
Algebraic and Logic Programming (ALP’92)
Volterra, Italy, Sept. 1992, Springer LNCS Vol. 632, pages 143-157.

Definitional Trees

Sergio Antoy?

Department of Computer Science
Portland State University

Portland, Oregon 97207-0751

Abstract. Rewriting is a computational paradigm that specifies the
actions, but not the control. We introduce a hierarchical structure repre-
senting, at a high level of abstraction, a form of control. Its application
solves a specific problem arising in the design and implementation of
inherently sequential, lazy, functional programming languages based on
rewriting. For example, we show how to extend the expressive power of
Log(F) and how to improve the efficiency of an implementation of BA-
BEL. Our framework provides a notion of degree of parallelism of an
operation and shows that the elements of a necessary set of redexes are
related by an and-or relation. Both concepts find application in parallel
implementations of rewriting. In an environment in which computations
can be executed in parallel we are able to detect sequential computations
in order to minimize overheads and/or optimize execution. Conversely,
we are able to detect when inherently sequential computations can be
executed in parallel without performing unnecessary rewrites.

1 Introduction and Motivations

Rewrite systems are the underlying model of computation of an increasingly
large number of functional, equational, and/or multi-paradigm programming
languages. A computation in these languages is a finite or infinite sequence
t0, t1, . . . of terms in which the term ti+1 is obtained by rewriting some sub-
terms of ti. Rewrite systems specify the actions, but not the control, that is,
which redexes of a term should be rewritten. This information is embodied in a
rewrite strategy.

For the sake of both the efficiency and the termination of a computation we
are generally interested in parallel strategies, although parallelism is not theo-
retically necessary for weakly orthogonal rewrite systems, the class considered in
this note [10]. Two emerging approaches to efficient parallel rewriting emphasize
respectively “quantity” and “quality”. The first one attempts to rewrite simulta-
neously a large, possibly maximal, set of redexes of a term [6,11]. This approach
has greater potential, but has the drawback of requiring specialized architectures.
The second approach is concerned with the trade-off between the generality of a
class of rewrite systems and the efficiency of a normalizing strategy for systems
in the class. Our effort belongs to this category [7,8,10,13,20–23].
? Supported by the National Science Foundation Grant No. CCR-8908565.

We introduce a hierarchical structure, called definitional tree, containing
rewrite rules and show some of its applications to the control aspects of a rewrite
strategy. First, we consider a class of systems whose rules are containable in a
simplified, non-parallel form of definitional trees. This class is interesting in
its own right, since it properly contains the rewrite systems underlying both
DF ∗ [17–19] and an implementation of BABEL [14–16]. Our results extend the
expressive power of the first and improve an implementation of the second.

Then, we consider a more general, parallel form of definitional trees which are
able to contain the rules of any weakly orthogonal rewrite system. These trees can
be used for computing necessary sets of redexes [22], and showing that necessary
sets have an internal structure in the form of an and-or relation among their
elements. We discuss how a parallel rewrite strategy may take advantage of this
knowledge. Our reasoning is made possible by the level of abstraction captured in
a definitional tree, which is higher than that of corresponding concepts discussed
in [22].

2 Preliminaries and Notation

We consider a term rewriting systemR with a many-sorted signature partitioned
into a set C of constructors and a set D of (defined) operations. For each sort s, we
assume an arbitrary, but fixed ordering, called standard, among the constructors
of s. X denotes a set of sorted variables. Variables are denoted by upper case
letters or, when anonymous, by the symbol “ ”. For any signature Σ, T (Σ) is
the set of terms built over Σ. Any term referred to in this note type checks. The
leading symbol or principal functor of a term t is called the root of t. The elements
of T (C), T (C∪X), and T (C∪D) are respectively called values, constructor terms,
and ground terms. We call non-value any ground term different from a value.
A term t of the form f(x1, . . . , xn), where f is an operation symbol and the
arguments are constructor terms, is called an f-rooted constructor term. The
rules in R are characterized by having an operation-rooted constructor term as
the left side, that is, R follows the constructor discipline [21].

An occurrence is a path identifying a subterm in a term. An occurrence is a
possibly empty string of dot-separated integers or occurrences, i.e., the symbol
“·” is overloaded. The empty occurrence of a term t is denoted by Λ and identifies
t itself. The occurrence p·i, for some occurrence p and positive integer i, identifies
the i-th argument of the subterm of t identified by (at) p. For terms t and t′,
occurrence p, and variable X, t/p denotes the subterm of t at p, and t[p ← t′]
denotes occurrence substitution.

3 Sequential Definitional Trees

In this section we define a hierarchical structure, called a definitional tree, that
contains a set of rewrite rules. We are interested in operations, called inductively
sequential, whose entire set of defining rules can be stored in this structure.
The class of the inductively sequential operations is limited and we will later

144

extend this class by extending the concept of a definitional tree. In this section
we also prove some simple properties of rewrite systems, called also inductively
sequential, whose operations are all inductively sequential. Our interest in these
systems is motivated by the fact that computations in inductively sequential
systems can be executed sequentially, that is, without any inherent parallelism,
and by the fact that the class of inductively sequential systems is larger than
those underlying certain functional lazy programming languages. We will prove
these claims in following sections.

The symbols branch, rule, and exempt, appearing in the next definition, are
uninterpreted functions used to classify the nodes of the tree. A pattern is an
operation-rooted constructor term contained in each node of a tree.

Definition 1. T is a partial definitional tree, or pdt, if and only if one of the
following cases holds:

T = branch(τ, o, T̄), where τ is a pattern, o is the occurrence of a variable of
τ , the sort of τ/o has constructors c1, . . . , ck in standard ordering, T̄ is a
sequence T1, . . . , Tk of pdts such that for all i in 1, . . . , k the pattern in the
root of Ti is τ [o← ci(X1, . . . , Xn)], where n is the arity of ci and X1, . . . , Xn

are new variables.

T = rule(τ, l→ r), where τ is a pattern and l → r is a rewrite rule such that
l ≡ τ .

T = exempt(τ), where τ is a pattern.

Definition 2. T is a definitional tree of an operation f if and only if T is a
pdt with f(X1, . . . , Xn) as the pattern argument, where n is the arity of f and
X1, . . . , Xn are new variables.

Definition 3. We call inductively sequential an operation f of a rewrite system
R if and only if there exists a definitional tree T of f such that the rules contained
in T are all and only the rules defining f in R. We call inductively sequential a
rewrite system R if and only if any operation of R is inductively sequential.

Exempt nodes are present in a tree of an incompletely defined operation. Patterns
do not need explicit representation in a definitional tree. However, we will keep
them around when their presence simplifies the presentation of our ideas.

For example, consider the rules defining the operations “less than or equal to”
and “integer division by 2” defined on the natural numbers, whose constructors
in standard ordering are 0 and s.

0 ≤ → true
s() ≤ 0→ false

s(X) ≤ s(Y)→ X ≤ Y

half (0)→ 0
half (s(0))→ 0

half (s(s(X)))→ s(half (X))
(1)

145

Corresponding definitional trees are:

branch(1, 〈rule(0 ≤ → true),
branch(2, 〈rule(s() ≤ 0→ false), rule(s(X) ≤ s(Y)→ X ≤ Y)〉〉))

branch(1, 〈rule(half (0)→ 0),
branch(1·1, 〈rule(half (s(0))→ 0), rule(half (s(s(X)))→ s(half (X)))〉〉))

(2)

Figure 1 shows the same trees in pictorial representation. An operation may
have distinct definitional trees. We do not address this problem per se. In the
final part of this note we will show an operation with two “non-isomorphic”
definitional trees and discuss some implications of this fact.

X1 ≤ X2

0 ≤ X2

true

s(X3) ≤X2

s(X3) ≤ 0

false

s(X3) ≤ s(X2)

X3 ≤ X2

half (X1)

half (0)

0

half (s(X2))

half (s(0))

0

half (s(s(X3)))

s(half (X3))

Fig. 1. Pictorial representation of the definitional trees of the operations defined in
display (1). The boldfaced symbol in the pattern argument of a branch node is the
root of the subterm identified by the occurrence argument. The rule argument of a rule
node is shown “vertically” and the pattern argument is “merged” with the rule’s left
side.

Definition 4. We call complete an operation f if and only if there exists a
definitional tree of f with no exempt nodes. We call complete an inductively
sequential rewrite system R if and only if any operation of R is complete.

146

We now state two simple results about inductively sequential rewrite systems. We
follow Klop’s terminology [12] and call orthogonal a left-linear, non-overlapping
rewrite system, and weakly orthogonal a left-linear system whose critical pairs
are all trivial, that is, if 〈t, t′〉 is a critical pair, then t is syntactically equal to
t′. For related concepts and terminology see also [5,8,21].

Lemma 5. Any inductively sequential rewrite system R is orthogonal.

Lemma 6. If an inductively sequential rewrite system is complete, then a ground
term is a normal form if and only if it is a value.

4 Sequential Normalization

In this section we use definitional trees to compute normal forms. We show
how to find a needed redex [8] in a term and consequently how to obtain a
normalizing rewrite strategy. Our motivation is twofold: (1) we use these results
to extend the expressive power of some inherently sequential, lazy, functional
programming languages based on rewriting and/or to improve the efficiency of
their implementations and (2) we apply these results to the analysis of necessary
sets of redexes used in a parallel normalizing strategy applicable to a larger class
of rewrite systems.

The following intuitive, informal description of our strategy might help un-
derstanding the considerable details of its definition. Our strategy is based on
a function, λ, which takes a non-value t and returns an occurrence o of t. The
subterm of t at o must be eventually rewritten in order to rewrite t to a value.
The function λ is defined by means of another function, ϕ, which takes a ground
f -rooted term t, for some operation f , and a definitional tree T of f , and through
a traversal of T returns the occurrence sought by λ.

Definition 7. Let t be a non-value.

λ(t) =















o·λ(t/o) if t is constructor-rooted and
t/o is any outermost operation-rooted subterm of t;

ϕ(t, Tf) if t is f -rooted, for some operation f , and
Tf is a definitional tree of f .

ϕ(t, T) =















Λ if T = rule(l→ r) or T = exempt;
ϕ(t, Ti) if T = branch(o, 〈T1, . . . , Tk〉) and t/o has sort s and root the

i-th constructor (in standard ordering) of s;
1

o·λ(t/o) if T = branch(o, . . .) and t/o is operation-rooted.

(3)

We can use the equations of Definition 7 to compute λ(t), for some non-value t,
by regarding the left side of each equation as a procedure declaration and the
right side as the procedure’s body. From this procedural interpretation of λ, the
application of λ to some ground operation-rooted term generates a sequence of

0 When ϕ is called from λ, t is an instance of the pattern of Ti.

147

recursive calls to ϕ and/or λ consisting of “segments”, each beginning with a
call to λ followed by one or more calls to ϕ. The structure of a typical sequence
is:

λ(t0), ϕ(t0, T01), ϕ(t0, T02), . . . , λ(t1), ϕ(t1, T11), ϕ(t1, T12), . . . (4)

For our purposes, only the arguments of λ and ϕ in this sequence are interesting.
Since our definition of λ and ϕ is non procedural, some care is required to define
the sequence we desire.

Definition 8. If R is an inductively sequential rewrite system and t is a ground
operation-rooted term, then the λ-sequence S generated by t is defined as follows:

– Each element of S is an input to either λ or ϕ. Inputs to λ and ϕ are
respectively called λ-elements and ϕ-elements of S.

– The first element of S is the λ-element t.
– If some x is a y-element of S, where y is either λ or ϕ, then y(x) is an

instance of the left side of an equation of Definition 7. The instance of the
corresponding right side is either Λ, in which case x is the last element of
S, or contains a subexpression y′(x′), where y′ is either λ or ϕ and x′ is the
input to y′, in which case x′ is the y′-element of S following x.

Any subsequence of S beginning with a λ-element x and ending either just before
the following λ-element or at the end of the sequence if no λ-element follows x
in S is called a segment of S.

Lemma 9. If R is an inductively sequential rewrite system and t is a non-value,
then λ is defined on t.

Proof. Without loss of generality we consider the case in which t is operation-
rooted. We ask the reader to verify that if λ or ϕ have an input x in their
respective domains, then any recursive application of λ or ϕ generated by the
input x has an input in the function’s respective domain. By hypothesis, the
initial input to λ is in the domain of λ, thus we show only that any λ-sequence S
generated by t is finite. We prove that each segment of S is finite and that there
are only a finite number of segments in S. If for some integers i and j, 〈ti, Tij〉
and 〈ti, Ti(j+1)〉 are two consecutive ϕ-elements of a segment of S, then Ti(j+1) is
a proper subtree of Tij . Thus, the segment is finite. Likewise, if for some integer
i, ti and ti+1 are the λ-elements of two consecutive segments of S, then ti+1 is
a proper subterm of ti. Thus, S is finite and λ(t) is defined.

Rather loosely speaking, we now prove that in order to normalize a term t we
must eventually rewrite the subterm of t at occurrence λ(t). The difficulty lies in
formalizing “eventually.” The formalization of this idea requires the concepts of
descendant (or residual) of a term and needed redex. A formal definition, quite
technical, of descendants of a subterm s in a term t after another (not necessarily
distinct) subterm of t is rewritten, can be found in [8]. A less formal, but more
intuitive, formulation is proposed in [13]. Suppose we have a rewrite sequence

t
∗
→ t′ and a subterm s of t. The descendants of s in t′ are computed as follows.

148

Underline the root of s and perform the rewrite sequence t
∗
→ t′. The descendants

of s in t′ are the subterms of t′ which have an underlined root. Then, a redex s in
a term t is needed if in every rewrite sequence of t to normal form a descendant
of s is rewritten.

Lemma 10. If R is an inductively sequential rewrite system and, for some
integers i and mi, ti, 〈ti, Ti1〉, 〈ti, Ti2〉, . . . , 〈ti, Timi

〉 is the i-th segment of the
λ-sequence generated by some ground operation-rooted term t, then (1) ti is
operation-rooted and (2) for all j in 1, . . . ,mi, if r is a rewrite rule of R, then r
cannot rewrite any descendant of ti at the root unless r is contained in the pdt
Tij.

Proof. The proof of claim (1) is a simple induction on i. The claim is assumed for
the first segment, and by definition of ϕ, every time a new segment S begins, i.e.,
a recursive call to λ is generated, the argument of λ, i.e., the initial element of
S, is operation-rooted. We now prove (2) by induction on j. Let f be the root of
ti, for some operation f . Base case: j = 1. Any descendant of ti can be rewritten
at the root only by a rewrite rule of R defining f . Any such rule is contained
in a definitional tree T of f . By case 2 of the definition of λ and by definition
of λ-sequence, Ti1 is a definitional tree of f . Ind. case: We assume the claim for
some j in 1, . . . ,mi−1, and prove the claim for j+1. By the definitions of ϕ and
definitional tree, the following conditions hold: (a) Tij = branch(o, 〈T1, . . . , Tk〉),
for some occurrence o of ti, k > 0, and partial definitional trees T1, . . . , Tk; (b)
the root of the subterm of ti at o is some constructor c; (c) Ti(j+1) = Tn for some
n in 1, . . . , k; and (d) for all l in 1, . . . , k, if l 6= n, then the root of the subterm
at occurrence o of the left side of any rule r contained in Tl is a constructor
different from c. Thus r cannot rewrite any descendant of ti at the root, and the
claim holds for j + 1 also.

Theorem 11. If R is an inductively sequential rewrite system and t is a ground
operation-rooted term, then no descendant t′′ of t can be rewritten to head normal
form unless the subterm of t′′ at occurrence λ(t) has been rewritten to head
normal form.

Proof. The proof is by induction on the number of segments in the λ-sequence
generated by t, which we denote t, 〈t, T1〉, . . . 〈t, Tm〉, t

′, 〈t′, T ′
1 〉, . . . Base case:

There is only one segment and, by definition of ϕ, λ(t) = Λ. Since t is operation-
rooted, t can be rewritten to head normal form only by rewriting a descendant
of t at the root. Ind. case: The following conditions hold: (a) t′ = t/o, for some
occurrence o of t; (b) λ(t′) = o′, for some occurrence o′ of t′; (c) λ(t) = o·o′; and
(d) we assume the claim for t′. By Lemma 10, t′′ can be rewritten at the root only
by a rule contained in Tm. By definition of definitional tree, the subterm at o in
the left side of any rule contained in Tm is constructor-rooted. By construction,
t′ is operation-rooted, thus no descendant t′′ of t can be rewritten by any rule
contained in Tm, hence by any rule ofR, unless the subterm of t′′ at occurrence o,
which is a descendant of t′, is a head normal form. By the inductive hypothesis,
no descendant of t′ can be rewritten to head normal form, without rewriting to

149

a head normal form its subterm at o′. Since for any term s, occurrence p of s,
and occurrence p′ of s/p, the equation (s/p)/p′ = s/(p·p′) holds, no descendant
t′′ of t can be rewritten to head normal form without rewriting the subterm of
t′′ at occurrence λ(t) to a head normal form.

This result directly suggests a one-step rewrite strategy that we can easily prove
normalizing. Our strategy is somewhat special, since on input a term t, rather
than selecting a redex of t, selects the occurrence of a subterm of t which should
be rewritten, but might be irreducible. When the strategy selects the occurrence
of an irreducible subterm of t, we “lose interest” in further rewriting t, since the
normal form of t, if any, will contain defined symbols. We will come back to this
point after Corollary 14.

Definition 12. We call outermost-needed the one-step rewrite strategy of an
inductively sequential rewrite system that in any non-value t selects for rewriting
the subterm of t at occurrence λ(t).

Corollary 13. If R is an inductively sequential rewrite system and t
+
→ v in R,

for some non-value t and value v, then λ(t) is the occurrence of a needed redex
of t.

Proof. If t is operation-rooted, then some descendant t′ of t must be rewritten
at the root to normalize t. Rewriting the subterm of t′ at λ(t) (to head normal
form) is necessary to rewrite t′, hence t, to head normal form, hence to normalize
t. Thus, in any rewrite sequence of t to normal form the subterm at occurrence
λ(t) of some descendant of t is rewritten, hence λ(t) is the occurrence of a needed
redex of t. If t is constructor-rooted, then λ(t) = o·λ(t/o), for some occurrence
o of an outermost operation-rooted subterm of t. The constructor discipline
ensures that t can be rewritten to normal form only if a descendant of t/o is
rewritten to normal form, and the previous case applies.

Corollary 14. If R is an inductively sequential complete rewrite system, then
the outermost-needed strategy is normalizing.

Proof. We first prove that for any non-value t, λ(t) is the occurrence of a needed
redex of t. By Lemma 9, λ(t) is defined. By Theorem 11, λ(t) is operation-rooted.
By Lemma 6, the normal form of t is a value, thus by Corollary 13, λ(t) is the
occurrence of a needed redex of t. Huet and Lévy [8] prove that the repeated
rewriting of some needed redex of a term t leads to the normal form of t, if it
exists.

Definition 7 must be changed to make the outermost-needed strategy normalizing
for incomplete systems also. The required change is:

ϕ(t, exempt) = o·λ(t/o) (5)

where o is the occurrence of an arbitrary outermost operation-rooted proper
subterm of t. An approach suitable for applications to programming languages
consists in raising an exception if λ(t) is the occurrence of an irreducible subterm
of t.

150

5 Parallel Definitional Trees

Inductively sequential operations are not as “powerful” as we might occasionally
desire. Consider for example the following three alternative definitions of the
boolean conjunction operator denoted by the infix symbol “∨”.

true ∨ → true
false ∨ Y → Y

∨ true → true
X ∨ false → X

∨ true → true
true ∨ → true

false ∨ false → false
(6)

The operator “∨” is inductively sequential according to the first two definitions,
but it is not according to the third one known as “parallel-or”.

We obtain a structure similar to a definitional tree for the parallel-or oper-
ation by “collapsing” the roots of the definitional trees of the two inductively
sequential operations of display (6). Definition 15 formalizes this idea. Figure 2
pictorially represents the resulting “tree”. For the sake of symmetry we have
duplicated a rule in the tree of Figure 2. Also, there are two exempt nodes in the
tree, although the operation “∨” is complete. This tree is built according to the
algorithm described in the proof of Theorem 19.

X1 ∨X2

true ∨X2

true

false ∨X2 X1 ∨ true

true

X1 ∨ false

false ∨ true false ∨ false true ∨ false false ∨ false

false false• •

Fig. 2. Pictorial representation of a parallel definitional tree of the operation parallel-
or defined in display (6). The arcs linking a father to children belonging to the same
sequential component of the tree are joined together. The symbol “•” represents an
exempt node.

Definition 15. T is a partial parallel definitional tree, or ppdt, if and only if
one of the following cases holds:

T = branch(τ, ō, ¯̄T), where τ is a pattern, ō is a list o1, . . . , ok of occurrences of
distinct variables of τ , for all j in 1, . . . , k, the sort of τ/oj has constructors

151

cj1 , . . . , cjkj
in standard ordering, and ¯̄T is a sequence T̄1, . . . , T̄k of sequences

of ppdts, such that for all j in 1, . . . , k, T̄j = Tj1 , . . . , Tjkj
and for all i in

1, . . . , kj , the pattern in the root of Tji
is τ [oj ← cji

(X1, . . . , Xn)], where n
is the arity of cji

and X1, . . . , Xn are new variables.
T = rule(τ, l→ r), where τ is a pattern and l → r is a rewrite rule such that

l ≡ τ .
T = exempt(τ), where τ is a pattern.

The ppdts T̄1, . . . , T̄k are referred to as sequential components of T .

A partial parallel definitional tree is a special case of a partial definitional tree,
namely, one in which the occurrence argument of any branch node is a sequence
of occurrences of length 1. When we want to emphasize this difference we will
use the adjectives “sequential” or “parallel”. When the difference is irrelevant
or clear from the context we will simply use “definitional tree”.

Definition 16. T is a parallel definitional tree of an operation f if and only if
T is a ppdt with f(X1, . . . , Xn) as pattern argument, where n is the arity of f
and X1, . . . , Xn are new variables.

The next results entail the concept of subsumption ordering [9], a quasi-ordering
relation on terms denoted by the infix operator “≤” and its derivatives “<”,
“≡”, etc. We say that t ≤ t′ when t′ is an instance of t, that is, there exists a
substitution σ such that σ(t) = t′.

Overlapping is allowed in weakly orthogonal rewrite systems. Any such sys-
tem may contain some rule subsumed by some other rule. Subsumed rules are
useless in the sense that their elimination does not change (the existence of) the
normal form of any term. Subsumed rules do not always fit in parallel defini-
tional trees, thus we characterize them in the next definition to eliminate them
later.

Definition 17. A rule l→ r in a weakly orthogonal rewrite system R is useless
if and only if there exists another rule l′ → r′ in R such that l′ < l. A rule is
useful if and only if it is not useless.

Lemma 18. If R is a weakly orthogonal rewrite system and R′ is obtained from
R by removing any useless rule, then, for all ground terms t and t′, t

∗
→R t′ if

and only if t
∗
→R′ t′.

Theorem 19. If f is an operation of a weakly orthogonal rewrite system R,
then there exists a parallel definitional tree T of f such that the rules contained
in T are all and only the useful rules defining f in R.

Proof. Our proof is constructive by means of an algorithm that on input f
outputs a parallel definitional tree T with the characteristic we are looking for.
The construction of T is iterative. At each iteration we add a new node to T .
The addition of a node N is a two-step process. First, we compute the pattern

152

argument τ of N , which, except for the root of T whose pattern argument is
always f(X1, . . . , Xn), is determined by the father of N . Second, we compare,
according to the subsumption ordering, τ with the left sides of the useful rules
defining f . The result of the comparison determines whether N should be a
branch, rule, or exempt node. We now describe the construction of a node N
given its pattern argument τ . If τ ≡ l, for some rule l→ r, thenN = rule(l→ r);

else if τ < l, for some rule l→ r, then N = branch(ō, ¯̄T), where ō contains all the

occurrences of variables of τ and the patterns in the ppdts of ¯̄T are computed
according to the definition of parallel definitional tree; else N = exempt. We
ask the reader to verify that the construction of T terminates with a parallel
definitional tree of the useful rules of f .

The algorithm implicitly defined by the proof of Theorem 19 tends to build
“bushy” parallel definitional trees, since a sequential component of the tree is
generated for each variable of each template. These trees are useful to show that
our approach to parallelism can be applied to the whole class of weakly orthog-
onal rewrite systems. We will discuss later how we may use definitional trees
to discover or control the degree of parallelism of a computation. Building def-
initional trees with the above algorithm is inappropriate for these applications.
Generally, we are interested in finding whether an operation has a sequential,
rather than parallel definitional tree. Often, though not always, “thinner” trees
seem preferable, if the computational resources available to an implementation
of our strategy are limited.

6 Parallel Normalization

In this section we address the normalization problem in weakly orthogonal
rewrite systems by exploiting parallel definitional trees. We reformulate par-
allel versions of the functions λ and ϕ defined in Section 4 in much the same
way in which parallel trees reformulate sequential ones. The new function λ, on
input a ground term t, returns a set S of occurrences of subterms of t that should
be rewritten. The old function λ can be regarded as the special case of the new
one in which the set S is a singleton.

We further overload the symbol “·” as follows: the expression o·{o1, . . . , ok},
for some occurrence o and set of occurrences {o1, . . . , ok}, for some k ≥ 0, denotes
the set of occurrences {o·o1, . . . , o·ok}; in particular, it denotes the empty set of
occurrences when k = 0.

153

Definition 20. Let t be a ground term.

λ(t) =















∪o∈ō o·λ(t/o) if t is constructor-rooted and ō is the set of occurrences
of outermost operation-rooted subterms of t;

ϕ(t, Tf) if t is f -rooted, for some operation f , and
Tf is a parallel definional tree of f .

ϕ(t, T) =



































φ if T = exempt;

{Λ} if T = rule(l→ r);

∪k
j=1















ϕ(t, Tji) if T = branch(〈o1, . . . , ok〉, 〈T1, . . . , Tk〉), for some k > 0,
t/o has sort s and root the i-th constructor of s, and
Tj = Tj1, . . . , Tjkj

, for j in 1, . . . k;

oj ·λ(t/oj) if t/oj is operation-rooted.

(7)

We now discuss the extension to the parallel case of the results presented in
the previous sections for the sequential case. We present our ideas with less
detail than before and work out only the key steps of this extension, namely the
evolution of the concepts of λ-sequence and needed redex.

From the procedural interpretation viewpoint, λ on input some ground operation-
rooted term t generates a tree rather than a sequence of recursive calls. We call
this structure the λ-tree generated by t and either λ-node or ϕ-node any node
of this tree. If T is a λ-tree, then any path from the root of T down a leaf is just
a λ-sequence. The notion of segment is replaced by that of prefix of T . A prefix
consists of a λ-node n and the descendants of n down all the paths beginning
at n and ending either before another λ-node or at a leaf if there is no λ-node
down a path.

Lemma 9 is extended to any ground term: If R is a weakly orthogonal rewrite
system and t is a ground term, then λ is defined on t. The proof is conceptually
identical. To reformulate Lemma 10 we need the concept of i-th frontier of a
prefix. The i-th frontier of a prefix P , for some i > 0, is the set of ϕ-nodes of P
at depth i plus all the leaves of P at depth not greater than i. In other words,
the set of the end nodes of the prefixes of length up to i of all the segments
beginning at the root of P . Then, we can prove, by induction on i, that: If R is
a weakly orthogonal rewrite system and P is a prefix of the λ-tree generated by
some ground operation-rooted term t, then (1) the λ-node t′ of P is an operation-
rooted term, and (2) for all i > 0, if r is a rule of R, then r cannot rewrite any
descendant of t′ at the root, unless r is contained in a ppdt of the i-th frontier
of P .

The concept of needed redex is meaningless in weakly orthogonal rewrite
systems. Sekar and Ramakrishnan [22] replace it with that of necessary set of
redexes. A set S of redexes in a term t is a necessary set if in every reduction
sequence that takes t to its normal form, at least one redex in S or its descendant
is rewritten. Necessary sets take the place of needed redexes in the sense that the
parallel rewrite strategy that at every step rewrites all the redexes of a necessary
set is normalizing [22]. The definition of necessary set is subtle, since a necessary

154

set remains necessary even if we add redexes to it. Thus, it is further proved
in [22] that when the necessary set considered by the strategy is minimal, the
strategy is optimal among those that do not examine the right sides of rules.
Thus, the extended Theorem 11 is: If R is a weakly orthogonal rewrite system and
t is a ground operation-rooted term, then no descendant t′ of t can be rewritten to
head normal form unless for some occurrence o in λ(t), the subterm of t′ at o has
been rewritten to head normal form. The proof is similar to that of Theorem 11
with the only difference that now we have sets of redexes rather than a single
redex. From this result we derive and easily prove the extension of Corollary 13,
that is: If R is a weakly orthogonal rewrite system and t

∗
→ v in R, for some

ground term t and value v, then λ(t) is a necessary set of occurrence of t.
A consequence of the last result is that the extension of the outermost-needed

strategy to the parallel case yields exactly the strategy based on necessary sets
given in [22]. The outermost-needed strategy is the sequential case of this parallel
strategy, namely that in which the necessary set is always a singleton. The
implementation of the strategy, by means of an automaton discussed in [22],
can thus be used for the outermost-needed strategy too.

7 Related Work and Applications

The notion of sequentiality has been widely investigated. Seminal work on nor-
malizing strategies appears in [8,20]. The problem is further analyzed and/or
summarized in [4,13,21]. The difficulty of the normalization problem led to a
number of variations of the concept of sequentiality [3,7,13,23]. The comparison
of inductive sequentiality with these approaches is outside the scope of this note.
Rather, we focus on a few specific issues. We first discuss sequential applications.

For example, the system Log(F) [17–19] is concerned with a class DF ∗ of
rewrite systems and a lazy rewrite strategy for these systems. DF ∗ bans op-
erations with non-pure columns [1] to guarantee termination. Briefly, for any
i, the i-th argument in the left sides of all the rewrite rules defining an oper-
ation is either always or never a variable. Further, non-variable arguments in
the left side of a rewrite rule are limited to a constructor symbol applied to a
tuple of variables. These conditions make programs more difficult to write and
to understand, textually longer, and less efficient.

The programming language BABEL [14–16], which combines functions, re-
lations, and laziness, frees the programmer from the above restrictions, but en-
forces them on the implementation. Source programs are transformed into se-
mantically equivalent uniform, i.e., non-subunifiable and flat, programs before
execution [14]. Programs in this class are exactly the same as the programs in
DF ∗ and their executions incur a similar loss of efficiency.

The rewrite systems underlying these programs are non-overlapping and we
can easily show that they are a subset of the inductively sequential systems. This
subset is proper, since, for example, neither operation of display (1) is uniform.
Our results allow us both to extend the class DF ∗ and to avoid intermediate
uniform programs in the implementation of BABEL without jeopardizing termi-

155

nation. The arguments of non-pure columns need to be rewritten if and only if
they are selected according to λ.

We now discuss how definitional trees can be applied to parallel computa-
tions. We have seen, in the parallel-or example, that restricting the rules of a
rewrite system changes the semantics of computations. Thus, rather than re-
stricting the form of the rewrite rules, an opposite approach consists of relaxing
the laziness of the rewrite strategy. For example, the parallel-outermost strategy,
which rewrites in parallel all outermost redexes of a term, is normalizing [20], al-
though it is likely to perform unnecessary rewrites. Sekar and Ramakrishnan [22]
refine this strategy by optimally minimizing unnecessary rewrites. Our research
shows an alternative approach to the computation of necessary sets and sheds
some light on their internal structure.

Necessary sets are computed in [22] by the algorithm FindNS. In this algo-
rithm a set of occurrences denoted D′ is arbitrarily chosen as long as the match
set of the maximal constructor prefix of FindNS’s argument is covered. Since “for
efficiency, it is crucial to select a small D′” [22] the non-determinism is largely
removed in an implementation of the rewrite strategy by chosing some D′ with
minimum size. A consequence of this minimization is the loss of information
useful in controlling some aspects of a parallel rewrite strategy, e.g., synchro-
nization and/or allocation of processors. We will show this point shortly in a set
of examples.

Our approach contains a similar aspect of non-determinism. An operation
may have several “significantly” different definitional trees, even sequential ones,
and our results do not depend on any particular tree. In our approach the min-
imization of a necessary set is equivalent to minimizing the number of sequen-
tial components of a definitional tree. The equality operation between natural
numbers, defined below, is an example of operation with “non-isomorphic” def-
initional trees.

0 = 0→ true
0 = s()→ false
s() = 0→ false

s(X) = s(Y)→ X = Y

(8)

There exist two distinct sequential trees of “=”, both have a branch node at the
root. The occurrence arguments in the root nodes of these trees are respectively
1 and 2. This implies that both arguments of the operation must be head normal
forms to apply a rewrite rule at the root. This is rather obvious from the defining
rules, but if a similar condition is “pushed deeper”, i.e., if it occurs only in a
proper subset of the rules, then the condition becomes more difficult to detect
without suitable conceptual tools. We discuss in an example how we can take
advantage of the characteristics of “=” pointed out by its definitional trees.

Consider the operations “≤” of display (1), parallel-or, and “=” defined
above. These operations are quite different as far as the parallel evaluation of
their arguments is concerned. The operation “≤” has a unique sequential def-
initional tree. Unless we are willing to perform unnecessary rewrites, we must
rewrite the first argument of a “≤”-rooted term to head normal form before

156

deciding on the second argument. The operation parallel-or has a parallel def-
initional tree, but not a sequential one. We want to rewrite both arguments of
a parallel-or-rooted term until one of them is a head normal form, and then we
can decide whether to keep rewriting the other argument. A minimal necessary
set may contain two elements, and these elements are in an or relation. The
operation “=” has two distinct sequential definitional trees. We can rewrite one
argument after the other or both arguments in parallel until both become head
normal forms. A minimal necessary set always contains at most one element.
However, there exist non-minimal necessary sets which are still optimal in the
sense of [22]. The elements of these sets are in an and relation.

Some implications of the structure of a necessary set follow. Although both
operations “≤” and “=” are inherently sequential, if both occur in a computa-
tion and we have some extra computational resources to allocate, “=” must be
preferred to “≤”. Although the arguments of both operations parallel-or and “=”
can be rewritten in parallel without wasted rewrites, the mutual relationships
between the elements of the set of parallel computations of each operation reflect
the structure of the corresponding necessary set. In the first case the computa-
tion of one argument of parallel-or must be able to stop the computation of the
other argument, whereas in the second case the computation of one argument of
“=” is independent of that of the other argument, since the outcome of rewriting
one argument has no influence on the need of rewriting the other argument.

8 Concluding Remarks

Rewriting is a computational paradigm that specifies the actions, but not the
control. Definitional trees are a high-level abstraction to specify or infer some
aspects of the control. The problem of building definitional trees from rewrite
systems has been addressed only marginally in Theorem 19. Some algorithms
for this task are presented in [24].

We have shown the application definitional trees to two interesting classes
of rewrite systems, one appropriate for sequential computations, the other for
parallel ones. An application of our results to inherently sequential computations
allows us to extend the expressive power of some programming languages based
on rewriting and/or the efficiency of their implementations. An application of
our results to parallel computations allows us to detect opportunities for parallel
rewriting in sequential computations, without wasted rewrites and with a simpler
control.

Definitional trees are not limited to weakly orthogonal rewrite systems. Struc-
tures very similar to definitional trees, but storing sets of rules in both leaves and
branches, have been applied with interesting results [2] to a class of rewrite sys-
tems larger than those discussed in this note.

References

1. Sergio Antoy. Design strategies for rewrite rules. In S. Kaplan aand M. Okada,
editor, CTRS’90, pages 333–341, Montreal, Canada, June 1990. Lect. Notes in

157

Comp. Sci., Vol. 516.
2. Sergio Antoy. Non-determinism and lazy evaluation in logic programming. In

T. P. Clement and K.-K. Lau, editors, LOPSTR’91, pages 318–331, Manchester,
UK, July 1991. Springer-Verlag.

3. G. Boudol. Computational semantics of term rewriting systems. In Maurice Ni-
vat and John C. Reynolds, editors, Algebraic methods in semantics, chapter 5.
Cambridge University Press, Cambridge, UK, 1985.

4. L. G. Bouma and H. R. Walters. Implementing algebraic specifications. In J. A.
Bergstra, J. Heering, and P. Klint, editors, Algebraic Specification, chapter 5.
Addison-Wesley, Wokingham, England, 1989.

5. N. Dershowitz and J. Jouannaud. Rewrite systems. In J. van Leeuwen, editor,
Handbook of Theoretical Computer Science B: Formal Methods and Semantics,
chapter 6, pages 243–320. North Holland, Amsterdam, 1990.

6. J. Goguen, J. Meseguer, S. Leinwand, T. Winkler, and H. Aida. The rewrite rule
machine project. Technical Report SRI-CSL-89-6, SRI International, Menlo Park,
CA, 1989.

7. C. M. Hoffmann and M. J. O’Donnell. Implementation of an interpreter for abstract
equations. In 11th ACM Symposium on the Principle of Programming Languages,
Salt Lake City, 1984.

8. G. Huet and J.-J. Lévy. Computations in orthogonal term rewriting systems. In
J.-L. Lassez and G. Plotkin, editors, Computational logic: essays in honour of
Alan Robinson. MIT Press, Cambridge, MA, 1991. Previous version: Call by need
computations in non-ambiguous linear term rewriting systems, Technical Report
359, INRIA, Le Chesnay, France, 1979.

9. Gérard Huet. Confluent reductions: Abstract properties and applications to term-
rewriting systems. JACM, 27:797–821, 1980.

10. J. R. Kennaway. Sequential evaluation strategies for parallel-or and related reduc-
tion systems. Annals of Pure and Applied Logic, 43:31–56, 1989.

11. Claude Kirchner and Patrick Viry. Implementing parallel rewriting. In PLILP’90,
pages 1–15, Linköping, Sweden, August 1990. Lect. Notes in Comp. Sci., Vol. 456.

12. J. W. Klop. Term Rewriting Systems. In S. Abramsky, D. Gabbay, and
T. Maibaum, editors, Handbook of Logic in Computer Science, Vol. II, pages 1–
112. Oxford University Press, 1992. Previous version: Term rewriting systems,
Technical Report CS-R9073, Stichting Mathematisch Centrum, Amsterdam, 1990.

13. Jan Willem Klop and Aart Middeldorp. Sequentiality in orthogonal term rewriting
systems. Technical Report CS-R8932, Stichting Mathematisch Centrum, Amster-
dam, The Netherlands, 1989.

14. H. Kuchen, R. Loogen, J. J. Moreno-Navarro, and M. Rodŕıguez-Artalejo. Graph-
based implementation of a functional language. In ESOP’90, pages 279–290, 1990.
Lect. Notes in Comp. Sci., 432.

15. J. J. Moreno-Navarro, H. Kuchen, R. Loogen, and M. Rodŕıguez-Artalejo. Lazy
narrowing in a graph machine. In Conf. on Algebraic and Logic Progr., 1990.
Lect. Notes in Comp. Sci., 463.

16. J. J. Moreno-Navarro and M. Rodŕıguez-Artalejo. Logic programming with func-
tions and predicates: The language BABEL. Journal of Logic Programming,
12:191–223, 1992.

17. Sanjai Narain. LOG(F): An optimal combination of logic programming, rewriting,
and lazy evaluation. PhD thesis, University of California, Los Angeles, CA, 1988.

18. Sanjai Narain. Optimization by non-deterministic, lazy rewriting. In RTA’89,
pages 326–342, Chapel Hill, NC, 1989. Lect. Notes in Comp. Sci., Vol. 355.

158

19. Sanjai Narain. Lazy evaluation in logic programming. In Third IEEE Conference
on Computer Languages, pages 218–227, New Orleans, 1990.

20. Michael J. O’Donnell. Computing in Systems Described by Equations. Springer-
Verlag, 1977. Lect. Notes in Comp. Sci., Vol. 58.

21. Michael J. O’Donnell. Equational Logic as a Programming Language. MIT Press,
1985.

22. R. C. Sekar and I. V. Ramakrishnan. Programming in equational logic: Beyond
strong sequentiality. In Proceedings of the Fifth Annual IEEE Symposium on Logic
in Computer Science, pages 230–241, Philadelphia, PA, June 1990.

23. Satish Thatte. A refinement of strong sequentiality for term rewriting with con-
structors. Information and Computation, 72:46–65, 1987.

24. Yonggong Yan. Building definitional trees. Master’s project, Portland State Uni-
versity, Portland, OR, March 1992.

159

