This has prompted
a classification of functional logic programs according to the
existence and/or the kinds of the definitional trees of their
operations. Implementations of functional logic languages
have grown more sophisticated over time. The modern ap-
proach transforms a program of a source language, which
allows operations without a definitional tree, functional pat-
terns, and/or partially applied functions, into a semantically
equivalent program of a core language in which every opera-
tion has a definitional tree [3, 8]. Each such tree is compiled
into code or bytecode that implements a finite state automa-
ton that determines both the evaluation of the arguments of
a function application and the instantiation of free variables
when necessary to perform a reduction.

Essential properties of an evaluation strategy are sound-
ness (each computed result is correct with respect to an
equational model of the program) and completeness (for
each correct result, a corresponding value or a representative
of this value is computed). Sound and complete strategies
support a high-level abstract view of programming: The pro-
grammer states the intended properties of the application
domain rather than the effects of individual computation
steps.

Very strong properties are known for the evaluation strat-
egy of Curry’s core language. In particular, needed narrow-
ing [5] is sound and complete, computes only needed steps
(each computation has minimal length), and computes only
disjoint instantiations (no computation is unnecessarily re-
peated).

The last two decades have seen a wealth of results in the
area of strategies. Despite these achievements, we believe
that more remains to be discovered. The promise lies in the
development of strategies able to exploit the potential of par-
allel architectures. We will briefly discuss some possibilities
in Section 6.

4. PROGRAMMING

Functional logic programs mostly encode functional com-
putations, but they can also encode non-deterministic com-
putations and computations with incomplete information.
This combination simplifies the design of some programs
to a degree unparalleled by other programming paradigms.
Simpler design leads to simpler proofs of program properties.
The focus of this section is on encoding a specification into a
program and discussing the correctness of the program with
respect to its specification. We keep our discussion infor-
mal, and out of necessity, we consider only small examples.

In this section, we are not concerned with the efficiency of
computations, but we will come back to this issue in Sec-
tion 6.

We start with an example where the formal specification
can be directly written as a program. A regular expression
over some alphabet is an expression of the following type
(we omit empty regular expressions for simplicity):

data RE a = Lit a

| A1t (RE a) (RE a)
| Conc (RE a) (RE a)
|

Star (RE a)

Except for the syntax, this declaration is identical to the
usual definition of regular expression. The type variable a
ranges over the type of the alphabet, i.e., we do not restrict
our alphabet to characters only. A regular expression is one
of the following expressions: a letter of the alphabet (Lit),
a choice between two expressions (Alt), a concatenation of
two expressions (Conc), or zero or more repetitions of an
expression (Star). For instance, the regular expression ab*
is given a name, abstar, and is defined as an expression of
type (RE Char) as follows:

abstar = Conc (Lit ’a’) (Star (Lit ’b’))

Derived constructors for regular expressions are defined as
new operations, e.g.:

plus re = Conc re (Star re)

The language of a regular expression is defined by a mapping
that takes a regular expression and yields a set of words over
the given alphabet. We prefer the functional logic program-
ming style and define this mapping as a non-deterministic
operation sem that yields any word (represented as a list) in
the language of the given regular expression:

sem :: RE a —> [a]

sem (Lit c) = [c]

sem (Alt r s) = semr 7 sem s

sem (Conc r s) = sem r ++ sem s

sem (Star r) =[] ? sem (Conc r (Star r))

This is a concise specification of the semantics of regular ex-
pressions. Since it is a functional logic program, it is also
executable so that we can use it to generate words in the
language of a regular expression. For instance, sem abstar
evaluates to "a", "ab", "abb", ... Therefore, sem can be also
used to check whether a given word w is in the language of
a given regular expression re through the equation sem re
=:= w. The correctness of this claim stems from the sound-
ness and completeness of the strategy, which guarantees that
the equation is satisfiable if and only if w is a value of sem
re, hence, according to the definition of sem, if and only if
w is in the language of re.

Moreover, we can check whether a string s contains a word
generated by a regular expression re (similarly to the Unix’s
grep utility) by solving the equation:

Xs ++ sem re ++ ys =:= s
where xs, ys free

If s contains a word w generated by a regular expression
re as a substring, w must be a value of sem re, and there
are sequences xs and ys such that the concatenation of xs,
w, and ys is identical to s. The correctness of our “grep”
program again follows from the soundness and completeness
of the evaluation strategy. However, there is a noteworthy

difference with the previous case. Earlier, the equation was
verified, whereas in the case the equation is solved for xs
and ys.

If a regular expression r contains the Star constructor,
the language it generates is infinite so that sem r has in-
finitely many results. Since a demand-driven strategy com-
putes only the values that are required by the context, the
previous equation might have a finite search space even in
the presence of regular expressions with an infinite language.
For instance, the equation

xs ++ sem abstar ++ ys =:= "abb"
where xs, ys free

has a finite search space with exactly three solutions in xs
and ys. Observe that we have used sem to generate regular
expressions satisfying a given property.

For the next example let us consider an informal specifi-
cation of the straight selection sort algorithm: given a non-
empty sequence of elements, (1) select the smallest element,
(2) sort the remaining ones, and (3) place the selected ele-
ment in front of them. The only difficult-to-implement step
of this algorithm is (1). Step (3) is trivial. Step (2) is ob-
tained by recursion. Step (1) is more difficult because it is
specified non-constructively. The specification must define
the minimum of a sequence—in the obvious way—but will
not say how to compute it. The algorithm to compute the
minimum, a problem considerably more complicated than
its definition, is left to the programmer. A functional logic
programmer, however, can avoid the problem entirely coding
a program that “executes” the specification.

The first rule of operation sort coded below implements
the above specification. The head of the rule employs a
functional pattern. The input of sort is (evaluated to) a
list, and one element of this list, min, is non-deterministically
selected. The condition of the rule ensures that the selected
element is indeed minimal in the list. The remaining code is
straightforward. The operation all, defined in a standard
library (Prelude) loaded with every program, returns True if
its first argument, a predicate, is satisfied by every element
of its second argument, a list. The expression (min <=) is
called a section. It it equivalent to a function that takes an
argument x and tells whether min < x.

sort (u++[min]++v)
| all (min <=) rest
= min : sort rest
where rest = ut+v
sort [1 = []

The assertion to establish the correctness of this program
states that sort ! is sorted and contains all and only the
elements of [. The proof is by induction on the length of [.
The base case is trivial. In the inductive case, if sort | =z :
xs , then the head of the rule ensures that x is an element of
[, and the condition of the rule ensures that x is not greater
than any element of xs. The induction hypothesis ensures
that xs contains all and only the elements of [except x and
that xs is sorted. This entails the assertion.

Our final problem is the well-known missionaries and can-
nibals puzzle. Three missionaries and three cannibals want
to cross a river with a boat that holds up to two people.
Furthermore, the missionaries, if any, on either bank of the
river cannot be outnumbered by the cannibals (otherwise,
as the intuition hints, they would be eaten). A state of the
puzzle is represented by the numbers of missionaries and

cannibals and the presence of the boat on the initial bank
of the river:

data State = State Int Int Bool

Thus, the initial state is “State 3 3 True”, but we do not
construct it directly. Our program constructs a state only
through a function, makeState, with the same signature as
State. The function makeState applies State to its own
arguments only if the resulting state is “sensible,” other-
wise it simply fails. (This programming pattern is called
“constrained constructor” in [6].) In this context, a state is
sensible only if it is valid according to the numbers of mis-
sionaries and cannibals involved in the puzzle and is safe for
the missionaries. In the following code, the operators &&, | |
and == are respectively the Boolean conjunction, disjunction
and equality.

makeState m ¢ b | valid && safe
= Statem c b
where valid = 0<=m && m<=3 && 0<=c && c<=3
safe =m==3 || m==0 || m==c

For example, the initial and final states are constructed by:

initial = makeState 3 3 True
final = makeState 0 O False

There are a total of 10 different moves, five to cross the
river in one direction and five in the other direction. Cod-
ing all these moves becomes particularly simple with non-
determinism and makeState. Both contribute to free the
code from controlling which move should be executed.

move (State m c True)

= makeState (m-2) c False - 2 miss
? makeState (m-1) c False - 1 miss
? makeState m (c-2) False - 2 cann
?

A solution is a path through the state space from the initial
to the final state. A path is a sequence of states each of
which, except the first one, is obtained from the previous
state by a move. The path is represented by a sequence
of states. Our program adds new states at the front of a
sequence that initially contains only the initial state, hence
the order of the states in a path is reversed with respect to
the moves that produce a solution. Our program constructs
a path only through a function, extendPath, that takes a
non-empty path p and adds a state at the front of p so that
the resulting path is sensible. In this context, a path is
sensible only if it does not contain a cycle and each state of
the path except the initial one is obtained with a move from
the preceding state.

extendPath p | noCycle = next : p
where next = move (head p)
noCycle = all (next /=) p
Computing a solution of the puzzle becomes particularly
simple with non-determinism and extendPath. Our program
simply extends a path until it produces the final state.
main = extendToFinal [initiall]
extendToFinal p =
if (head p == final) then p
else extendToFinal (extendPath p)

The assertion to establish the correctness of this program
states that operation main terminates with a solution of the

puzzle if and only if the puzzle has a solution. We discuss
the properties of the program that inspire confidence in its
correctness and would be key to a more rigorous proof.

The program maintains two invariants: (1) Every state
constructed during an execution does not violate the prob-
lem’s constraints, and (2) the value returned by every in-
vocation of operation extentToFinal is a path in the state
space. Invariant (1) stems from the fact that a state is con-
structed only by operation makeState, which ensures the
legality of a state through conditions valid and safe. In-
variant (2) stems from invariant (1) and the fact that a path
is constructed only by operation extendPath, which ensures
that the sequence of states it returns is indeed a path since
only states originating from valid moves are added to a path.
Operation extendToFinal keeps extending its argument, a
path, unless the last inserted state is the goal, in which case
it returns its argument. Operation extendToFinal is in-
voked by main with the initial state. Hence, if operation
extendToFinal successfully terminates, it returns a solution
of the problem. Operation extendPath invokes operation
move, which is non-deterministic. The completeness of the
evaluation strategy ensures that every move available in a
state is chosen. Hence, if the problem has a solution, ex-
tendToFinal, and consequently main, will return this solu-
tion.

A further property of the program is that any solution re-
turned by extendToFinal contains no repeated states. This
condition stems from the fact that the paths returned by
extendToFinal are constructed by operation extendPath
which, through condition noCycle, fails to insert a state in
a path that already contains that state.

5. LOOKING BEHIND

A motivation behind the emergence of functional logic
programming was the desire to unify the two most promi-
nent branches of the declarative paradigms, functional and
logic programming. Much progress has been made toward
this goal, and in the process the goal has somewhat changed.
Unification in the form of a single common language ac-
cepted and used by the two communities, as perhaps some
of us may have envisioned, does not appear near. It may be
difficult to understand all the reasons of this development,
but investments, personal preferences, and specialization are
certainly contributing factors. However, each community
has become much more aware of the other, there are confer-
ences in which papers from each paradigm are understood
and equally enjoyed by all the participants, and efforts such
as introducing logic variables in functional languages [15]
and functions in logic languages [14] are indisputable evi-
dence that the gap between the two paradigms has been nar-
rowed. More interestingly, functional logic programming has
become a paradigm in its own right with results whose depth
and solidity rival those of the other declarative paradigms.

We sketched the concepts of Curry and used it for con-
crete examples. Curry is currently the only functional logic
language which is based on strong theoretical foundations
(e.g., sound, complete, and optimal evaluation strategies
[4, 5]) and has been used for a variety of projects, such
as web-based information systems, embedded systems pro-
gramming and e-learning systems [24, 25]. Curry has been
also used from the very beginning to teach functional and
logic programming concepts with a single programming lan-
guage [20]. Nevertheless, there are various other languages

with similar goals. We briefly discuss some of them and
relate them to Curry.

The language 7 O) [30] has strong connections to Curry
since it is based on similar foundations. In contrast to Curry,
it supports more advanced constraint structures (e.g., dise-
quality constraints) but misses application-oriented libraries
so that it has not been used for application programming.
This is also the case for Escher [29], a functional logic lan-
guage where functions are deterministically evaluated in a
demand-driven manner and logic features are modelled by
simplification rules for logical expressions.

The language Oz [38] is based on a computation model
that extends concurrent constraint programming with fea-
tures for distributed programming and stateful computa-
tions. It supports functional notation, but operations used
for goal solving must be defined with explicit disjunctions.
Thus, functions used to solve equations must be defined dif-
ferently from functions to rewrite expressions.

Since functions can be considered as specific relations,
there are also approaches to extend logic languages with fea-
tures for functional programming by adding syntactic sugar
for functional notation. For instance, [14] proposes to add
functional notation to Ciao-Prolog which is translated by
a preprocessor into Prolog. The functional logic language
Mercury [39] restricts logic programming features in order
to provide a highly efficient implementation. In particu-
lar, operations must have distinct modes so that their ar-
guments are either completely known or unbound at call
time. This inhibits the application of typical logic program-
ming techniques, e.g., computing with structures that are
only partially known, so that some programming techniques
for functional logic programming [6, 26] cannot be applied
with Mercury. This condition has been relaxed in the lan-
guage HAL [18] which adds constraint solving possibilities.
However, both languages are based on a strict operational
semantics that does not support optimal evaluation as in
functional programming.

Some of the concepts and techniques developed for func-
tional logic programming have migrated to other areas of
computer science. A success story is Tim Sheard’s Qdmega
system [36]. Qmega is a type systems with an infinite hier-
archy of computational levels that combines programming
and reasoning. At the value level computation is performed
by reduction. At all higher levels computation is performed
by narrowing in the inductively sequential [2] systems using
definitional trees to execute only needed steps.

6. LOOKING AHEAD

Will functional logic programs ever execute as efficiently
as imperative programs? We do not have the final answer,
but the future is promising. Needed narrowing, the strategy
for a core functional logic language, exhibits two distinct as-
pects of non-determinism: don’t care and don’t know choices.
Don’t care choices occur in some function calls when more
than one subexpression needs to be evaluated, such as when
both arguments of an equation or of an arithmetic binary
operation are demanded. Because the language is free of
side effects, we do not care which argument is evaluated
first. Therefore, it is viable to evaluate both arguments con-
currently. A small amount of synchronization may be neces-
sary to determine when the evaluation of a set of don’t care
choices is completed and to instantiate variables shared by
these choices.

Don’t know choices occur in some function calls when
more than one alternative is available, such as when a free
variable argument is instantiated with different values and/or
when an expression is reduced by different rules. Since we
don’t know in advance which alternative(s) will produce a
solution (if we did, we would have coded a program that
selects these alternatives only), all the alternatives must be
sampled to ensure the completeness of the computation. Be-
cause each alternative is independent of any other alterna-
tive, in this situation too, the order of execution of the alter-
natives is irrelevant. As a consequence, both don’t care and
don’t know choices can be executed concurrently. This is one
area where the abstraction from the evaluation order pays
off. For many problems, in particular non-numeric ones,
functional logic programs have a degree of parallelism that is
potentially higher than corresponding imperative programs.
Future research will investigate this potential and attempt
to exploit it for faster execution of functional logic programs.

The most important aids to the development of real ap-
plications, after a solid and efficient compiler, are a set of
libraries for application programming and environments and
tools that support program development and maintenance.
Promising work has been started in both areas. Functional
logic programming supports abstractions that lead to high-
level, declarative programming interfaces. Libraries with in-
terfaces with these characteristics ease the construction of
reliable applications in various application areas, as shown
by the various libraries developed for Curry (see Section 2).
The formal foundations of functional logic languages are also
useful for the development of environments and tools for rea-
soning about programs. Developments in these areas include
tools for program analysis [23], verification [16], partial eval-
uation [1], profiling [11], debugging [10], and testing [17].

These initial efforts demonstrate the suitability of func-
tional logic programming techniques for application program-
ming. Some applications have been successfully developed,
as already mentioned above. Due to the availability of Curry
implementations with support for meta-programming, most
of the current tools are implemented in Curry. These ap-
plications demonstrate the potential of functional logic pro-
gramming. Future research and development in these areas
will promote and ease the use of functional logic programs
in practice.

The major asset of functional logic programming is the
amalgamation of functional and logic programming features.
Logic programming emphasizes non-determinism, whereas
functional programming is deterministic, that is, the input
of a computation completely determines the output. This
dichotomy creates a conflict when it is desirable to reason
“functionally” about non-deterministic computations, for ex-
ample, to select a minimal or maximal value among a set of
results of a non-deterministic computation, or to print all
these results in some order. Curry provides some features
to encapsulate non-deterministic computations. For exam-
ple, the set of results of a non-deterministic computation
can be collected in some data structure and processed in
its entirety. These features are useful and are used in some
applications [13, 31] but have limitations. Future research
on the theory of these features and on their implementation
should ease the encoding of complex problems into relatively
simple functional logic programs.

7. CONCLUSION

Declarative languages describe programming tasks through
high-level, concise and executable abstractions. Other para-
digms offer similar abstractions, but to a lesser degree. Com-
pared to purely functional languages, functional logic lan-
guages allow non-deterministic descriptions with partial in-
formation that simplify encoding some problems into pro-
grams. Compared to purely logic languages, functional logic
languages allow functional composition, which improves code
modularity, reuse and efficiency of execution.

Functional logic programs have the flavor of executable
specifications or high-level descriptions. Correctness proofs
for these programs are simpler than those in other pro-
gramming paradigms. These executable specifications are a
good solution of some programming problems, for example,
when the execution is efficient or when no other algorithm
is known. Of course, the performance of this specification-
oriented approach may not be satisfactory for some prob-
lems. Even in this situation, the effort to develop an initial
prototype is not wasted. First, building one or more proto-
types is a reasonable step for many software artifacts since a
prototype clarifies problems and allows experimentation at
a reduced cost. Second, a prototype can be refined with the
introduction of more efficient data structures (e.g., replace a
list with a tree) or more efficient algorithms (e.g., replace
linear search with binary search). Since declarative lan-
guages also allow the implementation of efficient data struc-
tures [33], the stepwise improvement of a prototype can be
done without changing the implementation language. This
methodology has the advantage that the initial prototype
serves as a specification for verifying the improved program
and/or as an oracle for testing it.

Last but not least, programming in a functional logic lan-
guage is fun. As we move through the evolution of program-
ming languages sketched in the introduction, we find that
programming problems become easier and solutions more re-
liable. Evaluating an arithmetic expression directly through
its standard notation without using registers, temporaries
and stacks is safer and more convenient. Structuring pro-
grams without labels and gotos is more elegant and increases
the confidence in the correctness of the result. Legitimate
concerns about the efficiency of these revolutionary innova-
tions were raised at the times of their introductions. His-
tory repeats itself. Programming with non-determinism is
exhilarating when a potentially difficult task is replaced by
an almost effortless choice followed by a much simpler con-
straint. In our examples, this was to determine whether a
string belongs to the language defined by a regular expres-
sion, or to find the minimum of a sequence, or to produce
the solution of a puzzle without any concern for selecting
the moves. This approach is not always the best one in
practice. For example, the non-deterministic choice of the
minimum of a list may have to be replaced by an algorithm
that is much faster for the computer to execute and much
slower for the programmer to code and verify. But also in
these cases, there is understanding and value in the proto-
typical implementation and satisfaction in its simplicity and
elegance.

Acknowledgments.

This work was partially supported by the German Re-
search Council (DFG) grant Ha 2457/5-2, the DAAD grants
D/06/29439 and D/08/11852, and the NSF grants CCR-
0110496 and CCR-0218224.

8.
1]

3]

[4]

7]

8]

[11]

[12]

[13]

[14]

[15]

REFERENCES

E. Albert, M. Hanus, and G. Vidal. A practical partial
evaluator for a multi-paradigm declarative language.
Journal of Functional and Logic Programming,
2002(1), 2002.

S. Antoy. Definitional trees. In Proc. of the 3rd
International Conference on Algebraic and Logic
Programming, pages 143-157. Springer LNCS 632,
1992.

S. Antoy. Constructor-based conditional narrowing. In
Proc. of the 3rd International ACM SIGPLAN
Conference on Principles and Practice of Declarative
Programming (PPDP 2001), pages 199-206. ACM
Press, 2001.

S. Antoy. Evaluation strategies for functional logic
programming. Journal of Symbolic Computation,
40(1):875-903, 2005.

S. Antoy, R. Echahed, and M. Hanus. A needed
narrowing strategy. Journal of the ACM,
A7(4):776-822, 2000.

S. Antoy and M. Hanus. Functional logic design
patterns. In Proc. of the 6th International Symposium
on Functional and Logic Programming (FLOPS 2002),
pages 67-87. Springer LNCS 2441, 2002.

S. Antoy and M. Hanus. Declarative programming
with function patterns. In Proceedings of the
International Symposium on Logic-based Program
Synthesis and Transformation (LOPSTR’05), pages
6-22. Springer LNCS 3901, 2005.

S. Antoy and M. Hanus. Overlapping rules and logic
variables in functional logic programs. In Proceedings
of the 22nd International Conference on Logic
Programming (ICLP 2006), pages 87-101. Springer
LNCS 4079, 2006.

M. Bezem, J. W. Klop, and R. de Vrijer (eds.). Term
Rewriting Systems. Cambridge University Press, 2003.
B. Brassel, S. Fischer, M. Hanus, F. Huch, and

G. Vidal. Lazy call-by-value evaluation. In Proc. of the
12th ACM SIGPLAN International Conference on
Functional Programming (ICFP 2007), pages 265-276.
ACM Press, 2007.

B. Braflel, M. Hanus, F. Huch, J. Silva, and G. Vidal.
Run-time profiling of functional logic programs. In
Proceedings of the International Symposium on
Logic-based Program Synthesis and Transformation
(LOPSTR’04), pages 182-197. Springer LNCS 3573,
2005.

B. Braflel, M. Hanus, and M. Miiller. High-level
database programming in Curry. In Proc. of the Tenth
International Symposium on Practical Aspects of
Declarative Languages (PADL’08), pages 316-332.
Springer LNCS 4902, 2008.

B. Braflel and F. Huch. On a tighter integration of
functional and logic programming. In Proc. APLAS
2007, pages 122—-138. Springer LNCS 4807, 2007.

A. Casas, D. Cabeza, and M.V. Hermenegildo. A
syntactic approach to combining functional notation,
lazy evaluation, and higher-order in LP systems. In
Proc. of the 8th International Symposium on
Functional and Logic Programming (FLOPS 2006),
pages 146-162. Springer LNCS 3945, 2006.

K. Claessen and P. Ljunglof. Typed logical variables in

[20]

(21]

(22]

(23]

24]

(25]

[26]

27]

(28]

29]

Haskell. In Proc. ACM SIGPLAN Haskell Workshop,
Montreal, 2000.

J.M. Cleva, J. Leach, and F.J. Lépez-Fraguas. A logic
programming approach to the verification of
functional-logic programs. In Proceedings of the 6th
International ACM SIGPLAN Conference on
Principles and Practice of Declarative Programming,
pages 9-19. ACM Press, 2004.

S. Fischer and H. Kuchen. Systematic generation of
glass-box test cases for functional logic programs. In
Proceedings of the 9th ACM SIGPLAN International
Conference on Principles and Practice of Declarative
Programming (PPDP’07), pages 75-89. ACM Press,
2007.

M.J. Garcia de la Banda, B. Demoen, K. Marriott,
and P.J. Stuckey. To the gates of HAL: A HAL
tutorial. In Proc. of the 6th International Symposium
on Functional and Logic Programming (FLOPS 2002),
pages 47—66. Springer LNCS 2441, 2002.

J.C. Gonzélez-Moreno, M.T. Hortald-Gonzélez, F.J.
Lépez-Fraguas, and M. Rodriguez-Artalejo. An
approach to declarative programming based on a
rewriting logic. Journal of Logic Programming,
40:47-87, 1999.

M. Hanus. Teaching functional and logic programming
with a single computation model. In Proc. Ninth
International Symposium on Programming Languages,
Implementations, Logics, and Programs (PLILP’97),
pages 335-350. Springer LNCS 1292, 1997.

M. Hanus. Type-oriented construction of web user
interfaces. In Proceedings of the 8th ACM SIGPLAN
International Conference on Principles and Practice of
Declarative Programming (PPDP’06), pages 27—-38.
ACM Press, 2006.

M. Hanus. Multi-paradigm declarative languages. In
Proceedings of the International Conference on Logic
Programming (ICLP 2007), pages 45-75. Springer
LNCS 4670, 2007.

M. Hanus. Call pattern analysis for functional logic
programs. In Proceedings of the 10th ACM SIGPLAN
International Conference on Principles and Practice of
Declarative Programming (PPDP’08), pages 67-78.
ACM Press, 2008.

M. Hanus and K. Héppner. Programming autonomous
robots in Curry. Electronic Notes in Theoretical
Computer Science, 76, 2002.

M. Hanus and F. Huch. An open system to support
web-based learning. In Proc. 12th International
Workshop on Functional and (Constraint) Logic
Programming (WFLP 2003), pages 269-282, 2003.

M. Hanus and C. KluB}. Declarative programming of
user interfaces. In Proc. of the 11th International
Symposium on Practical Aspects of Declarative
Languages (PADL’09), pages 16-30. Springer LNCS
5418, 2009.

M. Hanus (ed.). Curry: An integrated functional logic
language (vers. 0.8.2). Available at
http://wuw.curry-language.org, 2006.

H. Hussmann. Nondeterministic algebraic
specifications and nonconfluent term rewriting.
Journal of Logic Programming, 12:237-255, 1992.

J. Lloyd. Programming in an integrated functional

[36]

[37]

[38]

[39]

and logic language. Journal of Functional and Logic
Programming, (3):1-49, 1999.

F. Lépez-Fraguas and J. Sdnchez-Hernandez. TOY: A
multiparadigm declarative system. In Proc. of
RTA’99, pages 244-247. Springer LNCS 1631, 1999.
W. Lux. Implementing encapsulated search for a lazy
functional logic language. In Proc. 4th Fuji
International Symposium on Functional and Logic
Programming (FLOPS’99), pages 100-113. Springer
LNCS 1722, 1999.

R. Milner, M. Tofte, and R. Harper. The Definition of
Standard ML. MIT Press, 1990.

C. Okasaki. Purely Functional Data Structures.
Cambridge University Press, 1998.

S. Peyton Jones, editor. Haskell 98 Language and
Libraries—The Revised Report. Cambridge University
Press, 2003.

Uday S. Reddy. Narrowing as the operational
semantics of functional languages. In Proceedings of
the IEEE International Symposium on Logic in
Computer Science, pages 138—151, Boston, 1985.

T. Sheard. Type-level computation using narrowing in
Qmega. Electron. Notes Theor. Comput. Sci.,
174(7):105-128, 2007.

J.R. Slagle. Automated theorem-proving for theories
with simplifiers, commutativity, and associativity.
Journal of the ACM, 21(4):622-642, 1974.

G. Smolka. The Oz programming model. In J. van
Leeuwen, editor, Computer Science Today: Recent
Trends and Developments, pages 324-343. Springer
LNCS 1000, 1995.

Z. Somogyi, F. Henderson, and T. Conway. The
execution algorithm of Mercury, an efficient purely
declarative logic programming language. Journal of
Logic Programming, 29(1-3):17-64, 1996.

